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Non-perturbative approach to spinning particlelike solutions based on the Kerr-Newman black hole (BH)
solution is considered. Non-trivial supergeneralization of the Kerr-Newman solution matched with complex
structure of Kerr geometry is discussed. For parameters of spinning particles the BH horizons disappear
and singularity is naked. We regularize this singularity, introducing a smooth superconducting baglike source
which is built of the chiral and gauge fields (generalized Higgs model). We show that there appears a controlled
by gravity phase transition to a new supersymmetric vacuum state near the core. A supersymmetric domain
wall model for this phase transition is suggested which is based on the Witten U(1)× Ũ(1) field model.

1 Introduction

The rotating Kerr-Newman black hole solution [1] is apparently the most suitable classical back-
ground for the models of spinning particles.

In 1969 Carter observed [2], that if three parameters of the Kerr-Newman solution are adopted
to be (~=c=1)

e2 ≈ 1/137, m ≈ 10−22, a ≈ 1022, ma = 1/2, (1)

then one obtains a model for the four parameters of the electron: charge e, mass m, spin l and
magnetic moment ea, and the gyromagnetic ratio is automatically the same as that of the Dirac
electron. The first treatment of the source of the Kerr spinning particle was given by Israel [3] in
the form of an infinitely thin disk spanned by the Kerr singular ring. Disk has the Compton size
with radius a = l/m = 1

2m . The Israel results where corrected by Hamity who showed that the
disk is in a rigid relativistic rotation, and then Lòpez suggested a regularized model of the source
in the form of a rotating ellipsoidal shell (bubble) covering the singular ring [4]. The structure
of the electromagnetic field near the disk suggested superconducting properties of the material of
the source, and there were obtained the analogue of the Kerr singular ring with the Nielsen-Olesen
and Witten superconducting strings [5] and other stringy structures [6]. Since 1992 there has been
considerable interest as to black holes in superstring theory, and the point of view appeared that
some of black holes can be treated as elementary particles [7]. In particular, Sen [8] has obtained a
generalization of the Kerr solution to low energy string theory, and it was shown [9] that near the
Kerr singular ring the Kerr-Sen solution acquires a metric similar to the field around a heterotic
string.

The treatment of super-Kerr-Newman geometry for modelling the spinning particles allows one
to involve fermionic degrees of freedom in the most natural way. Supersymmetry and supergravity
give also essential advantages by non-perturbative approach leading to cancelation of quantum di-
vergences. In particular, the solutions saturating BPS-bound and retaining a part of supersymmetry
may not receive quantum loop corrections. The simplest consistent Super-Kerr-Newman BH solu-
tion [10] was constructed on the base of the (broken) Ferrara-Nieuvenhuisen N=2 Einstein-Maxwell
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D=4 supergravity. Its structure is strongly matched with the complex structure of the Kerr ge-
ometry. Because of that we start the paper from a treatment of this structure and show that the
super-Kerr geometry is constructed in full analogue with the Kerr complex structure. The resulting
super-solution contains also singularity which is covered by BH horizon.

However, for the large angular momentum corresponding to spinning particles the Kerr hori-
zons are absent, and there appears a naked singularity. It can be regularized being replaced by
a matter source [11] built of the non-trivial chiral (Higgs) fields. In the sections 4-7 we consider
non-perturbative approach to supergravity based on the solutions having the charged black hole
form in external region while the BH singularity is replaced by a superconducting baglike core and
described by chiral fields of a supersymmetric field model. The smooth (phase) transition to the
core is provided by a supersymmetric domain wall model. The treatment of this phase transition
can be done in a unique manner for rotating and non-rotating BH solutions and does not depend
on specific twisting structure of Kerr geometry. Thus, corresponding part of the paper is practically
independent of the sections 2 and 3 where the complex and super-structures of the Kerr geometry
are considered.

