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The advantages to consider the ordinary space-time as the symplectic rather than pseudo-orthogonal one are

indicated, and the consequences of extending this view to extra space/time dimensions are discussed.

1. Symplectic vs pseudo-orthogonal space-time

The space-time, or the world we live in is generally adopted to be (locally) the Minkowski one. Its
structure group is the pseudo-orthogonal group SO(1, 3). To a space-time point there corresponds
a real four-vector.

On the other hand, the spinor calculus in our space-time heavily relies on the isomorphy of the
noncompact groups SO(1, 3) ' SL(2, C)/Z2, as well as that SO(3) ' SU(2)/Z2 for their maximal
compact subgroups. In fact, the whole relativistic field theory in four space-time dimensions can
equivalently be formulated in the framework of the complex unimodular group SL(2, C) alone. In
a sense, it is even preferable. In this approach, to a space-time point there corresponds a Hermitian
spin-tensor of the second-rank.

There is a choice for the ordinary space-time structure group: either the pseudo-orthogonal
symmetry SO(1, 3), with vectors as defining representation and spinors as a kind of artifact, or
the complex symplectic group Sp(2, C) ' SL(2, C) with spinors as defining representations and
vectors as a secondary object. The two approaches are mathematically equivalent. Nevertheless,
the symplectic approach seems physically more appropriate.

Then, in searching for the space-times with extra dimensions it is natural to look for the exten-
sions in the symplectic framework with the structure group Sp(2l, C), l > 1 instead of SO(1, d− 1),
d > 4. The symplectic series of the groups (contrary to SL(l + 1, C)) is peculiar quantum-
mechanically because it retains the invariant bilinear spinor product at any l > 1.

Two alternative directions of the space-time extension can schematically be pictured as follows:

d = 4 SO(1, 3) ' Sp(2, C) l = 1

↓ ↓
d > 4 SO(1, d− 1) 6' Sp(2l, C) l > 1 .

In the pseudo-orthogonal direction of extension, the local metric properties of the space-times, i.e.,
their dimensionalities and signatures, are to be put in from the very beginning. In the symplectic
direction, these properties are not to be considered as the primary ones but, instead, they should
emerge as a manifestation of the adopted symplectic structure1.

2. General symplectic framework

Arbitrary symplectic space-time: l = 1, 2, . . . Let ψA and ψ̄Ā ≡ (ψA)∗, as well as their
respective duals ψA and ψ̄Ā ≡ (ψA)∗, with indices A, Ā = 1, . . . , 2l, are the spinor representations
of Sp(2l, C). There exist the invariant second-rank spin-tensors εAB = −εBA and εAB = −εBA
such that εACε

CB = δA
B, with δA

B being the Kroneker symbol (and similarly for εĀB̄ ≡ (εBA)∗
and εĀB̄ ≡ (εBA)∗). Owing to these tensors the spinor indices of the upper and lower positions are

1For more detail we refer to the literature: Yu.F. Pirogov, IHEP 2001-19 (2001), hep-ph/0104119.
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pairwise equivalent (ψA ≡ εABψ
B and ψ̄Ā ≡ εĀB̄ψ̄

B̄), so that there are left just two inequivalent
spinor representations (generically, ψ and ψ̄). These are spinors of the first and the second kind,
respectively.

Let us put in correspondence to an event point P a second-rank 2l × 2l spin-tensor XA
B̄(P ),

which is Hermitian, i.e., fulfil the restriction

XA
B̄ = (XB

Ā)∗ ≡ X̄B̄
A ,

or in other terms

XAB̄ = (XBĀ)∗ ≡ X̄B̄A.

The quadratic scalar product is defined as follows:

(X,X) ≡ trXX̄ = XA
B̄X̄B̄

A = −XAB̄(XBĀ)∗ .

Here (X,X) is real though not sign definite. Under arbitrary transformation S ∈ Sp(2l, C) one has
in short notations:

X → SXS† ,
X̄ → S†−1X̄S−1

and hence (X,X) is invariant. At l > 1, the quadratic invariant above is just the lowest order one
in a series of independent invariants tr (XX̄)k, k = 1, . . . , l. The highest order one with k = l is
equivalent to detX.

Definition: the Hermitian spin-tensor set {X} equipped with the structure group Sp(2l, C) and
the interval between points X1 and X2 equal to (X1 −X2, X1 −X2) constitutes the flat symplectic
space-time.

The noncompact transformations out of Sp(2l, C) are counterparts of the Lorentz boosts in the
ordinary space-time l = 1, while transformations out of the compact subgroup Sp(2l) = Sp(2l, C)∩
SU(2l) correspond to rotations. With account for translations XA

B̄ → XA
B̄ + ΞA

B̄, where ΞA
B̄

is an arbitrary constant Hermitian spin-tensor, the whole theory in the flat symplectic space-time
should be covariant relative to the inhomogeneous symplectic group ISp(2l, C).

