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Here we present a pedagogical review of CPand T violation in the decays of K mesons. Diagonalization
of the quark mass matrix and the emergence of the complex phase in both the standard and the left–right
symmetric models is considered in great detail. A special emphasis is given to a correct definition of CP-
violating quantities: ε, ε′ etc. (with due regard for the Wu–Yang phase convention) and to formulation of
the time-reversal invariance criterion in the elementary particle physics. A particular attention has been
concentrated on theoretical evaluation of the parameters ε and ε′ and the CP- and T -violating asymmetries
in the decays K → µνγ and K → 3π.

1 The CKM matrix

1.1 Diagonalization of the Mass Matrix

The initial Lagrangian of the Standard Model (SM) involves 12 massless chiral quarks
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which acquire mass due to spontaneous breaking of the SU(2)L symmetry. The most general quark
mass matrix induced by the Higgs fields has the form

3∑
i,j=1

(
D̄L
i M

′
ijD

R
j + ŪLi N

′
ijU

R
j

)
+ H.c., (1)

where M ′ij and N ′ij are arbitrary 3×3 matrices. This mass term can be considered as a perturbation
of the initial SM Hamiltonian, the above quark states form the basis associated with the 12-fold
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degenerate zero-mass level of the unperturbed Hamiltonian. According to the quantum mechanics,
one should find the basis in which the perturbation operator takes the diagonal form

M ′ = VdMY
†
d , N ′ = VuMY †u , (2)

where M = diag(md,ms,mb) and N = diag(mu,mc,mt); Yd, Yu, Vd, and Vu are unitary 3 × 3
matrices; and

dRi , u
R
i , d

L
i , u

L
i , (i = 1, 2, 3) (3)

are the so called mass eigenstates, which form the sought-for basis. The interaction eigenstates (the
eigenstates of the interaction Hamiltonian) are expressed in terms of the mass eigenstates as follows:

DR = Yd d
R, UR = Yu u

R,

DL = Vd d
L, UL = Vu u

L.

This being so, the interaction between left charged currents and gauge bosons

3∑
i=1

(
D̄L
i Ŵ

−ULi + ŪLi Ŵ
+DL

i

)
(4)

takes the form

3∑
i,j=1

d̄Li (V †d Vu)ikŴ
−uLj + ūLi (V †uVd)ikŴ

+dLj =
3∑
i=1

ūiγ
µ 1− γ5

2
W+
µ d
′
i + H.c., (5)

where
d′i = Vijdj , and V = V †uVd (6)

is the Cabibbo–Kobayashi–Maskawa (CKM) matrix [1]. Note that the matrices Yd and Yu play
no role when considering interaction. Now the left doublets (that appear in the interaction
Lagrangian) have the form(

u

Vudd+ Vuss+ Vubb

)
,

(
c

Vcdd+ Vcss+ Vcbb

)
,

(
t

Vtdd+ Vtss+ Vtbb

)
.

It should be noticed that mass eigenstates are invariant under the transformations Vu → VuΦu,
Vd → VdΦd, where

Φu =

 eiφu 0 0
0 eiφc 0
0 0 eiφt

 , Φd =

 eiφd 0 0
0 eiφs 0
0 0 eiφb

 ;

thus any matrix of the family Φ†uV Φd may be chosen as the quark-mixing matrix. To exclude this
arbitrariness, one should fix the phases of the quark states:

fixing the phase of the

u

c

t

s

b

quark allows to make

Vud
Vcd
Vtd
Vus
Vub

real.

The phase of the d quark is fixed by the requirement that the above matrix elements are real.
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Thus 5 independent conditions can be imposed on the elements of the mixing matrix and so it
has 4 independent parameters, 1 of which has to be complex (all real-valued U(3) matrices belong
to the SO(3) group). This means that there is one CP- and T - violating parameter in the SM
interaction Lagrangian, whose value cannot be determined from the general principles. In the case
of N flavors, a similar reasoning implies the existence of (N − 1)(N − 2)/2 complex phases; in the
case of two generations, all the elements of the mixing matrix can be made real and the theory is
CP invariant.

It is instuctive to show in detail how the imaginary part of the fermion–fermon–vector-boson cou-
pling constant implies CP and T -violation. We define the action of the C, P, and T transformations
on the fermion fields as follows:

Pψ(x)P† = γ0ψ(x̃), Cψ(x)C† = −iγ2ψ∗(x̃), T ψ(x)T † = iγ1γ3ψ(−x̃), (7)

where x̃µ = xµ. Then the action of these operators on the fermion densities

S(x) = : q̄(x)q(x) : (8)

V µ(x) = : q̄(x)γµq(x) :

Tµν(x) = : q̄(x)σµνq(x) :

Aµ(x) = : q̄(x)γµγ5q(x) :

P (x) = : iq̄(x)γ5q(x) :

takes the form [2] (note that T conjugates all complex constants):

Table 1. P, C, and T transformations of the fermion densities.

Transformation S(x) V µ(x) Tµν(x) Aµ(x) P (x)
and vector field

P S(x̃) Vµ(x̃) Tµν(x̃) Aµ(x̃) − P (x̃)

C S(x) − V µ(x) − Tµν(x) − Aµ(x) P (x)

T S(− x̃) Vµ(− x̃) − Tµν(− x̃) Aµ(− x̃) − P (− x̃)

Θ = CPT S(− x) − V µ(− x) T− µν(x) − Aµ(− x) P (x)

These definitions agree with the transformations of various physical quantities under C, P, and
T (see Table 1). It is seen now that the term1, say,∫

dx
(
Vtd t̄γ

µ(1− γ5)d W+
µ + V ∗td d̄γ

µ(1− γ5)t W−µ
)

(9)

is both CP and T violating due to imaginary part of Vtd: CP transformation changes the fermion
densities: t̄γµ(1 − γ5)d W+

µ ↔ d̄γµ(1 − γ5)t W−µ , whereas T has no effect on the operators,
however, conjugates the coefficients: Vtd ↔ V ∗td. Note that the CPT transformation leaves the term
(9) invariant.