2 Real, complex and stringy structures of Kerr geometry

The Kerr-Newman solution can be represented in the Kerr-Schild form

gµν = ηµν + 2he3
µe

3
ν , (2)

where ηµν is metric of an auxiliary Minkowski space ηµν = diag(−1, 1, 1, 1), and h is a scalar
function. Vector field e3 is null, e3

µe
3µ = 0, and tangent to principal null congruence K of the Kerr

geometry. The Kerr congruence K is twisting i.e. corresponding to a vortex of a null radiation.
1 One of the main peculiarities of the Kerr geometry is singular ring (of radius a) representing
a branch line of the Kerr space on the ‘positive’ (r > 0) and ‘negative’(r < 0 ) sheets which are
divided by the disk r = 0 spanned by this ring. The Kerr singular ring is exhibited as a pole of the
function

h(r, θ) =
mr − e2/2

r2 + a2 cos2 θ
,

where r and θ are the Kerr oblate spheroidal coordinates.
The vortex of the Kerr congruence is in-going on the ‘negative’ sheet of space where r < 0, it

crosses the disk r = 0 and turns into out-going one on the ‘positive’ sheet r > 0.
The simplest solution possessing the Kerr singular ring was obtained by Appel in 1887 (!) [12]. It

can be considered as a Newton or a Coulomb analogue to the Kerr solution. On the real space-time
the singular ring arises in the Coulomb solution f = e/r̃, where

r̃ =
√

(x− xo)2 + (y − yo)2 + (z − zo)2,

when the point-like source is shifted to a complex point of space (xo, yo, zo) → (0, 0, ia). Radial
distance r̃ is complex in this case and can be expressed in the oblate spheroidal coordinates r and
θ as

r̃ = r + ia cos θ.

The source of Kerr-Newman solution, like the Appel solution, can be considered from complex point
of view as a “particle” propagating along a complex world-line xµ0 (τ) in a complexification of the
auxiliary Minkowski space-time CM4 [6, 14] and parametrized by complex time τ .

1The Kerr congruence is geodesic and shear free, it represents a bundle of twistors and can be described by the
Kerr theorem [1, 13, 6, 14].
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The objects described by the complex world-lines occupy an intermediate position between
particle and string. Like the string they form the two-dimensional surfaces or the world-sheets in
the space-time. It was shown [6, 14] that the complex Kerr source may be considered as a complex
hyperbolic string which requires an orbifold-like structure of the world-sheet. In many respects this
source is similar to the ‘mysterious’ N = 2 string of superstring theory, shedding a light on the
puzzle of its physical interpretation. The second stringy structure of the Kerr geometry is the Kerr
singular ring. In fact the both these stringy structures are different exhibitions of some membrane-
like source. This source has a complex interpretation alongside with a real image in the form of a
rotating bubble which will be discussed further.

Appearance of the twisting Kerr congruence may be understood as a track of the complex
retarded-time construction. The null rays of the Kerr congruence are the tracks of null planes of
the family of complex light cones emanated from the points of the complex world line [13, 14]. The
complex light cone with the vertex at some point x0 of the complex world line xµ0 (τ) ∈ CM4:

(xµ − x0µ)(xµ − xµ0 ) = 0, (3)

can be split into two families of null planes: “left” planes

xL = x0(τ) + αe1 + βe3

spanned by null vectors e1(Y ) and e3(Y, Ỹ ), and “right” planes

xR = x0(τ) + αe2 + βe3,

spanned by null vectors e2 and e3. 2

The Kerr congruence K arises as the real slice of the family of the “left” null planes (Y = const.)
of the complex light cones which vertices lie on the complex world line x0(τ).

The subset of null rays of the Kerr congruence belonging to a coordinate surface θ = const.

satisfies the retarded-time equation

r + ia cos θ = (t− τ), (4)

On the real slice of the Kerr geometry the coordinates r, t and θ are real. It means that the complex
time parameter τ = t0 + iσ, which is responsible for this family of null rays, is determined by
t0 = t− r, and σ = −a cos θ. Thus, only the cones lying on the strip |σ| ≤ |a| have a real slice. One
can also say that only this strip is “seen” from the real Kerr geometry and represents its source.
Therefore, the ends of the resulting complex string are open. To satisfy the complex boundary
conditions, a special orbifold-like structure of the worldsheet must be introduced [6, 14], which is
closely connected with the above mentioned Kerr’s twosheetedness. Next, one can note that the
fixed value τ corresponds to the family of null rays with constant angle θ and angles φ ∈ S1. Thus,
there is one more parameter on the worldsheet, and complex source represents really a membrane.

On the mathematical language we have: a fiber bundle of complex light cones over the complex
world line x0(τ) ∈ CM4, and a vector bundle of the “left” complex null planes over the base
{τ, Y } ∈ C2. Real section of the “left” null planes are null rays of the Kerr congruence. The real
Kerr geometry (x ∈ M4) represents a local section of line bundle with the base {τ, Y } and the
null rays K as fibers. The null planes determine projections π : x → {x0(τ), Y } → {τ, Y } and
π−1 : {τ, Y } → {null ray of K}.

