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There is the prevailing opinion in the theoretical physics, that gravitational interactions can be
neglected on the microscopic level. In consequence of this gravitational fields are not being enlisted

for the description of the interaction of elemental particles. We shall consider that even in the case
if it can neglect the gradients of the gravitational fields on account of their possible homogeneity

but this fields it is not allowed to neglect in consequence of quantum effects what is showed in the
presence of the spins and the masses of elemental particles. Extending the concepts of A.A. Lo-

gunov [1] we shall consider that the Riemannian space–time Mn is the effective one, postulating
the metric tensor on the base of the reduced density matrix ρ′ of the gravitational fields Φ(x). We
shall define those mixtures Φ(x) of the gauge fields B(x) which have the non-zero vacuum averages

as the gravitational fields even if the space–time Mn is not the Riemannian manifold. Besides we
shall consider that the dimensionality n of the space–time is the rank of the density matrix ρ of the

gauge fields B(x) in the ground (vacuum) state, assuming that General Relativity are the condensed
description of the gravitational phenomena.

1. The gauge fields

Let’s assume that the physical fields must be described by not one field Ψ(x) being the cross
sections of the vector fiber bundle En+N with the base Mn (a point x ∈Mn, Mn is the Riemannian

differentiable manifold), but by the class of the equivalence {Ψ(x)} in which the relation of the
equivalence is determined by the infinitesimal transformations having the form:

Ψ→ Ψ + δΨ = Ψ+ δωa TaΨ, (1.1)

where a, b, c, d, e = 1, 2, ..., r; δωa(x) are infinitesimal parameters; Ta(x) are N × N matrices de-
pending on charges of particles being quanta of fields Ψ(x). Using of approximate symmetries by

a description of interactions made it possible to unite non-degenerate fields (in a general case) in
multiplets or in supermultiplets, in consequence of what a number N (in an abstract theory) is not

concretized.
Since it is impossible to be fully confident that there is a strict border between internal sym-

metries and external ones, then it is necessary to consider both transformations of fields Ψ(x) and
transformations of points x in the form:

xi → xi + δxi = xi + δωa ξia(x), (1.2)

(xi are coordinates of a point x ∈ Mn; i, j, k, l, ... = 1, 2, ..., n). In consequence of this it might be
worthwhile to resolve δΨ into summands as follows

δΨ = δ0Ψ+ δωa ξia ∂iΨ (1.3)
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(∂iΨ are the partial derivatives of fields Ψ(x)), selecting the changes δ◦Ψ of fields Ψ(x) in the point x.

Writing down δ0Ψ as
δ0Ψ = δωa Xa(Ψ) = δωa (TaΨ − ξia ∂iΨ), (1.4)

we shall regard Xa(Ψ) the generators of the Lie local loop Gr(x) [2] (we refuse the associativity

property which is inherent to the Lie local groups). Precisely the structure of the Lie local loop
will characterize the degree of the coherence considered by us the quantum system. By this the

maximal degree is being reached for the Lie simple group and the minimal degree is being reached
for the Abelian one. In the last case we shall have the not coherent mixture of the wave-functions,

it’s unlikely which can describe the unspreading wave packet that is being confirmed by the absence
of the fundamental scalar particles, if hipothetical particles are not being taken into account (in
experiments only the mesons, composed from the quarks, are being observed and which are not being

considered the fundamental one). Note that the “soft” structure of the Lie local loop by contrast
to the Lie group allow to use it by the description of the symmetry both the phase transition (there

is the time dependence) and the compact objects (there is the space dependence) especially. Here
and further the geometrical objects Ta(x) and ξia(x) satisfy to the following relations:

ξia ∂iξ
k
b − ξib ∂iξ

k
a = −Ccab ξkc , (1.5)

TaTb − TbTa − ξia ∂iTa + ξib ∂iTa = Ccab Tc. (1.6)

The components Ccab(x) of the structural tensor field of the Lie local loop Gr(x) must satisfy to the
identities:

Ccab + Ccba = 0, Cd[ab C
e
c]d + ξi[a ∂|i|C

e
bc] = 0. (1.7)