1Operator t̄...d creates t and anti-d quarks and annihilates d and anti-t quarks.
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1.2 The strong CP problem

Strictly speaking, one could fix the phases of left-handed and right-handed states separately, ex-
cluding arbitrariness in the chiral phases α:

qR → eiαqR, qL → e−iαqL. (10)

This would give rise to the terms

ihu1 ūγ
5u+ ihd1d̄γ

5d+ ... (11)

in the interaction Lagrangian. A strong limit on the CP-odd parameters hi comes from the mecha-
nism of the spontaneous breaking of the chiral SUL(Nf )×SU3(Nf ) symmetry in strong interactions.
Let us assume that the vacuum is CP-even. In this case, the v.e.v. of the mass term

H ′m =

NF∑
i=1

q̄i(mi − ihiγ5)qi (12)

can approach its minimum only provided that hu = hd = hs = ... = λ (a consequence of the Dashen
theorem [3]). If we fix the chiral phases of quarks so that the mass term is γ5-free, we have to
consider the spontaneous breaking of the CP symmetry:

〈0|ŪLi URj |0〉 = 〈0|D̄L
i D

R
j |0〉 = Ceiφiδij , (13)

where the angles φi are CP-violating parameters. Thus we got rid of the SU(Nf ) chiral phases. The
UA(1) chiral phase can be absorbed in the so called θ term giving rise to the strong CP violation:
the measurable quantities are independent of θ − 2NFα, where α is the chiral phase and θ is the
coefficient of the CP-odd term [4]

Lθ =
θ

32π2
GµνG

µν , (14)

which is equivalent to (that is, can be replaced with) the ”pseudoscalar mass term”

NF∑
i=1

i(
1

m1
+ ...+

1

mNF

) q̄iγ
5qi. (15)

1.3 The CKM Matrix

Performing the above procedure, we arrive at the expression for the quark mixing matrix in the
form proposed by Kobayashi and Maskawa: Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

 =

 c1 −s1c3 −s1s3

s1c2 c1c2c3 − s2s3e
iδ c1c2s3 + s2c3e

iδ

s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3eiδ

 ,

where ci = cos θi, si = sin θi. This matrix differs from the mixing matrix advocated by the Particle
Data Group [5], c12c13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 ,

20



in the phases of the c, b, t quarks. A popular approximation that emphasizes the hierarchy in the
size of the angles

s12 >> s23 >> s13, (16)

where s12 ≡ λ is the sine of the Cabibbo angle, is that one expands the other elements in terms of
the parameter λ. Up to and including terms of order λ3, the mixing matrix is given by 1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) − Aλ2 1

 ,

where A, ρ, η are assumed to be of order unity. The unitarity of the CKM matrix implies

V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0. (17)

In the approximation Vud ' Vtb ' 1 one obtains

V ∗ub
Aλ3

+
Vtd
Aλ3

− 1 = 0. (18)

Fig. 1. The unitarity triangle.

This relation identifies a triangle in the ρ − η plane (see Fig. 1); the angles of this triangle are
measures of CP violation. The origin of the complex CKM phase is still not clearly understood.
It may be that it stems fron the short-distance dynamics [6] or extra dimensions (or something
else) [7].

1.4 Left-Right Symmetric Model

The fermion sector of the SU(3)L × SU(3)R × U(1)-symmetric model [8] is the same as that of
the SM; the boson sector involves the left WL

µ and right WR
µ gauge bosons, whose interaction with

quarks q̄D̂q is determined by the covariant derivative

Dµq = ∂µq + igL ~W
L
µ ~τ

1− γ5

2
q + igR ~W

R
µ ~τ

1 + γ5

2
q, (19)

and a suitable SU(3)L × SU(3)R multiplet of the Higgs fields(
φ11 φ12

φ21 φ22

)
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interacts with quarks as follows:

q̄Li (hijφ+ fij φ̃)qRj + H.c., (20)

where φ̃ = −σ2 φ
∗ σ2 and the indices i, j denote generation. Vacuum expectation values (v.e.v.) of

the Higgs fields can be taken to be

〈φ〉 =

(
κ 0
0 κ′

)
giving rise to the mass term of the form

3∑
i,j=1

(
ŪLi , D̄

L
i

)( hijκ+ fijκ
′ 0

0 hijκ
′ + fijκ

)(
URj
DR
j

)
= D̄L

i M
′
ijD

R
j + ŪLi N

′
ijU

R
j ,

where M ′ij = fijκ+ hijκ
′ and N ′ij = fijκ

′ + hijκ. Diagonalization of the mass matrices M ′ and N ′
can be made by the same token as in the case of the SM:

DR = Yd d
R, UR = Yu u

R,

DL = Vd d
L, UL = Vu u

L,

where

dRi , u
R
i , d

L
i , u

L
i , (i = 1, 2, 3) (21)

are the mass eigenstates. Mixing in the left sector and the elimination of arbitrariness in the choice
of the matrices Vd and Vu can be considered in the same way as in the case of the SM. The additional
interaction Lagrangian of the right currents is expressed in terms of the mass eigenstates as follows:

3∑
i=1

(
ŪRi Ŵ

+DR
i + H.c.

)
=

3∑
i=1

ūiγ
µŴ+

R

1 + γ5

2
d′′i + H.c., (22)

where

d′′i = Yijdj , Yij = (Y †u )ik(Yd)kj . (23)

In the case of two flavors,

Y =

(
cos θR eiδR sin θR

− eiδR sin θR cos θR

)
.

In the case of N flavors the number of independent CP-violating phases is equal to N(N−1)
2 .

2 The Low-Energy Effective Lagrangian

It is well to recollect that any effective Lagrangian derives from an expansion of the exact amplitudes
at small external momenta. Keeping only a few terms of such expansion (denote them by T ), we
find the Lagrangian Leff such that T = 〈out|Leff |in〉.

Now we turn to the consideration of the consequences of the CP-violating phase for the hadronic
physics. This can be made in the two stages:

• we construct the low-energy effective Lagrangian in terms of the quark fields, where the CKM
phase gives rise to the imaginary parts of the effective coupling constants, represented by the
Wilson coefficients;

• using some model assumptions, we derive the expression for the Lagrangian in terms of the
meson fields.
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As a result of the first stage of this evolution, one obtains the effective ∆S = 1 Lagrangian [11]

L∆S=1
eff = −GF√

2
Vud V

∗
us

10∑
i=1

Ci(µ) Qi(µ) , (24)

which is a sum of local four–fermion operators Qi, constructed with the light degrees of freedom,

Q1 = (sαuβ)V−A (uβdα)V−A , (25)

Q2 = (su)V−A (ud)V−A ,

where (q̄iqj)V±A ≡ q̄iγ
µ(1 ± γ5)qj , α and β are color indices. The operators Q1 and Q2 and the

respective coefficients C1 and C2 are determined by the low-energy expansion of the diagrams in
Fig. 3.