Restricting by the maximal compact subgroup Sp(2l), the indices of the first and the second kinds
in the same position are indistinguishable relative to their transformation properties. Hence, under
Sp(2l) one can reduce the event tensor XAB̄ into two irreducible parts, symmetric and antisymmetric
ones: X = X+ +X−, where X± = ±(X±)T have dimensionalities d± = l(2l ± 1), respectively. The
scalar product decomposes as follows:

(X,X) =
∑
±

(∓1)(X±)AB̄[(X±)AB̄]∗ .

Thus one of two pieces X± is the spatial part of coordinate while the rest is the time part.
At l > 1, one can further reduce the antisymmetric part X− of the event spin-tensor into the

trace relative to ε and a traceless part: X− = X
(0)
− +X

(1)
− . The trace X

(0)
− is rotationally invariant

and hence represents the true time. In short:

1-time = trace .

The traceless part X
(1)
− is uniquely associated with extra times.

Relative to the rotational subgroup, the whole extended space-time can be decomposed into
three irreducible subspaces of the dimensionalities 1, (l − 1)(2l + 1) and l(2l + 1), respectively.
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The first two subspaces correspond to time directions, while the third subspace corresponds to the
spatial ones.

Though any particular decomposition into X± is noncovariant and depends on the boosts, the
number of the positive and negative components in (X,X) is invariant under the whole Sp(2l, C).
In other words, there emerges the invariant metric tensor of the d-dimensional flat space-time:

ηd = ( +1, . . .︸ ︷︷ ︸
d−

;−1, . . .︸ ︷︷ ︸
d+

) .

Thus, at l > 1 the structure group Sp(2l, C), acting on the Hermitian second-rank spin-tensors
with d = 4l2 components, is a subgroup of the embedding pseudo-orthogonal group SO(d−, d+),
acting on the pseudo-Euclidean space of the same dimensionality. What distinguishes Sp(2l, C)
from SO(d−, d+), is the total set of independent invariants tr(XX̄)k, k = 1, . . . , l. The isomorphy
between the groups is valid only at l = 1, i.e., for the ordinary space-time d = 4 where there is just
one invariant.

In the symplectic approach, neither the discrete set of dimensionalities, d = 4l2, of the ex-
tended space-time, nor its signature, nor the existence of the rotationally invariant one-dimensional
time subspace are postulated from the beginning. These properties are the attributes of the very
symplectic structure.

In particular, the symplectic structure provides the simple rationale for the four-dimensionality
of the ordinary space-time, as well as for its signature (+ − −−). Namely, these properties just
reflect the existence of one antisymmetric and three symmetric 2 × 2 Hermitian spin-tensors. In
short:

(2× 2)H = 1A ⊕ 3S .

The set of the second-rank Hermitian tensors, in its turn, is the lowest admissible real space to
accommodate the symplectic structure.

On the other hand, right the one-dimensionality of time allows one to put the events in order
at any fixed boosts and hence to insure the causal description. Therefore, the causality might
ultimately be attributed to the underlying symplectic structure, too. At l > 1, the one-dimensional
time and the extra times mix with each other via boosts. Because of this influence of extra times,
the causality is expected not to fulfil for relativistic events.

Gauge interactions Let DA
B̄ ≡ ∂AB̄ + igGA

B̄ be the generic covariant derivative, where ∂A
B̄ ≡

∂/∂XA
B̄ is the ordinary derivative, g is the gauge coupling and the Hermitian spin-tensor GA

B̄ is
the gauge fields. One can introduce the gauge invariant strength tensor

F
[B̄1B̄2]
{A1A2} = ∂

[B̄1

{A1
G
B̄2]
A2} + igG

[B̄1

{A1
G
B̄2]
A2} .

The total number of the real components in tensor F precisely coincides with the number of
components of the antisymmetric second-rank tensor F[µν], µ, ν = 0, 1, . . . , 4l2− 1 in the embedding
pseudo-Euclidean space of the dimensions d = 4l2. But in the symplectic case, tensor F is reducible
and splits into a trace relative to ε and a traceless part, F = F (0) + F (1).