We construct the differentiable manifold Mn, not interpreting it by physically. Of course we

would like to consider the manifold Mn as the space-time M4. At the same time it is impossible
to take into account the possibility of the phase transition of a system as a result of which it

can expect the appearance of the coherent states. In consequence of this it is convenient do not
fix the dimensionality of the manifold Mn. It can consider that the macroscopic system reach
the precisely such state by the collapse. As a result we have the classical analog of the coherent

state of the quantum system. Besides there is the enough developed apparatus — the dimensional
regularization using the spaces with the changing dimensionality and representing if only on the

microscopic level.
Consider the following integral

A =
∫
Ωn

LdnV =

∫
Ωn

κXb(Ψ)ρabXa(Ψ)dnV, (1.8)

being the analogue of the fields Ψ(x) variance in the domain Ωn at issue, which we shall call the

action, and L we shall call the Lagrangian. Here and further ρba(x) are the components of the density
matrix ρ(x) and the bar means the Dirac conjugation which is the superposition of the Hermitian

conjugation and the space inversion. Solutions Ψ(x) (and even one solution) of equations, which
are being produced by the requirement of the minimality of the integral (1.8) can be used for the

constraction of the all set of the functions {Ψ(x)} (generated by the transition operator), describing
the wave packet.

Of course for this purpose we can use the analog of the largest plausibility method employed

in the mathematical statistics. Note that according to the Feynman’s hypothesis the probability
amplitude of the system transition from the state Ψ(x) in the state Ψ′(x′) equal to the following

integral∫
Ω(Ψ,Ψ′)

exp (iA)DΨ = lim
N→∞

IN

∫
dΨ1...

∫
dΨk...

∫
dΨN−1 exp

(
i
N−1∑
k=1

L(Ψ(xk))
nVk
)

(1.9)
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(it is used the system of units h/(2π) = c = 1, where h is the Planck’s constant and c is the

light speed; i2 = −1; the constant IN is choosed so that the limit is existing). Therefore the
functions Ψ(x) obtained from the requirement of the minimality of the action A are olso the largest
plausibility ones for the description of the quantum system.

It is naturally to demand the invariance of the integral (1.8) relatively the transformations (1.1)
and (1.2), in consequence of what it is necessary to introduce the additional fields B(x) with the

transformation law in point x ∈ δΩn in the form

δoB ∼= δωaYa(B) + ∂iδω
aZia(B), (1.10)

and which we shall name the gauge ones. Make it in the standard manner defining them by the
density matrix ρ(x) as

BbγB
γ
a = ρba(B

c
γB
γ
c ). (1.11)

by this the factorization of the gauge fields B(x) on equivalence classes is allowed for the writing

of the indexes of their components Baα(x). Note, that B
a
α(x) can be both Utiyama gauge fields [3]

and Kibble gauge fields [4]. Following for Utiyama [3] we shall not concretize significances which

are adopted by the Greek indexes.
Further we shall assume that the density matrix ρ(x) defines the dimensionality of manifoldMn,

using even if for this the corresponding generalized (singular) functions in consequence of what the
rank of the density matrix ρ(x) must be equal to n, and the formula (1.8) can be rewritten in the

form
A =

∫
Ωr

LdrV =

∫
Ωr

κXb(Ψ)ρabXa(Ψ)drV, (1.12)

We should connect the rank n of the density matrix ρ with the nonzero vacuum average βbα of the
gauge fields Baα.

In consequence of (1.8) and (1.11) it can consider that the Lagrangian L depend on the gauge
fields B by

DβΨ = −BaβXa(Ψ), (1.13)

We see by this formula, that the particles charges define the form of the generators Xa(Ψ) and the

components Ccab(x) of the structural tensor field of the Lie local loop Gr(x), and hence it follows
the dependence of the symmetries on the particles charges as and in the Utiyama formalism [3]. Let

the fields
Φiβ = Baβ ξia, (1.14)

are those mixtures of the gauge fields B(x) which have the non-zero vacuum averages and ρ′ is the
reduced density matrix of the fields Φ(x) which have the rank n by definition. Naturally that the

components ρji of the reduced density matrix ρ′ will be defined from the following relations

ΦjγΦ
γ
i = ρji(Φ

k
γΦ
γ
k). (1.15)

Let us introduce the metric in the differentiable manifoldMn which will be cosidered the Riemannian

space-time, using the reduced density matrix ρ′(x). Let the fields

gij = ηk(iρ
j)
k (ηlmg

lm) (1.16)

(where ηij are the covariant components of the metric tensor of the tangent space toMn and ηij are

defined as the solutions of the following equations: ηijηkj = δik) are the components of the tensor
inverse to the fundamental one gij of the space-time Mn (g

ijgkj = δik) in consequence of what we

shall have relations
∇kgij = 0, ∇kgij = 0 (1.17)

