

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Институт физики высоких энергий имени А.А. Логунова Национального исследовательского центра «Курчатовский институт»

Препринт 2025-6

Е.Н. Савицкая, Ю.В. Белецкая, А.Г. Денисов, А.А. Дурум, А.М. Мамаев, М.А. Маслов, В.Н. Пелешко, И.Н. Пирязев, Я.Н. Расцветалов, А.А. Янович

Сечения реакций 27 Al(p,x) 22 Na, 27 Al(p,x) 24 Na и 27 Al(p,x) 7 Be при энергии протонов 50 ГэВ

Направлено в ЯФИ

УДК 539.1.074.3

Аннотация

Савицкая Е.Н., Белецкая Ю.В., Денисов А.Г., Дурум А.А., Мамаев А.М., Маслов М.А., Пелешко В.Н, Пирязев И.Н., Расцветалов Я.Н., Янович А.А. Сечения реакций 27 Al(p,x) 22 Na, 27 Al(p,x) 24 Na и 27 Al(p,x) 7 Be при энергии протонов 50 ГэВ. Препринт НИЦ «Курчатовский институт» – ИФВЭ 2025-6. — Протвино, 2025. — 10 с., 3 рис., 4 табл., библиогр.: 12.

Представлены результаты серии независимых измерений сечений протонных реакций на ядрах алюминия с выходом нуклидов 22 Na, 24 Na и 7 Be при энергии протонов 50 ГэВ на ускорительном комплексе У-70 НИЦ «Курчатовский институт» – ИФВЭ. Эксперимент проведен с использованием реперной реакции на природной меди nat Cu(p,x) 24 Na.

Abstract

Savitskaya E.N., Beletskaya Yu.V., Denisov A.G., Durum A.A., Mamaev A.M., Maslov M.A., Peleshko V.N., Piryazev I.N., Rascvetalov Ya.N., Yanovich A.A. Cross-sections of proton reactions ²⁷Al(p,x)²²Na, ²⁷Al(p,x)²⁴Na and ²⁷Al(p,x)⁷Be at 50 GeV. NRC «Kurchatov Institute» – IHEP Preprint 2025-6 – Protvino, 2025. – p.10, figs. 3, tables 4, refs.: 12.

The results of a series of independent measurements of the cross sections of proton reactions on aluminum nuclei with the yield of 22 Na, 24 Na and 7 Be nuclides at a proton energy of 50 GeV at the NRC "Kurchatov Institute" – IHEP accelerator complex are presented. The experiment was carried out using a monitor reaction on natural copper nat Cu(p,x) 24 Na.

Введение

При проведении прикладных исследований на каналах частиц протонного ускорительного комплекса ИФВЭ (У-70) используются быстро выведенные пучки с оптимальной энергией 50 ГэВ. Для мониторирования числа протонов в экспозициях облучения исследуемых объектов часто применяется простой и удобный метод активационных фольг. Точность метода, в основном, зависит от точности сечения мониторной реакции. В условиях специфики режимов работы ускорителя протонов У-70 ИФВЭ используются алюминиевые фольги с мониторными реакциями, в порядке убывания важности: 27 Al(p,x) 22 Na, 27 Al(p,x) 24 Na и 27 Al(p,x) 7 Be. До проведения настоящей работы значения сечений этих реакций для энергии 50 ГэВ (σ (22 Na)=10.6 мб, σ (24 Na)=8.3 мб и σ (7 Be)=7.5 мб) мы получали интерполяцией данных работы [1] с неопределенностью более 10%, что не всегда приемлемо.

Цель работы и постановка задачи

Цель работы — уточнить сечения выхода нуклидов ²²Na, ²⁴Na и⁷Be в алюминиевой фольге и уменьшить их погрешности. Метод измерения — активационный с детекторами в виде тонких фольг. Благодаря малой толщине фольг выполняется условие не более одного взаимодействия с выходом нуклида рассматриваемой реакции при прохождении через фольгу протона энергией 50 ГэВ. В основе постановки эксперимента заложен принцип одновременного облучения сборки из двух фольг: исследуемой алюминиевой и мониторной (реперной) медной. Чистота меди — 99.97%, алюминия — 99.50%.