For an unbroken gauge theory with fermions, the generic gauge, fermion and mass terms of the
Lagrangian L = LG + LF + LM are, respectively,

LG =
∑
s=0,1

(cs + iθs)F
(s)F (s) + h.c. ,

LF =
i

2

∑
±

(ψ±)†
↔
D ψ± ,

LM = ψ+m0 ψ
− +

∑
±
ψ±m±ψ± + h.c. ,

where ψ± are pairs of the charged conjugate fermions.
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The Lagrangian results in the following generalization of the Dirac equation

iDC
B̄ψ
±
C = m†0ψ

±̄
B

+
∑
±
m†± ψ

∓̄
B

and the pair of Maxwell equations (c0 ≡ 1 and c1 = θ1 = 0 for simplicity)

(1 + iθ0)DCB̄F (0){CA} − h.c. = 0 ,

(1 + iθ0)DCB̄F (0){CA} + h.c. = 2gJA
B̄ ,

with JA
B̄ ≡∑±(±1)ψ±A(ψ±B)† being the fermion Hermitian current.

Tensors F (s), s = 1, 2 are non-Hermitian, but under restriction by the maximal compact sub-
group Sp(2l) they split into a pair of the Hermitian ones: F (s) = E(s) + iB(s). There is the duality
transformation F (s) → F̃ (s) ≡ iF (s), so that Ẽ(s) = −B(s) and B̃(s) = E(s). Though the splitting
into E(s) and B(s) is noncovariant with respect to the whole Sp(2l, C), the duality transformation
is covariant.

Tensors E(s) and B(s) are the counterparts of the ordinary electric and magnetic strengths, and
θ0, θ1 are the T -violating θ-parameters. Due to electric-magnetic duality, the electric and magnetic
strengths stay in the framework of symplectic extension on equal footing. This is to be contrasted
with the pseudo-orthogonal extension where these strengths have unequal number of components
at d 6= 4.

Gravity The considerations above refer to the flat extended space-time or, otherwise, to the
inertial local frames. To go beyond, one can introduce the Hermitian local fielbeins eMA

B̄(X), with
M = 0, 1, . . . , 4l2 − 1 being the world vector index, and the real world coordinates xM ≡ trXēM .
Now, one can equip space-time with the pseudo-Riemannian structure, i.e., the real symmetric
metrics gMN (x) = tr eM ēN . Introducing the generally covariant derivative ∇M (e) one can adapt
the field theory to the d = 4l2 dimensional curved space-time.

One can also supplement gauge equations by the generalized Hilbert-Einstein gravity equations.
But now the group of equivalence of the local fielbeins (structure group) is just the symplectic group
Sp(2l, C) rather than the whole pseudo-orthogonal group SO(d−, d+). This permits more indepen-
dent components in the local symplectic fielbeins compared to the metrics. The curvature tensor in
the symplectic case splits additionally into irreducible parts which can enter the gravity Lagrangian
with the independent coefficients. Hence, the symplectic gravity is in general not equivalent to the
metric one.

The reason for this may be as follows. In the symplectic approach, the vectors and space-time
in its present meaning are to be understood not as the fundamental entities. Therefore, gravity
treated as a generally covariant theory of the space-time distortions have to be just an effective
theory. The latter admits a lot of free parameters, the choice of which should eventually be clarified
by an underlying theory.

3. Next-to-ordinary symplectic space-time: l = 2

Coordinate space kinematics In this case there takes place the isomorphy SO(5, C)' Sp(4, C)/Z2.

Cases l = 1, 2 are the only ones when the structure of the symplectic group gets simplified in terms
of the complex orthogonal groups.

One can introduce the set of Clifford matrices (ΣI)A
B̄, I = 1, . . . , 5. Relative to the maximal

compact subgroup SO(5), they can be chosen both Hermitian (ΣI)A
B̄ = [(ΣI)B̄

A]∗ and antisymmet-
ric (ΣI)AB̄ = −(ΣI)B̄A, similar to (Σ0)AB = εAB . One can require that ΣI are traceless. Thus under
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SO(5), six matrices Σ0, ΣI provide the complete independent set for the antisymmetric matrices in
the four-dimensional spinor space.

After introducing matrices ΣIJ = −i/2(ΣIΣJ−ΣJΣI), with Σ̄ ≡ −εΣ∗ε , one gets the (anti)symmetry
conditions for them: ΣIJ = −ΣJI and (ΣIJ)AB = (ΣIJ)BA. Therefore, ten matrices ΣIJ make up
the complete set for the symmetric matrices in the spinor space. The matrices (ΣIJ , iΣIJ) represent
the SO(5, C) generators MIJ = (LIJ ,KIJ) in the space of the first kind spinors.

With respect to maximal compact subgroup SO(5), the Hermitian second-rank spin-tensor X
may be decomposed in the complete set of matrices Σ0, ΣI and ΣIJ with the real coefficients:

X =
1

2

(
x0Σ0 + xIΣI +

1

2
xIJΣIJ

)
,

and thus (X,X) = x2
0 + x2

I − 1
2x

2
IJ . There is one more independent invariant combination of x0, xI

and xIJ originating from the invariant tr(XX̄)2 which is equivalent to detX.