(∇i are covariant derivatives).
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If now we shall have “spread” the gauge fields but retaining the terms Ti responsible for the

vacuum oscillation, then the Lagrangian L will have been rewritten in the form

L = k(∂iΨ − TiΨ)η
ij(∂jΨ − TjΨ). (1.18)

In particular by n = 4 and considering the CPT–degeneracy

Ψ =

(
ψL
ψR

)
, ψL =

1

2
(I − γ5)ψ, ψR =

1

2
(I + γ5)ψ, ψ =




ψ1
ψ2
ψ3
ψ4


 , (1.19)

TA = −T+A = i
ωo
2
ΣA ⊗

(
I − γ4 0

0 I + γ4

)
, ΣA =

(
σA 0

0 σA

)
, (1.20)

T4 = −T+4 = i
ωo
2
γ4 ⊗

(
I − 3γ4 0

0 I + 3γ4

)
(1.21)

(i2 = −1; I is the unit matrix; γ5 = −iγ1γ2γ3γ4; γ1, γ2, γ3, γ4 are the Dirac matrices; σA are the
Pauli matrices; A,B = 1, 2, 3; ηij are the contravariant components of the metric tensor of the

Minkowski space; ωo is a constant) it can obtain the Lagrangian L of the neutrinos fields in the
standard form (ωo = 1/k)

L = −ikωo
2
[ηAB(∂AψγBψ − ψγA∂Bψ)− ∂4ψγ4ψ + ψγ4∂4ψ)] (1.22)

If now we turn on the mixing of the fields with the different polarization, it is possible substituting L4
(the formula (1.21)) in the following form

T4 = −T+4 = i
ωo
2
γ4 ⊗

(
(I − 3γ4) 2Iω1/ωo
2Iω1/ωo (I + 3γ4)

)
, (1.23)

then the fields Ψ(x) will describe the particles with the nonzero rest masses. Of course this mixing

is the detector of the vacuum frequency change, which is induced by the presence of the added fields
(in particular, by the presence of the electromagnetic field).

Now one may proceed to a construction of the covariant gauge formalism considering that the
manifoldMn is the Riemannian space-time. For this it is necessary to find a law of a transformation

of the fields B(x). Let the fields DαΨ change analogously to the fields Ψ(x) in a point x ∈ Mn,
then is

δ0DαΨ = δωb (TbDαΨ− Tb
β
α DβΨ− ξib ∂iDαΨ). (1.24)

As a result δ0B
a
α are written down in the form:

δ0B
d
α = δωb (Cdcb B

c
α − Tb

β
α Bdβ − ξib ∂iB

d
α) + Φ

i
α ∂iδω

d. (1.25)

Since the action

At =
∫
Ωn

Lt dnV =

∫
Ωn

Lt η dx1dx2...dxn (1.26)

(Ωn is a region of the space-time Mn and η(x) is the base density of the same) must be invariant

against infinitesimal transformations of the Lie local loop Gr(x), then the total Lagrangian Lt de-
pending on fields Ψ(x), B(x) and also their derivatives of the first order is unable to be selected
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arbitrarily. The following Lagrangian Lt(Ψ;DαΨ;F cαβ) satisfy to this demand, where the compo-
nents F cαβ(x) of the intensities of the gauge fields B(x) have the form:

F cαβ = [δ
c
b − ξib Φ

γ
i (B

c
γ − βcγ)] [Φ

j
α ∂jB

b
β − Φjβ ∂jB

b
α−

Beα Bdβ Cbed + (B
e
α Teβ

δ −Beβ Teα
δ) Bbδ ]. (1.27)

Note that the fields Φαi (x) are defined from the equations

Φiα Φ
α
j = δij (1.28)

(δji and δba are the Kronecker delta symbols). In consequence of β
b
α �= 0 the matrixes Ti in the

formula (1.18) proved to be the non-zero ones.
Rewrite the equations

Φiα

(Lt
η

∂η

∂Bbα
+

∂Lt
∂Bbα

−∇j
(

∂Lt
∂(∂jBbα)

))
= 0 (1.29)

of gauge fields in the quasi-maxwell form:

∇jH jia = I ia, (1.30)

where

H ij
a = −Φiβ

∂Lt
∂(∂jB

a
β)
= Φjβ

∂Lt
∂(∂iB

a
β)
, (1.31)

I ia = −Ltξia −
∂Lt

∂(∂iΨ)
Xa(Ψ)−

∂Lt
∂(∂iB

b
β)

Y baβ(B), (1.32)

Y baγ(B) = Cbca Bcγ − Tb
β
α Bdβ − ξia ∂iB

b
γ. (1.33)

Besides let

Φkα
∂η

∂Bbα
+ ηξkb = 0. (1.34)

We pick out from the equations of gauge fields folding them with Bbα Φ
α
l those which can will be

called the equations of fields Φiα(x) and which must substitute for Einstein gravitational equations.