В качестве мониторной выбрана реакция nat Cu(p,x) 24 Na, сечение которой по данным [2,3] с погрешностью \leq 2% постоянно в широком диапазоне энергий протонов от 28 до 150 ГэВ (табл.1) и принято нами для E=50 ГэВ равным 3.56 ± 0.07 мб. Именно по этой реакции в каждой экспозиции определяется число прошедших сборку протонов.

<u>Таблица 1.</u> Сечения образования 24 Nа в результате взаимодействий протонов с медью естественного содержания изотопов в диапазоне энергий 28-150 ГэВ.

Ер, ГэВ	о, мб	Источник	
28	3.54 ± 0.04	J.B. Cumming et al. [2]	
30	3.56 ± 0.07	C.I. Dolron et al. [2]	
150	3.57 ± 0.03	S.I. Baker et al. [3]	

Эксперимент

Наиболее удобным местом на ускорительном комплексе У-70 для постановки данного эксперимента оказался экспериментальный исследовательский стенд (ЭИС) Нейтрон [4], созданный для изучения спектров вторичного излучения из мишеней.

Облучение фольг проводилось пучком протонов энергией 50 ГэВ, быстро выведенным на ЭИС Нейтрон. В каждой экспозиции одновременно облучалась сборка из двух фольг диаметром 70 мм: исследуемая алюминиевая (184 мкм) и реперная медная (86 мкм или 101 мкм). Между ними зажималась плексигласовая прокладка толщиной 1 мм с целью предотвращения возможного переноса ионов между фольгами.

В ходе эксперимента ставилась задача исследовать и учесть вклад фона на активацию сборки фольг. Особенно это важно при оценке выхода нуклида 24 Nа в алюминиевой фольге, т.к. основным компонентом фона являются рассеянные нейтроны с энергией менее 20 МэВ, а сечение 27 Al(n,x) 24 Na имеет пик \sim 120 мб при энергии 12 МэВ от (n, α)-реакции. Для остальных сечений низкоэнергетический нейтронный фон не критичен: пороги реакций 27 Al(n,x) 22 Na и 27 Al(n,x) 7 Be около 30 МэВ, а для Cu(n,x) 24 Na \sim 100 МэВ.

Для оценки суммарного рассеянного нейтронного фона от окружающих конструкций проведена экспозиция сборки, где на алюминиевой фольге закреплены детекторы (см. схему на рис.1). Детекторами нейтронного фона с пороговой энергией выше 6 МэВ являлись полоски алюминия с размерами $30\times10\times4$ мм³ и $30\times15\times4$ мм³, расположенные

по горизонтали с двух сторон квадратной площадки 30×30 мм². Положение центра пучка контролировалось в каждом измерении. Удельные активности этих детекторов, приведенные в единицах кБк/г, будут соответствовать удельной активности фона на участках исследуемой алюминиевой фольги под конкретным детектором.

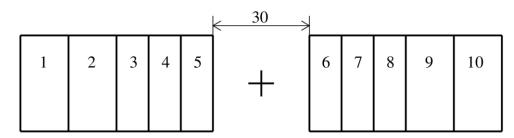


Рис. 1. Схема расположения фоновых Al-детекторов на алюминиевой фольге. Крест – центр пучка.

Измерения и обработка результатов

Активности нуклидов определялись по их характерным гамма-квантам, излучаемым при распаде (см. табл. 2).

Таблица 2. Периоды полураспада, энергии и выходы гамма-квантов ²² Na, ²⁴ Na и ⁷ Be.
--

Нуклид	T _{1/2}	Еү, кэВ	Υ, γ/распад
²² Na	2.602 г	1274.5	0.9994
²⁴ Na	14.96 ч	1368.6	0.9987
⁷ Be	53.22 сут.	477.6	0.1044

Измерения активностей облученных фольг и детекторов фона проводились на гамма-спектрометре СЕГ-1КП (ИФТП) с полупроводниковым кристаллом из сверхчистого германия с паспортными характеристиками:

- величина относительной эффективности 36% (к стандартному детектору NaJ);
- энергетическое разрешение 0.792 и 1.760 кэВ для линий 122.06 и 1332.5 кэВ соответственно.