2The Kerr null tetrad is given by one-forms: e1 = dζ−Y dv, e2 = dζ̄−Ȳ dv, e3 = du+Ỹ dζ+Y dζ̄−Y Ỹ dv, e4 =
dv+ he3, where the Cartesian null coordinates u, v, ζ, ζ̄ are used. Vector-form e3 is real when Ỹ = Ȳ . On real section
Y is the projective spinor coordinate Y = eiφ tan θ

2
.
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3 Super-Kerr-Newman geometry to broken N=2 supergravity

A supergeneralization of the Kerr-Newman solution can be obtained as a natural combination of the
Kerr spinning particle and superparticle [10]. In fact, the complex structure of the Kerr geometry
suggests the way of this supergeneralization.

The simplest consistent supergeneralization of Einstein gravity [15] represents an unification
of the gravitational field gik = eai eak, with a spin 3/2 Rarita-Schwinger field ψi . The combined
Lagrangian has the form

Lsg = −eR/2k2 − i

2
εijklψ̄iγ5γjDkψl, (5)

where e = det eia; Di = ∂i +nonlin.terms. Corresponding action I =
∫ Lsgd4x is invariant under

the local supersymmetry transformations with a Grassmann gauge parameter ε:

δεe
a
i = −ikε̄γaψi, (6)

δεψi = −2/kDiε, (7)

and all supergauge-related solutions are physically equivalent.

Note, that any exact solution of the Einstein gravity is indeed a trivial solution of supergravity
field equations. The supergauge freedom allows one to turn any gravity solution into a form contain-
ing spin-3/2 field ψµ satisfying the supergravity field equations. Starting from an exact solution of
Einstein gravity and using the supergauge freedom (6), (7), one can easily turn the gravity solution
into a form containing spin-3/2 field ψi satisfying the supergravity field equations. However, since
this spin-3/2 field can be gauged away by the reverse transformation, such supersolutions have to
be considered as trivial. The hint how to avoid this triviality problem follows from the complex
structure of the Kerr geometry. In fact, from the complex point of view the Schwarzschild and Kerr
geometries are equivalent and connected by a trivial complex shift.

The non-trivial twisting structure of the Kerr geometry arises as a result of the complex shift
of the real slice concerning the center of the solution [13, 6]. Similarly, it is possible to turn a
trivial super black hole solution into a non-trivial. The trivial supershift can be represented as
a replacement of the complex world line by a superworldline X

µ
0 (τ) = x

µ
0 (τ) − iθσµζ̄ + iζσµθ̄,

parametrized by Grassmann coordinates ζ, ζ̄, or as a corresponding coordinate replacement in
the Kerr solution

x′µ = xµ + iθσµζ̄ − iζσµθ̄; θ′ = θ + ζ, θ̄′ = θ̄ + ζ̄. (8)

Assuming that coordinates xµ before the supershift were the usual c-number coordinates, one
sees that coordinates acquire nilpotent Grassmann contributions after supertranslations. Therefore,
there appears a natural splitting of the space-time coordinates on the c-number ‘body’-part and a
nilpotent part - the so called ‘soul’. The ‘body’ subspace of superspace, or B-slice, is a submanifold
where the nilpotent part is equal to zero, and it is a natural analogue to the real slice of a complex
space.

Reproducing the real slice procedure of the Kerr geometry in superspace, one has to use the
replacements:

- complex world line → superworldline,

- complex light cone → superlightcone,

- real slice → body slice.

Performing the body-slice procedure to superlightcone constraints

s2 = [xµ −X0µ(τ)][xµ −Xµ
0 (τ)] = 0, (9)
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one selects the body and nilpotent parts of this equation and obtains three equations. The first
one is the discussed above real slice condition of the complex Kerr geometry claiming that complex
light cones can reach the real slice. The nilpotent part of (9) yields two B-slice conditions

[xµ − xµ0 (τ)](θσµζ̄ − ζσµθ̄) = 0; (10)

(θσζ̄ − ζσθ̄)2 = 0. (11)

These equations can be resolved by representing the complex light cone equation via the commuting
two-component spinors Ψ and Ψ̃: xµ = x0µ + ΨσµΨ̃. “Right” (or “left”) null planes of the complex
light cone can be obtained, keeping Ψ constant and varying Ψ̃ (or keeping Ψ̃ constant and varying
Ψ.) As a result we obtain the equations Ψ̄θ̄ = 0, Ψ̄ζ̄ = 0, which in turn are conditions of
proportionality of the commuting spinors Ψ̄(x) determining the null ray the Kerr congruence and
anticommuting spinors θ̄ and ζ̄, these conditions providing the left null superplanes of the supercones
to reach B-slice. It also leads to θ̄θ̄ = ζ̄ ζ̄ = 0, and equation (11) is satisfied automatically.