Fig. 3. The diagrams for the short-distance processes giving rise to the operators Q1 and Q2 in the effective
Lagrangian (24).
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The remaining operators

Q3,5 = (sd)V−A

∑
q

(qq)V∓A , (26)

Q4,6 = (sαdβ)V−A

∑
q

(qβqα)V∓A ,

Q7,9 =
3

2
(sd)V−A

∑
q

eq (qq)V±A ,

Q8,10 =
3

2
(sαdβ)V−A

∑
q

eq
(
qβqα

)
V±A

,

come from the celebrated ’penguin’ diagram:

Fig. 4. The ’penguin’ diagram.

The Wilson coefficients Ci can be represented in the form

Ci(µ) = zi(µ) + τyi(µ), (27)

where

τ = − VtdV
∗
ts

VudV ∗us
. (28)

The CP-violating amplitudes are proportional to yi.
At the hadronic level, the effective Lagrangian is expressed in terms of the

meson fields: Φ =


π0√

2
+

η8√
6

+
η0√

3
π+ K+

π− − π0√
2

+
η8√

6
+

η0√
3

K0

K− K̄0 −2η8√
6

+
η0√

3

 ,
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The most general effective bosonic Lagrangian of the second order in derivatives, with the same
SU(3)L ⊗ SU(3)R transformation properties and quantum numbers as the short–distance La-
grangian, contains three terms [12]:

L∆S=1
2 = −GF√

2
VudV

∗
us f

4

{
g8

[
〈λLµLµ〉+ e2f2gew 〈λU †QU〉

]
+ g27

(
Lµ23L

µ
11 +

2

3
Lµ21L

µ
13

)}
, (29)

where the matrix

Lµ = −iU †DµU

(
U = exp(

i
√

2Φ

Fπ
)

)

represents the octet of V − A currents at lowest order in derivatives, Q = diag(
2

3
,−1

3
,−1

3
) is the

quark charge matrix, λ ≡ (λ6 − iλ7)/2 projects onto the s̄ → d̄ transition [λij = δi3δj2] and 〈A〉
denotes the flavor trace of A.

The chiral couplings g8 and g27 measure the strength of the two parts of the effective Lagrangian
transforming as (8L, 1R) and (27L, 1R), respectively, under chiral rotations.

In the presence of electroweak interactions, the explicit breaking of chiral symmetry generated
by the quark charge matrix Q induces the O(p0) operator 〈λU †QU〉, transforming as (8L, 8R) under
the chiral group.

|g8| ' 5.1 , |g27| ' 0.29 . (30)

The huge difference between these two couplings shows the well–known enhancement of the octet
|∆I| = 1/2 transitions. In the NC → ∞ limit, the real parts of these constants are expressed in
terms of the Wilson coefficients as follows [13]:

g∞8 = −2

5
C1(µ) +

3

5
C2(µ) + C4(µ)− 16L5

(
〈q̄q〉(2)(µ)

f3

)2

C6(µ) ,

g∞27 =
3

5
[C1(µ) + C2(µ)] , (31)

(g8 e
2gew)∞ = −3

(
〈q̄q〉(2)(µ)

f3

)2

C8(µ) .

The imaginary parts of them are responsible for CP-violating effects and will be considered further.
With the effective weak Lagrangian at hand, it is very helpful to consider the evolution of a meson
system to the second order in the weak interaction.

3 CP-Violation in the System of Neutral Kaons

It has become a tradition2 to begin a description of the K0 − K̄0 system with writing down the
most general expression for CPT -invariant Hamiltonian

i
d

dt

(
K0

K̄0

)
=

(
H11 H12

H21 H11

)(
K0

K̄0

)
,

2In this Section, we follow [1, 14, 15]
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where K0 and K̄0 are the eigenstates of the strong-interaction Hamiltonian and the matrix Hij is
non-Hermitean.

However, it is well to recollect a derivation of this formula and formulate the assumptions made
in its derivation.

• We consider weak interactions as a perturbation to the strong interactions.

• We consider evolution of the eigenstates of the strong-interaction Hamiltonian to the second
order in the weak interaction and then search for the effective Hamiltonian that would give
the same evolution in the leading order of perturbation theory [16].

The perturbation expansion of the S matrix in the K0 − K̄0 system has the form

Sab = 〈b|T exp

(
−i
∫
H int
W (t)dt

)
|a〉 = δab − 2πiTab. (32)

where a, b = K0, K̄0, H int
W (t) = eiHtHW e

−iHt, and HW is the weak-interaction Hamiltonian. To the
second order in HW , we obtain

Tab = 〈b|HW |a〉 − i

2

∫
dt〈b|T (H int

W (t)H int
W (0)

) |a〉
= 〈b|HW |a〉+

1

2

∑
λ

[〈b|HW |λ〉〈λ|HW |a〉
Eb − Eλ + iε

+
〈b|HW |λ〉〈λ|HW |a〉
Ea − Eλ + iε

]
. (33)

Making use of the Sokhotsky relations one can represent the transition amplitudes Tab+〈b|Hstrong|a〉
as the matrix elements of the effective Hamiltonian

Hab = Mab − iΓab
2
, (34)

where

Mab = mKδab + 〈b|HW |a〉+ P
∫
dλ
〈b|HW |λ〉〈λ|HW |a〉

mK − Eλ , (35)

Γab = 2π
∑
λ

〈b|HW |λ〉〈λ|HW |a〉δ(mK − Eλ).