Спектрометр градуировался с помощью образцовых источников гамма-излучения (ОСГИ) для штатных мест расположения образцов относительно внешней поверхности детектирующего блока. При определении активности объектов небольших размеров ис-

пользуются эффективности регистрации, полученные с точечными ОСГИ. Отличие размеров исследуемого образца от точечного влияет на результат измерений на небольших расстояниях от детектирующего блока спектрометра. В этом случае вводится поправочный коэффициент к эффективности регистрации ET (Efficiency Transfer) [5]. Компьютерным моделированием процесса регистрации фотонов германиевым детектором получают расчетные эффективности регистрации для двух геометрий источника: исследуемый объемный (ϵ_{06}) и точечный (ϵ_{T}). ET = ϵ_{06} / ϵ_{T} . Кроме того, на малых расстояниях от детектора необходимо учитывать вероятность одновременной регистрации двух или более фотонов для сложных схем распада нуклида [6,7]. В работе [8] подробно описан алгоритм расчета поправки на совпадение для корректировки скорости счета в регистрируемом пике.

Расчетная модель детектирующего блока спектрометра СЕГ-1КП была получена из условия наилучшего согласия расчетных и экспериментальных эффективностей регистрации источников ОСГИ подобно тому, как это описано в статье [8] для аналогичного спектрометра БДЕГ-30.185.

Моделирование транспорта фотонов и вторичных электронов в образцах и материалах СЕГ-1КП проводилось методом Монте-Карло с использованием программного комплекса HADRON+FAN15 [9–11]. По полученным в результате моделирования эффективностям регистрации рассчитывались поправки на совпадение и коэффициенты передачи эффективности ЕТ для исследуемых нуклидов, а также для учета эффектов совпадения для нуклидов ⁶⁰Со и ⁸⁸Y в источниках ОСГИ при градуировке спектрометра.

Влияние фона

Облученные алюминиевые детекторы фона из-за низкой активности при измерениях помещались на торец корпуса спектрометра СЕГ-1КП. В этом случае были учтены: поправка величины скорости счета на совпадения для линии E_{γ} =1368.6 кэВ, равная С=1.131, и поправка к эффективности регистрации ET=0.836. Введение этих поправок на 35% увеличивает полученные величины активностей $\Delta A_{m}(^{24}Na)$ детекторов фона, но даже максимальная активность не превышает 0.3% от удельной активности $A_{m}(^{24}Na)$ в 1 см² фольги, активированной пучком протонов (рис. 2). Выброс активности на пятом

фоновом детекторе обусловлен небольшим смещением пучка в сторону детектора. Вклад фона в активность 24 Nа в алюминиевой фольге незначителен, при определении сечения реакции 27 Al(p,x) 24 Na его можно не учитывать.

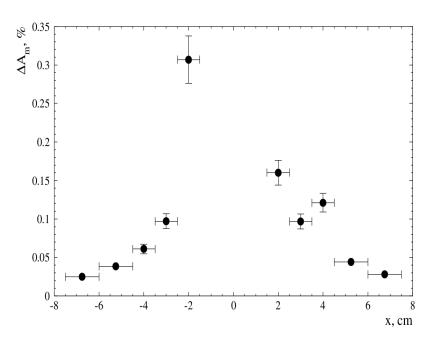


Рис. 2. Зависимость удельной активности 24 Nа в Al-детекторах от положения по горизонтали в процентах от удельной активности в активированном пучком протонов пятне Al-фольги.

Сечения мониторных реакций

Для определения поперечных размеров пучка протонов и его положения относительно центра мишени применялись радиохромные пленки GAFCHROMIC EBT3. Пленка позиционировалась перед мишенью во время облучения фольг, после чего сканировалась на планшетном RGB-сканере EPSON EXPRESSION 10000 XL. На основе двухмерного распределения интенсивности цвета в единицах оптической плотности, соотнесенного с координатами точек, формировались проекции распределений по осям X и Y. Данные проекции аппроксимировались гауссовой функцией с вычитанием линейного фона. Параметры гауссов (σ_x , σ_y) определяли размеры пучка протонов, а координаты центра гауссианов — положение центра пучка.