2. The gravitational fields equations

The construction of the differentiable manifold M4 can be connected with the finding of the
equations solutions of the gauge fields Φiβ = Baβξ

i
a received from the demand of the minimality of

the total action (1.26), where

Lt = L(Ψ, DαΨ) + L1(F aαβ) = L(Ψ, DαΨ) + κ1F
βδ
d ρ1

d
βδ
αγ
b F bαγ. (2.1)

Further for a simplification of a calculationwe shall consider that the Lie transitiv local loopGr(x)
act effectively in the considered domain of the space-time Mn, in consequence of this r = n and let

Tc
β
α = 0, (2.2)

Let, moreover, n = 4; the Greek indexes take the values 1, 2, 3, 4; ηαβ are the covariant components
and ηαβ are the contravariant components of the metric tensor of the Minkowski space. As a result

the formula (1.33) is rewritten as

Y baγ(B) �−→ Y kiγ = −∇iΦkγ. (2.3)
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Write down the Lagrangian L1 in the form

L1 = κ1η
αβY ijβ(Φ)Y

j
iα(Φ), (2.4)

considering that the fields Φ(x) satisfy the Lorentz conditions:

∇iΦiα = 0 (2.5)

and ηαβ are the contravariant components of the metric tensor of the Minkowski space. In this case
the Lagrangian L1 is distinguished only the constant factor (−κ1) from the scalar curvature R =

gijRij where Rij = Rkij
k are the components of the Ricci tensor. It can note that in this case the

gauge fields equations are written down as the Einstein equations, namely

Ijk = κ1(2g
jlRkl− δjkR). (2.6)

where the energy-momentum tensor of the everybody fields (excluding the fields Φiα) has the form

Ijk = −δ
j
kL +

∂L
∂Φkα

Φjα. (2.7)

If we do not wish to use the Lorentz’ conditions (2.5), then it can take the following LagrangianL1

L1 =
1

2
κ1η

αβηijpqη
klpqY ikβ(Φ)Y

j
lα(Φ), (2.8)

where ηklpq is the base 4-vector of the manifold M4 and ηijpq is the mutual one to ηklpq. As a result

L1 = κ1η
αβ(∇jΦiβ∇iΦjα −∇iΦiβ∇jΦjα). (2.9)

It can rewrite this Lagrangian (2.9) also in the form

L1 =
1

4
κ1η

αβ(F δγβF
ν
µαη

γµηδν + 2F
δ
γβF

γ
δα − 4F

γ
γβF

δ
δα), (2.10)

where the components F νµα of the intensities of the gauge fields Φ(x) can be got from the intensi-
ties (1.27) as

F ναβ = Φ
ν
k(Φ

i
α∇iΦkβ −Φiβ∇iΦkα). (2.11)

In the more general case, when r ≥ 4, it ought to use the following total Lagrangian Lt

Lt = F aαβF
b
γδη

βδ[κ1ξ
i
aξ
j
b(η

αγηεθh
ε
ih
θ
j + 2h

γ
i h
α
j − 4hαi hγj )+

κ2ηcdη
αγ(δca − ξiah

ε
iβ
c
ε)(δ

d
b − ξjbh

θ
jβ
d
θ)]/4 + L(Ψ, DαΨ), (2.12)

where

hiα = βaαξ
i
a, ηab = ηba (2.13)

and the geometrical objects hαi (x) are defined as the solutions of the equations

hαkh
i
α = δik. (2.14)

Now the Einstein equations, got from the gauge ones

Φjα

(Lt
η

∂η

∂Bbα
+

∂Lt
∂Bbα

−∇i
(

∂Lt
∂(∂iBbα)

))
BbβΦ

β
k = 0, (2.15)
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are written as

gjiRki−
1

2
δjkR =

1

2κ1
[Dija E

a
ik −

1

4
δjkD

il
aE

a
il + P jΨDkΨ− δjkL(Ψ, DiΨ)], (2.16)

where

DiΨ = Φ
α
iDαΨ = ∂iΨ −Bai TaΨ, (2.17)

P kΨ =
∂L

∂DkΨ
= Φkα

∂L
∂DαΨ

, (2.18)

Bai = Φ
α
i B

a
α, (2.19)

Eaij = (δ
a
b − ξkbB

a
k )(∇iBbj −∇jBbi + BciB

d
jC
b
cd), (2.20)