Note that M = M † and Γ = Γ†. Thus the Hamiltonian

H =

(
H11 H12

H21 H11

)
=

 (M ′11 + iM ′′11)− i (Γ′11 + iΓ′′11)

2
; (M ′12 − iM ′′12)− i (Γ′12 − iΓ′′12)

2

(M ′12 + iM ′′12)− i (Γ′12 + iΓ′′12)

2
; (M ′11 + iM ′′11)− i (Γ′11 + iΓ′′11)

2

 ,

is related to the Hamiltonian of the weak interactions. Eigenstates of this Hamiltonian are identified
with the physical states K0

L and K0
S , which are expressed through K0 and K̄0 in terms of the

parameter

ε̄ =

√
H12 −

√
H21√

H12 +
√
H21

: (36)

K0
L =

1√
2(1 + |ε̄|2)

(
1 + ε̄

−1 + ε̄

)
, K0

S =
1√

2(1 + |ε̄|2)

(
1 + ε̄

1− ε̄
)

;
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the respective eigenvalues give the masses and widths of the K0
L and K0

S mesons:

λS = H11 −
√
H12H21 = MS − i ΓS

2
, (37)

λL = H11 +
√
H12H21 = ML − i ΓL

2
.

CP transformation exchanges |K0〉 and |K̄0〉 states:

CP|K0〉 = eiθ|K̄0〉, CP|K̄0〉 = e− iθ|K0〉. (38)

The phase factor can be chosen arbitrarily, because any quantum-mechanical state is defined up to
a phase. However an interpretation of the matrix elements Hab and parameter ε̄ depends on a
particular choice of the phase.

In the case θ = 0, the parameters M ′′ and Γ′′ are CP-odd, whereas M ′ and Γ′ are CP-even.
Assuming that CP-odd parameters are small, Γ′′12 << Γ′12 and M ′′12 << M ′12, we obtain

ε̄ =
H12 −H21

4
√
H12H21 + (

√
H12 −

√
H21)2

≈ i M ′′12

λS − λL sign(M ′12). (39)

The formulas (37) agree with the experimental fact MKL > MKS if the sign of the square root√
H12H21 is chosen so that√

H12H21 = M ′12 − i
Γ′

2
for M ′12 > 0, ∆M ≡MKS −MKL = −2M ′12;√

H12H21 = −M ′12 + i
Γ′

2
for M ′12 < 0, ∆M ≡MKS −MKL = 2M ′12.

Experimental data indicate that ∆M = − ∆Γ

2
, hence λS −λL ≈ ∆M (1 + i). Combining the above

formulas, we arrive at

ε̄ = −e
iπ
4√
2

M ′′12

2M ′12

(40)

for both M ′12 > 0 and M ′12 < 0. (The assumption that MKL < MKS would give the phase factor

e
−iπ

4 instead of e
iπ
4 .)

3.1 Phase Convention

It is important and helpful to keep track of the phase arbitrariness stemming from the fact that

both

(
1
0

)
and

(
eiφ

0

)
describe the same physical state.

The transformation rules induced by the rotation of the phase of the s quark

s→ eiφs, s̄→ e−iφs̄, (41)

are as follows:

K0 → e−iφK0, K̄0 → eiφK̄0, H12 → e−2iφH12, H21 → e2iφH21,

Vus → eiφVus ε̄→ ε̄− i tgφ

1− i ε̄tgφ, AI → e−iφAI ,

27



CP =

(
0 1
1 0

)
→
(

0 e−2iφ

e2iφ 0

)
.

Let the phases of the K0 and K̄0 be chosen so that the matrix of CP transformation has the form

CPab =

(
0 1
1 0

)
(we call it the ”default” phase convention). It should be compared with the widely used Wu–Yang
phase convention, in which the phase of A0 is set equal to zero. It should be noticed that in the
Wu–Yang phase convention the operator of CP transformation has the form

CPab =

(
0 e−2iα

e2iα 0

)
.

It should also be emphasized that the value ε̄ as was defined above is phase-dependent and so does
not measure CP violation, and the imaginary part of the effective weak Hamiltonian HW is not
associated with CP violation (and so it may be larger than real).

We adopt the ”default” phase convention. In this case

• the quantities M ′′ and Γ′′ are CP-odd;

• M ′ and Γ′ are CP-even;

• Vus is real.

Upon fixing a phase convention, the parameter ε̄ makes physical sense and can be related
to measurable quantities; the CP-violating parameters in the effective weak Hamiltonian are M ′′
and Γ′′.

3.2 Mixing of K0 and K̄0 in the Standard Model

As has been demonstrated, such mixing is accounted for by the ∆S = 2 effective weak Lagrangian.

Let us consider the computation of the diagrams in Fig. 5 (giving the transition amplitude
s̄d→ sd̄).

Fig. 5. ∆S = 2 transitions at the quark level.
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Gaillard and Lee in the pioneer work [17] obtained

T (s̄d→ sd̄) = − GF√
2

α

π sin2 θW

(d̄Lγ
µsL)(d̄LγµsL)

∑
i,j=u,c,t

ξiξjA(xi, xj), (42)

where

A(xi, xj) =
J(xi)− J(xj)

xi − xj , J(x) ≡ 1

1− x +
x2 lnx

(1− x)2
, (43)

ξi = VisV
∗
id, and xi =

m2
i

M2
W

.

Thus we obtain the effective ∆S = 2 Lagrangian

L∆s=2
eff = = − GF√

2

α

16π sin2 θW

Q0 λ,

where3

Q0 = d̄γµ(1− γ5)s × d̄γµ(1− γ5)s, (44)

λ =
∑
i,j

ξiξjA(xi, xj).

With the use of this Lagrangian the mass difference is readily obtained:

∆M = MS −ML ≈ −2M12 =
1

2MK
.〈K̄0|L∆S=2|K0〉. (45)

Now one should evaluate the matrix element

MKK = 〈K̄0|d̄γµ(1− γ5)s × d̄γµ(1− γ5)s|K0〉. (46)

In early works, the matrix element was evaluated using the so called “Vacuum Insertion Approxi-
mation”. The result is as follows:

MKK =
8

3
〈K̄0|d̄γµγ5s |K0〉 〈K̄0|d̄γµγ5s|K0〉 =

8

3
M2
KF

2
K . (47)

The first computation of this matrix element was performed in the bag model [18]; in was found
that it is smaller from the naive expectation of MKK by a factor of 2. For this reason, the factor
BK in the expression

〈K̄0| [d̄γµ(1− γ5)s] [s̄γµ(1− γ5)d] |K0〉 =
8

3
M2
KF

2
K BK (48)

3To simplify these expression it is well to use the unitarity condition ξu + ξc + ξt = 0.
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is named “the bag constant”. The computation of the bag factors presents the major challenge in
the calculations of CP-violating quantities in nonleptonic reactions.