Проведен ряд независимых экспозиций сборок фольг. Активности в насыщении нуклидов определялись с учетом размеров пучка (σ_x и σ_y) и поправок на совпадение для 22 Na, 24 Na и для 88 Y при градуировке. Результаты измерений приведены в табл. 3.

<u>Таблица 3.</u> Активности в насыщении (кБк) нуклидов ²⁴Nа в меди и ²²Na, ²⁴Na и ⁷Be в алюминии при энергии протонов 50 ГэВ. L_{Cu} – толщина медной фольги.

σ_{x} ,	$\sigma_{\rm x}$, $\sigma_{\rm y}$, L_{Cu} ,		Cu	Al		
MM		МКМ	A ^s (²⁴ Na)	A ^s (²² Na)	A ^s (²⁴ Na)	A ^s (⁷ Be)
6.4	3.4	86	$69.5 \pm 4\%$	288 ± 5%	259 ± 4%	238 ± 5%
4.1	2.3	86	185 ± 5%	727 ± 5%	$670 \pm 4\%$	638 ± 5%
4.1	2.3	86	221 ± 5%	857 ± 5%	$768 \pm 4\%$	755 ± 5%
6.0	4.8	86	47.9 ± 5%	202 ± 5%	$184 \pm 4\%$	168 ± 5%
6.0	4.8	101	54.1 ± 5%	195 ± 5%	176 ± 4%	$165 \pm 5\%$
7.4	3.8	101	251 ± 5%	876 ± 4%	$768 \pm 4\%$	$782 \pm 4\%$
7.4	3.8	101	211 ± 8%	846 ± 5%	$757 \pm 4\%$	$729 \pm 4\%$

Число протонов за экспозицию N_p по выбранной реакции определяется по формуле:

$$N_p = \frac{A^s T_0}{N \sigma L},\tag{1}$$

где A^s – активность нуклида в насыщении, Бк; T_0 – время облучения (экспозиции), c; N – число ядер в 1 см 3 фольги; σ – сечение реакции, см 2 ; L – толщина фольги, см.

Так как число протонов, прошедших обе фольги, с большой точностью одинаково, из формулы (1) можно получить выражение для расчета сечения выхода 22 Na, 24 Na и 7 Be в алюминии, зная сечение выхода 24 Na в меди:

$$\sigma(p+Al \to X) = \sigma(p+Cu \to {}^{24}Na) \frac{A_{Al} \cdot \rho_{Cu} \cdot L_{Cu}}{\overline{A_{Cu}} \cdot \rho_{Al} \cdot L_{Al}} \cdot \frac{A_{Al}^{s}(X)}{A_{Cu}^{s}({}^{24}Na)},$$

$$X = {}^{22}Na, {}^{24}Na, {}^{7}Be.$$

Здесь A_{Al} и $\overline{A_{cu}}$ — атомарные массы в а.е. алюминия и меди; ρ_{Al} и ρ_{Cu} — плотности алюминия и меди; L_{Al} и L_{Cu} — толщины фольг; A^s — активности нуклидов в насыщении.

Полученные сечения реакций представлены в табл. 4.

<u>Таблица 4.</u> Сечения реакций с выходом 22 Na, 24 Na и 7 Be в алюминии при энергии протонов 50 ГэВ. $\bar{\sigma}$ – среднее значение сечения, $\Delta \sigma$ – среднее квадратичное отклонение.