Dija = κ2g
ikgjlηcd(δ

c
a − ξpah

ε
pβ
c
ε)(δ

d
b − ξqbh

θ
qβ
d
θ)E

b
kl. (2.21)

By this it can rewrite the total Lagrangian Lt (2.12) as

Lt = (H ijk F kij +Dija E
a
ij)/4 + L(Ψ, DαΨ), (2.22)

where

F kij = −Φkα(∇iΦαj −∇jΦαi ) (2.23)

and

H ijk = κ1(gklF
l
pqg

ipgjq + F iklg
jl + gilF jlk + 2g

ipδjkF
l
lp + 2δ

i
kg
jpF lpl). (2.24)

In the general case the condition (2.2) it is necessary to abolish (by this, Tc
β
α �= ξicT

β
iα) so that

the intensities F kij of the fields Φ(x) will have the following form

F kij = ∇iΦkβΦβj −∇jΦkβΦβi + ΦkγT γaβ(Bai Φβj −BajΦ
β
i ). (2.25)

Already because of this the masses of the vector bosons (being the quanta of the gauge fields) can
be the non-zero ones. Thus the interactions of the elemental particles with fields Φiα which are

describing the vacuum oscilations and which are connected with the gravitational interactions can
lead to the appearance of the masses both of the fermions and of the vector bosons.

3. The symmetry breaking

From the recent experimental data (see for example [5]) it is followed that only 5% of the all

Universe matter has the baryon natture, 33% is the dark matter and 62% exists in the vacuumly
similar state (p = −ρ, where p is the pressure, ρ is the energy density) which is connected with the
Λ-term. In cousequence of this it is expedient to divide the Universe matter into the rapid and slow
subsystems considering that all known particles (ignoring neutrinos) fall into the rapid subsystem

and using the fields Φ(x) with the non-zero vacuum averages for the condensed description of the
slow subsystem. Thus the elemental particles can be cosidered as the coherent structures in the

open systems characterized if only the quasigroup symmetries [6]. As a result it is necessary to
return to concepts of Hoyle and Narlikar [7] in which the masses of the elemental particles depend
on the time that allows to consider the Universe evolution even in the space without the curvature.

Naturally, that the assumption about fields are filling the Universe and determining the geomet-
ric structure of the space–time manifold, allows us to introduce the connection of the fundamental

tensor of this manifold with such a statistical characteristic as the entropy defining it in a standard
manner via the reduced density matrix ρ′(x) in the form

S = −ρji lnρij. (3.1)
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As a result, the transition from the singular state of the Universe to the modern one can be con-

nected with increasing of the entropy S defined here. As 1 < n < r, we can consider that the gauge
fields Baβ(x) became the owners of the nonzero vacuum averages breaking their symmetry in con-

sequence of the Universe evolution. The presence of the nonzero vacuum averages lead to that the
fields equations (2.15) are not converted to zero identically by freezing of the excitations being the
quanta of the fields Φiα(x) but they convert to the Einstein equations or to their generalizations [6].

Let us to consider that the symmetry breaking was the phase transition by the formation of the
Cooper pairs in the medium consisting of primary fermions. Of course by this we rely on the known

data: the formation the Cooper pairs in 3He [8] and the spin-fluctuation high Tc superconductivity
mechanism [9]. Before the start of the phase transition in the early Universe it is necessary to

neglect the non-zero vacuum averages βcα(x) of the gauge fields B
c
α(x) (β

c
α = 0) that lead to the

absence (ξkc [δ
c
b − ξib Φ

γ
i (B

c
γ − βcγ)] = 0) of the intensities

F iαβ = ξicF
c
αβ (3.2)

of the fields Φiα. In the absence of the fields Φ
i
α and the fields Ψ the Lagrangian form (3.2) is

becoming the most symmetric one (Lt ∝ B4). Thus the formation of primary fermions (Ψ �= 0)
from primary bosons is the necessary condition of the Universe transition to the modern stage of

the development although and the not sufficient one. Only the Bose — Einstein condensation of
the Cooper pairs (the quantity of whiches increased beyond all bounds) from the fermions of the

some class (various types of neutrinos) caused to the large growth of the rest masses of those vector
bosons (W+, W−, Zo) whiches interact with fermions of this class. In our opinion so the neutrinos

and the weak interactions occupied the particular place in the Universe evolution. In parallel to it
the rest masses of other particles grew too, although and not all (the photon has not the rest mass
as it do not interact with neutrinos immediately).
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