The short-distance contribution to ∆M comprises 70÷ 80% of the total SM contribution:

∆M = −2 M ′′12 = − 2

3

GF√
2
ηBK

α

4π

( mc

37GeV

)2
Reλ, (49)

where (in the approximation xu = 0, xc << 1, xt ∼ 1)4

Reλ = Re

(
ξ2
c + ξ2

t

xt
xc

(1− x2
t + 2xt lnxt)

(1− xt)3
+ 2ξcξt

(
xt

1− xt +
lnxt

(1− xt)2
− lnxc

))
(50)

and the factor η accounts for the corrections due to strong interactions, evaluated in perturbative
QCD. The fact that Reλ ≈ 1 indicates that the c quark gives the dominant contribution to the mass
difference. The remaining 20 ÷ 30% are attributed to the long-distance contribution (that is the
contribution of the ππ, πππ etc intermediate states in formula (35)), which is extremely difficult to
compute exactly.

Fig. 6. The K0 − K̄0 transition in terms of the effective Lagrangian.

The estimates of the bag constant obtained in the lattice QCD and in some models are

BK = 0.85± 0.15 (Lattice [19]), (51)

BK = 0.41± 0.09 (Chiral limit, 1/NC [20]). (52)

3.3 Basic Formula for ε

In the above subsection we have considered in detail the determination of the real part of the
amplitude of the ∆S = 2 transition in terms of the short-distance contribution (the second term
in the expression (35) for Mab) and the bag constant BK . The imaginary part of this amplitude,
which appears in the expression (40) for ε, can be calculated by the same token. In the case of
imaginary part, one can safely neglect the long-distance contribution (due to low-lying intermediate
states associated with the third term in the expression (35) for Mab). The result is

εteor = CεBK exp

(
iπ

4

)
Imξt [Reξc (η1S0(xc)− η3S0(xc, xt))− Reξtη2S0(xt)] , (53)

4In the real world, xu = 2.5× 10−11, xc = 2× 10−4, xt = 4.7.
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where

Cε =
G2

FF
2
KMKM

2
W

6
√

2π2 ∆MK

= 3.837× 104 (54)

(here we have used the experimental value of M ′12, determined from ∆MK , in spite of the theoretical
value (49)),

S0(xc) ≈ xc, (55)

S0(xt) ≈ 2.46 ·
( mt

170GeV

)1.52
,

S0(xc, xt) ≈ xc

[
ln

(
xt
xc

)
− 3xt

4(1− xt) −
3x2

t lnxt
4(1− xt)2

]
,

mc ' 1.3 GeV, mt = (174.3± 5.1) GeV;

the short-distance corrections due to the strong interactions are absorbed in the coefficients [21]

η1 = 1.38± 0.20, η2 = 0.57± 0.01, η3 = 0.45± 0.04.

Formula (53) allows to set a limitation on the CP-violating parameter η of the SM from the experi-
mental limitations on ε (see Fig.7).

Fig. 7. Formula (53) confines ε to lie in some vicinity of the indicated hyperbola (see [5]). The combined
set of limitations makes the vertex of the unitarity triangle to lie within the indicated limits.

3.4 (K → ππ) Amplitudes

The 2π decay amplitudes of the neutral Kaons in the channel with isospin I are defined by the
matrix elements

〈ππ, I|HW |K0〉 =

√
3

2
(AI +BI) e

iδI , (56)

〈ππ, I|HW |K̄0〉 =

√
3

2
(A∗I −B∗I ) eiδI ,
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where δI is the S-wave phase shift of the ππ scattering;

|ππ, I out〉 = e2iδI |ππ, I in〉 (57)

and
AI = A′I + iA′′I , BI = B′I + iB′′I . (58)

The properties of these amplitudes under the CP-transformation and time reversal T are seen from
Table 2.

Table 2. Transformation properties of the isospin amplitudes.

Transformation A′ A′′ B′ B′′

CP + — — +

T + — + —

It is seen that the amplitudes AI are CPT -even, whereas the BI amplitudes are CPT -odd.
Using the relations

1√
2
|π+π− + π−π+〉 =

1√
3

(
√

2|I = 0〉+ |I = 2〉),

|π0π0〉 =
1√
3

(|I = 0〉 − √2|I = 2〉),

we obtain the expressions for the amplitudes A(K0 → π+π−) and A(K0 → π0π0):

A(K0 → π+π−) = A0e
iδ0 +

1√
2
A2e

iδ2 , (59)

A(K0 → π0π0) =
1√
2
A0e

iδ0 −A2e
iδ2 .

A0 describes the transitions with ∆I = 1/2, whereas A2 describes the transitions with ∆I = 3/2.
Assuming that the Hamiltonian for the transitions K → 2π contains only terms with quantum
numbers I = 1/2, I3 = 1/2 and I = 3/2, I3 = 1/2 (that is, it does not contain the terms with
I = 5/2, I3 = 1/2 etc.), we can use the Clebsch–Gordan coefficients

〈π+π0| HW |K+〉

〈ππ, I = 2| HW |K+〉

〈J,M | j1,m1; |j2,m2〉,
∼ 〈2, 1| 3

2 ,
1
2 ; 1

2 ,
1
2〉 =

√
3/2,

〈ππ| HW ; |K〉,
∼ 〈2, 0| 3

2 ,
1
2 ; 1

2 ,− 1
2〉 = 1/

√
2

to obtain the A(K+ → π+π0) amplitude

A(K+ → π+π0) =
3

2
A2e

iδ2 . (60)
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A comparison of the lifetimes of K0
S and K+ leads one to a conclusion that the ratio

|ω| =
|A2|
|A0| =

1

22
(61)

is very small, which is referred to as the long-standing ”∆I = 1/2 problem”. The experimental
value δ2 − δ0 ' (45± 6)o.