Номер экс- позиции	σ(²² Na), мб	σ(²⁴ Na), мб	σ(⁷ Be), мб
1	$9.67 \pm 6\%$	$8.59 \pm 6\%$	$7.98 \pm 6\%$
2	$9.17 \pm 7\%$	$8.44 \pm 7\%$	$8.04 \pm 7\%$
3	$9.04 \pm 7\%$	8.10 ± 7%	$7.97 \pm 6\%$
4	$9.85 \pm 7\%$	$8.94 \pm 6\%$	8.17 ± 7%
5	$9.94 \pm 6\%$	$8.64 \pm 6\%$	8.38 ± 7%
6	9.61 ± 6%	8.43 ± 6%	8.58 ± 6%
7	9.36 ± 9%	8.37 ± 9%	$8.07 \pm 9\%$
$\overline{\sigma} \pm 2\Delta \sigma$	9.52 ± 0.62	8.50 ± 0.48	8.17 ± 0.42

Наблюдается хорошая воспроизводимость измеряемых сечений выхода нуклидов 22 Na, 24 Na и 7 Be. Разброс от их средних величин не превышает 4%. В погрешностях активностей нуклидов в табл. 3 и сечений в табл. 4 учтены систематические погрешности активности градуировочных источников ОСГИ (3%). Для нормального распределения доверительной вероятности 0.95 соответствует интервал $\pm 2\Delta \sigma$. С учетом систематической погрешности (σ (p+Cu \rightarrow ²⁴Na) – 2%) получены уточненные величины сечений с нашей экспертной оценкой их неопределенностей:

$$\sigma(^{22}\text{Na}) = (9.52 \pm 0.65) \text{ мб, } \sigma(^{24}\text{Na}) = (8.50 \pm 0.51) \text{ мб и } \sigma(^7\text{Be}) = (8.17 \pm 0.45) \text{ мб.}$$

На рис. 3 наши результаты представлены вместе с другими данными, доступными в базе экспериментальных данных по ядерным реакциям EXFOR [12] в диапазоне энергий протонов от 10 до 300 ГэВ.

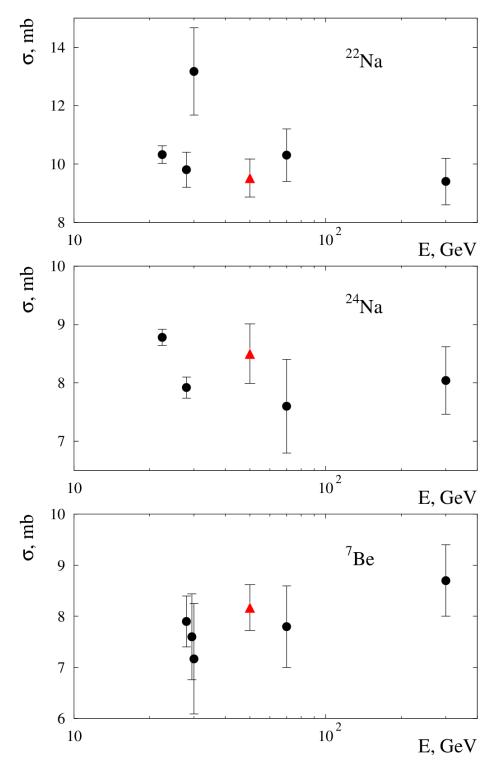


Рис. 3. Сечения мониторных реакций с выходом 22 Na, 24 Na и 7 Be в алюминии: красные треугольники — наши результаты, черные точки — других авторов из EXFOR [12].

Заключение

По результатам выполненных независимых экспозиций получены сечения выхода нуклидов 22 Na, 24 Na и 7 Be в алюминии с нашей экспертной оценкой их неопределенности при энергии протонов 50 ГэB, рекомендуемые для практического использования.

Здесь следует отметить, что, как и предполагалось, отличие величин интерполированных сечений от вновь измеренных невелико 4–10%, но уровень их неопределенности существенно снижен.

Примененный способ измерения сечений в постановке из сборки двух фольг (исследуемой и реперной медной) можно распространить и на другие энергии протонного пучка в интервале постоянства сечения $^{\rm nat}$ Cu(p,x) $^{\rm 24}$ Na.