Relative to the embedding SO(5, C) ⊃ SO(5) one has the following decomposition in the irre-
ducible representations:

16 = 1⊕ 5⊕ 10 .

Under the discrete transformations one can get:

P : x0 → x0, xI → xI , xIJ → −xIJ ,
T : x0 → −x0, xI → −xI , xIJ → xIJ .

From the point of view of the rotational subgroup SO(5), extra times xI constitutes the axial vector,
whereas the spatial coordinates xIJ constitutes the pseudo-tensor.

The rank of the algebra of Sp(4, C) is l = 2. Hence an arbitrary irreducible representation of
the noncompact group Sp(4, C) is uniquely characterized by two complex Casimir operators I2 and
I4 of the second and the forth order, respectively, i.e. by four real quantum numbers.

Otherwise, an irreducible representation of Sp(4, C) can be described by the mixed spin-tensor

ΨB̄1...
A1...

of a proper rank. This spin-tensor should be traceless in any pair of the indices of the same
kind, and its symmetry in each kind of indices should correspond to a two-row Young scheme.
Therefore, an irreducible representation of Sp(4, C) may unambiguously be characterized by a set
of four integers (r1, r2; r̄1, r̄2), r1 ≥ r2 ≥ 0 and r̄1 ≥ r̄2 ≥ 0.

The rank of the maximal compact subgroup SO(5) ' Sp(4)/Z2 is equal to l = 2. Hence a state
in a representation is additionally characterized by two additive quantum numbers, namely, the
eigenvalues of the mutually commuting momentum components of LIJ in two different planes, say,
L12 and L45.

Momentum space kinematics The spin-tensor of the particle momentum looks like:

Π =
1

2

(
p0Σ0 + pIΣI +

1

2
PIJΣIJ

)
.

There are two independent invariants built of Π:

C1 ≡ tr ΠΠ̄ = p2
0 + pI

2 − 1

2
PIJ

2 ,

C2 ≡ tr (ΠΠ̄)2 =
1

4
(p2

0 + pI
2)2 + p2

0 pI
2 +O(P 2) , P → 0 .
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The solution to the above constraints determines the dispersion law for a massive particle:

p2
0 = m2 +K ,

pI
2 = C1 −m2 −K +

1

2
PIJ

2 .

Here

m2 =
1

2

[
C1 ±

(
2C2

1 − C2

)1/2]
is the rest energy squared, K(m2, C1, P, p̂) is the kinetic term, p̂ is the unit orientation vector of
the time-momentum. One has K = O(P 2) at P → 0. Reality of m and K proves to require
0 ≤ m2 ≤ C1 which results in the subsequent restriction (cf. Fig. 1)

C2
1 ≤ C2 < 2C2

1 .

0
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Figure 1: Two-valued plot of the normalized mass squared m2/C1 vs normalized second invariant C2/C
2
1 .

Reduction: l → 1 The ultimate unit of dimensionality in the symplectic approach is the discrete
number l = 1, 2, . . . corresponding to the dimensionality 2l of the spinor space. The dimensionality
d = 4l2 of the space-time emerges as a secondary quantity. The extended space-time with l > 1
should eventually compactify by means of the symplectic gravity via discrete (quantum) transitions:

. . .

↓
l = 2

↓
l = 1

↓
l = 0 .

The case l = 0 corresponds to the (hypothetical) annihilation of the world into “nothing”.
For l = 2, depending on the spinor decomposition relative to the embedding Sp(4, C) ⊃ Sp(2, C),

three generic inequivalent types of the space-time decomposition are conceivable:

16 = 4 · 4 ,
16 = 2 · 4⊕ (3 + h.c.)⊕ 2 · 1 ,
16 = 4⊕ (2 · 2 + h.c.)⊕ 4 · 1 .

Note that due to compactification, the last case can result in the violation of the spin-statistics
connection in four space-time dimensions.
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4. Summary

To summarize: the hypothesis that the symplectic structure of space-time is superior to the
metric one provides, in particular, the rationale for the four-dimensionality and the 1 + 3 signature
of the ordinary space-time.

When looking for the space-times with extra dimensions, the hypothesis predicts the one-
parametric discrete series of the metric space-times of the peculiar dimensionalities and signatures,
with the spatial and time extra dimensions in a definite proportion. Because one of the time direc-
tions remains rotationally invariant under fixed boosts, there emerges the (non-relativistic) causality
despite the presence of extra times.

The symplectic approach provides an unorthodox alternative to the pseudo-orthogonal space-
times and inspires a lot of new opportunities for the physics of extra dimensions. But beyond the
physical adequacy of the extended space-times as such, by generalizing from the basic symplectic
case l = 1 to its counterpart for general l > 1, a deeper insight into the nature of the very four-
dimensional space-time may be attained.
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