The tree–level K → ππ amplitudes generated by the O(p2) χPT Lagrangian are:

A0 = −GF√
2
VudV

∗
us

√
2 f

{(
g8 +

1

9
g27

)
(M2

K −M2
π)− 2

3
f2 e2 g8 gew

}
,

A2 = −GF√
2
VudV

∗
us

2

9
f

{
5 g27 (M2

K −M2
π)− 3 f2 e2 g8 gew

}
. (62)

Let us introduce the notation

ω =
A2

A0
= |ω|eiχ, A0 = |A0|eiα, δ = δ2 − δ0, ω̃ =

√
2|ω|eiδ. (63)

We can now express the amplitudes A(K0
L → π+π−), A(K0

L → π0π0) A(K0
S → π+π−) and A(K0

S →
π0π0) in terms of A1, A2 and the parameter ε̄. For example,

A(K0
L → π0π0) =

1√
2(1 + |ε̄|2)

{[A(K0 → π0π0)−A(K̄0 → π0π0)] (64)

+ε̄[A(K0 → π0π0) +A(K̄0 → π0π0)]}
=

|A0|eiδ0√
2(1 + |ε̄|2)

(i sinα− iω̃ sin(α+ χ) + ε̄[cosα− ω̃ cos(α+ χ)]) .

Let us consider the experimentally measurable values

η00 =
〈π0π0|K0

L〉
〈π0π0|K0

S〉
, η+− =

〈π+π−|K0
L〉

〈π+π−|K0
S〉
. (65)

Proceeding as indicated above, we obtain

η00 =
i [sinα− ω̃ sin(α+ χ)] + ε̄[cosα− ω̃ cos(α+ χ)]

[cosα− ω̃ cos(α+ χ)] + iε̄[sinα− ω̃ sin(α+ χ)]
(66)

and a similar expression for η+−.
Assuming that CP-violating parameters are small, that is ε̄, α, χ << 1, we arrive at

η00 = ε̄+ iα− i χω̃

1− ω̃ , (67)

where

χ ≈ A′′2
A′2
− A′′0

A′0
.

In a similar way, one obtains

η+− ≡ 〈π
+π−|K0

L〉
〈π+π−|K0

S〉
= ε̄+ iα− i χω̃

1− ω̃ . (68)
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Let us introduce the parameters, which are conventionally used for a description of the effects
of CP-violation:

ε =
〈ππ, I = 0|K0

L〉
〈ππ, I = 0|K0

S〉
= ε̄+ iα, (69)

ε′ =
i√
2
eiδIm

A2

A0
=
i ω̃

2

(
A′′2
A′2
− A′′0

A′0

)
.

Note that, in contrast to ε̄, the parameter ε is independent of the phase convention. These values
coincide only in the Wu–Yang phase convention. In terms of the introduced parameters, we
have

η00 =
〈π0π0|K0

L〉
〈π0π0|K0

S〉
= ε− 2ε′

1− |ω|eiδ√2
≈ ε− 2ε′, (70)

η+− =
〈π+π−|K0

L〉
〈π+π−|K0

S〉
= ε+

ε′

1 + |ω|eiδ√
2

≈ ε+ ε′,

where

|ω| = Re
A2

A0
' 0.045, δ ' 45o.

From the above it follows that

Re
ε′

ε
' 1− |ω|

6

(
1−

∣∣∣∣η00

η±

∣∣∣∣2
)
. (71)

Note that ε′/ε is approximately real. Using the short–distance Lagrangian, the CP–violating ratio
ε′/ε can be written as follows [22]:

ε′

ε
= Im (V ∗tsVtd) e

iΦ GF
2|ε|

ω

|Re(A0)|
[
P (0) (1− ΩIB)− 1

ω
P (2)

]
, (72)

where the quantities

P (I) =
∑
i

yi(µ) 〈(ππ)I |Qi|K〉 (73)

contain the contributions from hadronic matrix elements with isospin I and

ΩIB =
1

ω

Im(A2)IB
Im(A0)

(74)

parameterizes isospin breaking corrections. The factor 1/ω enhances the relative weight of the I = 2
contributions.

The hadronic matrix elements 〈(ππ)I |Qi|K〉 are usually parameterized in terms of the bag
parameters Bi, which measure them in units of their vacuum insertion approximation values. In the
SM, P (0) and P (2) turn out to be dominated by the contributions from the QCD penguin operator
Q6 and the electroweak penguin operator Q8, respectively [23]. Thus, to a very good approximation,
ε′/ε can be written (up to global factors) as [24, 25]

ε′

ε
∼
[
B

(1/2)
6 (1− ΩIB)− 0.4B

(3/2)
8

]
. (75)
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The isospin–breaking correction coming from π0-η mixing was originally estimated to be Ωπ0η
IB =

0.25 [26]. Together with the usual ansatz Bi ∼ 1, this produces a large numerical cancellation in
(72) [27] leading to low values of ε′/ε around 7 · 10−4. A recent improved calculation of π0-η mixing
at O(p4) in χPT has found the result [28]

Ωπ0η
IB = 0.16± 0.03 . (76)

This smaller number, slightly increases the naive estimate of ε′/ε.

Table 3. Theoretical and experimental values of ε′/ε.

Year Theory (models: Theory Experiment
1/Nc, unitarization) (lattice)

∼ 1988 0.01÷ 0.03 [1] (3.2± 1.0)× 10−3 [31]

1995 (6.7± 2.6)× 10−4[25] (3.1± 2.5)× 10−4[29] (1.5± 0.8)× 10−3 [32]

1999 (−1÷ 35)× 10−4 [22] (0.44÷ 2.1)× 10−3 [30]∗ (2.1± 1.5)× 10−3 [5]
–2000

2001 (1.7± 0.9)× 10−3 [27] (1.53± 0.24)× 10−3 [33]∗∗

∗ This value depends crucially on the mass of the s quark: 0.44 × 10−3 for ms(mc) = 150 MeV and

2.1× 10−3 for ms(mc) = 80 MeV.
∗∗ The most recent data: Re ε

′
ε

= (1.73± 0.18)× 10−3.

(http://na48.web.cern.ch/NA48/Welcome/images/talks/win02/win02.pdf)

4 Time-Reversal Invariance

Throughout this Section it is assumed that all the processes under consideration are adequately
described by some local quantum field theory, that is, CPT is an exact symmetry of the theory.
In this case CP-violation is equivalent to T -violation and so we turn to the consideration of the
time-reversal invariance.

Time-reversal invariance in the classical mechanics (Fig. 8):

motion from A to B {x(t) : x(T1) = A, x(T2) = B}
and

motion from B to A {x(t) : x(T1) = B, x(T2) = A}
are described with the same Hamiltonian.