Список литературы

- [1] Крупный Г.И., Снитко Д.В., Янович А.А. Сечения реакций 27 Al(p,spall) 7 Be, 27 Al(p,3p3n) 22 Na и 27 Al(p,3pn) 24 Na в диапазоне энергий протонов 37 МэВ 70 ГэВ; Препринт ИФВЭ 2000-13.- Протвино, 2000.
- [2] Cumming J.B., Stoenner R.W., Haustein P.E.. *Spallation of copper by 25GeV* ¹²C ions and 28 GeV protons. Phys. Rev. C. 1976. V. 14. P. 1554.
- [3] Baker S.I., Allen R.A., Yurista P., Agoritss V., Cumming J.B., $Cu(p,X)^{24}Na$ cross section from 30 to 800 GeV. Phys. Rev. C. 1991. V. 43. P. 2862.
- [4] Rascvetalov Ya.N., Beletskaya Yu.V., Denisov A.G., Durum A.A., Ilyukin V.L., Mamaev A.M., Peleshko V.N., Piryazev I.N., Savitskaya E.N., Sukharev M.M., Sukhikh S.E., Yanovich A.A. *Measurement of Neutron Field Functionals Around a Neutron Converter of 50 GeV Protons*, JACoW Publishing (Joint Accelerator Conferences Website), XXVII Russian Particle Accelerators Conference (RuPAC 2021), 26 September 2 October 2021.
- [5] Moens L., De Donder J., Xi-lei L. et al. *Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries*. Nucl. Instrum. Meth. Phys. Res. 1981. V. 187. P. 451-472.
- [6] Vidmar T., Celik N., Cornejo Díaz N. et al. *Testing Efficiency Ttransfer Codes for Equivalence*. Appl. Radiat. Isot. 2010. V. 68. P. 355-359.

- [7] Lepy M.-C., Altzitzoglou T., Anagnostakis M.J. et al. *Intercomparison of Methods for Coincidence Summing Corrections in Gamma-Ray Spectrometry*. Appl. Radiat. Isot. 2010. V. 68. P. 1407-1412.
- [8] Савицкая Е.Н., Белецкая Ю.В., Крупный Г.И., Расцветалов Я.Н., Санников А.В. Эффективность регистрации фотонов германиевым полупроводниковым спектрометром. Препринт ИФВЭ 2011–15. Протвино, 2011; ПТЭ. 2012. № 3. С. 116-123.
- [9] Sannikov A.V., Savitskaya E.N. Physics of the HADRON code: recent status and comparison with experiment // Nucl. Instrum. Meth. Phys. Res. 2000. V. A450. P. 127–137.
- [10] Savitskaya E.N. and Sannikov A.V. FAN15 software code for calculating low-energy photons and neutrons transfer in arbitrary media. Atomic Energy. 2017. V. 122, N. 1. P. 51-57. (Russian Original 2017. T. 122, №. 1. C. 40-45).
- [11] Savitskaya E.N. and Sannikov A.V. FAN15 code modeling of electron and positron transport. Atomic Energy. 2017. V. 122. N. 2. P. 118-124. (Russian Original 2017. T. 122. №. 2. C. 98-102).
- [12] https://www-nds.iaea.org/exfor/

Рукопись поступила 24 сентября 2025 г.

Е.Н. Савицкая, Ю.В. Белецкая, А.Г. Денисов, А.А. Дурум, А.М. Мамаев, М.А. Маслов, В.Н. Пелешко, И.Н. Пирязев, Я.Н. Расцветалов, А.А. Янович.

Сечения реакций 27 Al(p,x) 22 Na, 27 Al(p,x) 24 Na и 27 Al(p,x) 7 Be при энергии протонов 50 ГэВ.

Препринт отпечатан с оригинала-макета, подготовленного авторами.

Подписано к печати 1.10.2025 Формат $60 \times 84/16$. Цифровая печать. Печ.л. 0, 86. Уч.— изд.л. 1,2. Тираж 68. Заказ 7. Индекс 3649.

НИЦ «Курчатовский институт» – ИФВЭ

142281, Московская область, г. Протвино, пл. Науки, 1

www.ihep.ru; библиотека http://web.ihep.su/library/pubs/all-w.htm

ПРЕПРИНТ 2025-6, НИЦ «Курчатовский институт» – ИФВЭ, 2025