This is the case provided that H(p, x) = H(−p, x).
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Fig. 8. The reversal of time in classical mechanics.

Time-reversal invariance in the quantum mechanics:

evolution from |A〉 to 〈B| {|ψ(t)〉 : |ψ(T1) = |A〉, 〈ψ(T2)| = 〈B|}
and

evolution from |B〉 to 〈A| {|ψ(t)〉 : |ψ(T1)〉 = |B〉, 〈(T2)| = 〈A|}
are described with the same Hamiltonian.

This is the case provided that H = H∗.

S

in

in’

out’

out

Fig. 9. The reversal of time in the S-matrix approach.

Time-reversal invariance in the S-matrix approach:

The system described by the quantum field theory is invariant under the time reversal if

• the space of in-states (’ket’-vectors) is isomorphic to the space of out states (’bra’-vectors)5:
∀|I〉 ∈ in ∃ 〈I| ∈ out;

5This isomorphism is nothing but assumption; however, it allows to consider the vectors from in and out spaces
as the vectors of the same Hilbert space H, identified with in.
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• there exists (anti-unitary) operator of time reversal

T : in→ out, T : out→ in, such that 〈T I|T F 〉 = 〈F |I〉 = 〈I|F 〉∗,

which changes the signs of spins and momenta of all particles; this condition can be cast in
the form (φ, T ψ) = (T φ, ψ)∗ for all vectors φ and ψ ∈ H;

• the transition from the state |I〉 in the state 〈F | and the transition from the state |T F 〉 to
the state 〈T I| are described with the same S-matrix (see Fig. 9):

MI→F = 〈F |S|I〉 = 〈T I|S|T F 〉 =MT F→T I . (77)

Table 4. P and T transformations for various quantities.
Action of these operators on the quantum-mechanical states is determined by the condition that the T -
(or P-)transformed states are characterized by the T - (or P-)transformed (eigen)values of the respective
operators.

Value Notation P-transformed T -transformed Comment
value value

Coordinate ~x − ~x ~x

Momentum ~p − ~p − ~p ~p = m
d~x

dt

Angular momentum ~l ~l − ~l (~r× ~p)

Spin ~s ~s − ~s Like ~l

Electric field ~E − ~E ~E ~E = − dA0

d~r

Magnetic field ~B ~B − ~B ~B ∼ ~r ×~j

Potential A0 A0 A0

Vector potential ~A − ~A − ~A

Helicity λ − λ λ λ = ~s~p

Transverse polarization∗ ξ ξ − ξ ξ = (~s, [~p1 × ~p2])

Triple correlation∗∗ η − η − η η = (~p1, [~p2 × ~p3])

∗ A characterisitic of a three-particle state, if at least one particle has a nonzero spin.
∗∗ A characterisitic of a multiparticle state (number of particles must be greater than 3).
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Having in mind that

〈T I|S|T F 〉 = (T I, S T F ) = (S† T I, T F ) = (T F, S† T I)∗ = 〈T F |S†|T I〉∗, (78)

we obtain the condition of T -invariance in terms of the decay and scattering amplitudes:

〈 F |S|I〉 = 〈 T F |S†|T I〉∗. (79)

In perturbation theory, the S matrix is expanded in the coupling constant g, which is assumed to
be a small parameter:

S = 1 + igT1 + g2T2 + ... (80)

Here T1 is nothing but the interaction Lagrangian, T1 = Lint; the unitarity of the S matrix implies
the Hermiticity of the interaction lagrangian T1. Thus the T -invariance condition in the leading
order of perturbation theory takes the form

〈 T F |Lint|T I〉 = 〈 F |Lint|I〉∗. (81)

To put it differently, if the complex-conjugated amplitude of the transition between the states I and
F differs in the leading order of perturbation theory from the amplitude of the transition
between the states T I and T F then the dynamics of such system is not invariant under the time
reversal.

Let me illustrate this statement by considering the example of the decay K → µνγ; for
definiteness, we consider the reference frame comoving with the kaon. Let the average transverse6

polarization of the muon ξ 6= 0. This is possible only if the probabilities of the decay into the states
with positive and negative transverse polarizations of the muon differ from each other:

|〈µ(~k, ~o)ν(~k′)γ(~q,~ε)|S|K〉|2 6= |〈µ(~k,−~o)ν(~k′)γ(~q,~ε)|S|K〉|2. (82)

Note that the state 〈µ(~k,− ~o)ν(~k′)γ(~q,~ε)| can be obtained from the state

〈µ(~−k,− ~o)ν(~−k′)γ(~−q, ~−ε)| = 〈T (µ(~k, ~o)ν(~k′)γ(~q,~ε))|

as the result of the rotation by the angle of 180o in the reaction plane. For this reason,

〈µ(~k,−ξ)ν(~k′)γ(~q,~ε)|S|K〉 = 〈T µ(~k, ξ)ν(~k′)γ(~q,~ε)|S|T K〉. (83)

The equations (82) and (83) imply the conclusion as follows: if the transverse polarization of the
muon emerges in the first order of perturbation theory, then

〈T µνγ|Lint|T K〉 6= 〈µνγ|Lint|K〉, (84)

that is, the dynamics is not invariant under the time reversal.
However, we should take into account the following reasoning. Since the transverse polarization

of the muon is determined by the imaginary part of the decay amplitude, which does not vanish in
higher orders of perturbation theory due to unitarity condition, the transverse polarization of the
muon emerges in higher orders even in the case of T -even interactions.

Thus the transverse polarization of the muon in the decay K → µνγ can be caused by both
electromagnetic and T -odd interactions (beyond the SM)

ξ = ξEM + ξodd, (85)

6That is, transverse with respect to the momenta of the outgoing particles
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where ξEM is the electromagnetic contribution to the transverse polarization of the muon and ξodd

is the contribution of the T -odd (and, therefore CP-odd) interactions.

The CP-violating interactions can be accounted for by the imaginary parts of the coupling
constants in the effective quark–lepton Lagrangian

Leff = −GF√
2
sinθcs̄γ

α(1− γ5)uν̄γα(1− γ5)µ+ (86)

+GS s̄uν̄(1 + γ5)µ+GP s̄γ5uν̄(1 + γ5)µ+

+GV s̄γ
αuν̄γα(1− γ5)µ+GAs̄γ

αγ5uν̄γα(1− γ5)µ+

+GT s̄σ
αβ(1− γ5)uν̄σαβ(1− γ5)µ + H.c.

The interactions in (86) arise from new physics. Nonvanishing imaginary parts in the effective cou-
pling constants GP , GV , GA, GT gives rise to the imaginary parts of the form factors FIB, FA, FV , FT
parametrizing the matrix element of the decay K+(p)→ µ+(k)ν(k′)γ(q)):

Current limitations on the T -violation parameters in various extensions of the SM allow the
transverse polarization of the muon in the decay K → µνγ to be rather large: the left-right
symmetric models based on the symmetry group SU(2)L × SU(2)R × U(1)B−L with one doublet
Φ and two triplets ∆L,R of Higgs bosons can give ξodd ∼ 7 × 10−3, supersymmetric models —
ξodd ∼ 5× 10−3, leptoquark models — ξodd ∼ 5× 10−3 [34].

The respective T -even contribution to the transverse polarization of the muon is determined by
the imaginary part of the decay amplitude (see Fig. 10) and emerges in the second order in αem.
Straightforward computations of ξEM were made by several authors; recent results [35] agree with
each other and give the average value 〈ξEM〉 ∼ 0.5×10−3 (with the photon cutoff energy ∼ 25 MeV).
The previous computations [36] are incomplete: either diagrams in Fig. 10g–10h or the diagrams in
Fig. 10a–10h were not taken into account.

A similar T -even contribution to the correlation η = (~p1, [~p2×~p3]) in the decay K+ → π0µ+νγ

is given by similar diagrams and has the same order of magnitude 1.1× 10−4 [37].

4.1 CP and T violation in the decays K → 3π

The imaginary part of the effective coupling constants g8, g27 and gew in the effective weak La-
grangian (29) gives rise to the CP-violating effects in the decays K → 3π.

The kinematical variables used to describe the decay K(p)→ π1(p1)π2(p2)π3(p3) are as follows:

si = (p− pi)2, X =
(s1 − s2)2

m2
π

, Y =
(s3 − s0)

m2
π

,

where “3” is the “odd” pion in either the τ(π±π∓π∓) or τ ′(π±π0π0) decay mode. The slope
parameters g and j are defined by the formula for the differential probability of the decay:

|A(K → 3π)|2 ∼ 1 + gY + jX + hY 2 + kX2. (87)

The CP-violating quantities are as follows:

δΓ =
Γ(K+ → 3π)− Γ(K− → 3π)

Γ(K+ → 3π) + Γ(K− → 3π)
(88)

and

δg =
g(K+ → 3π)− g(K− → 3π)

g(K+ → 3π) + g(K− → 3π).
(89)
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Fig. 10. Diagrams giving a contribution to the imaginary part of the amplitude of the decay K → µνγ.
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With the assumption that ∆I ≤ 1/2, the relevant K → 3π amplitudes can be expanded as follows:

A(K+ → π+π+π−) = 2ac

(
1 + iα0 + i

α′0
2
Y

)
+ [bc(1 + iβ0) + b2(1 + iδ0)]Y, (90)

A(K+ → π0π0π+) = ac
(
1 + iα0 − iα′0Y

)− [bc(1 + iβ0) + b2(1 + iδ0)]Y.

From here on we restrict our attention to the slope asymmetry (89) in the τ decay mode. As it
usually is, this asymmetry is determined by the interplay of (i) the imaginary parts of the parameters
ac and b2, stemming from the CP-odd effective weak Lagrangian (29) and (ii) the imaginary part
coming about the CP-even final-state interactions [38]:

(δg)τ =
α0 − β0

ac(bc + b2)
(acImbc − bcImac)) +

α0 − δ0

ac(bc + b2)
(acImb2 − b2Imac)) . (91)

An evaluation of the strong rescattering phases in the one-loop approximation of the χPT gives

α0 =

√
1− (4m2

π/s0)

32πF 2
π

(2s0 +m2
π) ' 0.13, (92)

β0 = −δ0 =

√
1− (4m2

π/s0)

32πF 2
π

(s0 −m2
π) ' 0.05 .

The values ac, bc, b2, α0, β0, and δ0 can be expanded in powers of the χPT expansion parameter
λ ' p/(4πF ), where p defines the momentum scale and F = 93 MeV. In the case of K-meson
decays, λ ' 0.4. In each order of the chiral expansion it is helpful to isolate the ∆I = 1/2 and
∆I = 3/2 contributions to ∆g, the latter contribution being suppressed by the factor ω = 0.045.
The point is that, in the order O(p2), the neglect of the ∆I = 3/2 contribution gives rise to

the relations ac = − 1

3

M2
K

M2
π

bc and b2 = 0, which, in their turn imply that ∆gO(p2), ∆I=1/2 = 0.

However, the ∆I = 1/2 contribution does not vanish in the order O(p4) and so it dominates the
total O(p4) contribution. It is natural to assume that it is enhanced by the factor ω−1 = 22.5
(see 61) as compared to the ∆I = 3/2 contribution in the order O(p4) of the χPT. The O(p4)
∆I = 3/2 contribution is suppressed by the ChPT expansion parameter λ2 as compared to the
O(p2) ∆I = 3/2 contribution A. The above reasoning is summarized in Table 5.

Table 5. Various contributions to δg =
∆g

2g
.

Order of χPT ∆I = 1/2 ∆I = 3/2 Numerical estimate

O(p2) 0 A (1÷ 3)× 10−6

O(p4) ∼ λ2A

ω
∼ λ2A (0.4÷ 1)× 10−5

O(p6) ∼ λ4A

ω
∼ λ4A (0.8÷ 2)× 10−6
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We see that the total contribution is dominated by the O(p4) contribution, which is ω−1λ2 ' 4
times greater than the O(p2) contribution—due to vanishing of the O(p2) ∆I = 1/2 contribution.
Maiani and Paver [38] assume that the enhancement factor may run up to 10 ÷ 20. Therewith, the
conclusion by Bel’kov et al. [39] that the O(p6) corrections increase the enhancement factor by the
order of magnitude appear, in view of the above reasoning, highly questionable. It should also be
notices that the multi-Higgs models allow a two-fold increase of the parameter δg as compared with
the SM prediction [40].

Acknowledgment: I am grateful to G.G. Volkov for stimulating discussions.
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