Thus, as a consequence of the B-slice and superlightcone constraints we obtain a non-linear
submanifold of superspace θ = θ(x), θ̄ = θ̄(x), which is a section of corresponding line bundle
of superspace. Similarly to the complex Kerr source, this local section determines the supersource
which is “seen” from the real Kerr geometry and is consequently responsible for formation the
super-Kerr geometry. At this stage the super-Kerr geometry is trivial copy of Kerr geometry since
the Rarita-Schwinger field is absent. However, by addition the fermionic field λ = {ζα(x), ζ̄α̇(x)} as
a matter source, we obtain the model of non-linear realization of broken supersymmetry introduced
by Volkov and Akulov [18, 19] and considered in N=1 supergravity by Deser and Zumino [16]. Sim-
ilarly to the Higgs mechanism of the usual gauge theories, this Grassmann source field represents
the Goldstone fermion which can be “eaten” by appropriate local supergauge transformation (6),
(7) with a corresponding redefinition of the tetrad and the appearance the spin-3/2 field. Complex
character of supertranslations in the Kerr case and presence of charge demand to use in this scheme
the N=2 supergravity [17]. As consequence of this the initial supersymmetry is broken, and super-
gauge freedom is lost. Nevertheless, there is a residual supersymmetry based on free Grassmann
parameters θ1, θ̄1.

We omit here details, referring to [10] and mentioning only that in the resulting exact solu-
tion the torsion and Grassmann contributions to tetrad cancel, and metric retains the exact Kerr-
Newman form. However, there appear the extra wave fermionic fields on the bosonic Kerr-Newman
background propagating along the Kerr congruence and concentrating near the Kerr singularity
(traveling waves). Solution contains also an extra axial singularity which is coupled topologically
with singular ring, threading it.

4 Regular sources for the rotating and non-rotating black hole
solutions of the Kerr-Schild class

One of the approaches to regularization of the particlelike BH solutions is based on the old idea of
the replacement of singularity by a “semiclosed world”, internal space-time of a constant curvature
(M. Markov, 1965; I. Dymnikova [20]). The known Dirac classical electron model, as well as the
bag models could also be related to this class by the assumption that regularization is provided by
a flat core region.

We consider development of these models leading to a non-perturbative soliton-like solution to
supergravity and assuming that the external field is the Kerr-Newman black hole solution, and the
core is described by a domain wall bubble based on the chiral fields of a supersymmetric field model.
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The Kerr-Schild class of metrics gµν = ηµν + 2hKµKν allows one to consider the above regu-
larization for the rotating and nonrotating, charged and uncharged BH’s in unique manner [11]. It
allows one to describe the external BH field and the internal (A)dS region, as well as a smooth inter-
polating region between them, without especial matching conditions, by using one smooth function,
f(r), of the Kerr radial coordinate r. In this case the scalar function h has the form 3

h = f(r)/(r2 + a2 cos2 θ). (12)

In particular, for the Kerr-Newman BH solution

f(r) = fext(r) = mr − e2/2, (13)

where m and e are the total mass and charge. The transfer to nonrotating case occurs by a = 0, when
the Kerr congruence turns into a twist-free “hedgehog” configuration, and r, θ are usual spherical
coordinates. It is important that function f(r) is not affected by this transfer that allows one to
simplify treatment concentrating on the a = 0 case.

By a = 0, the regularizing core region of a constant curvature can be described by f = fint(r) =
αr4, where α = Λ/6, Λ is cosmological constant, and energy density in core is 4 ρ = 3

4α/π .
The smooth matching of the internal and external metrics can be provided by any smooth

function f(r) interpolating between fint and fKN . When the function f(r) does not strongly
deviate from these branches, the position r0 of the phase transition can be estimated as a point of
intersection of the plots fint and fext,

4

3
πρr4

0 = mr0 − e2/2. (14)

Analysis of the stress-energy tensor for this metric shows [11] that for charged sources there
appears a thin intermediate shell at r = r0 with a strong tangential stress that is typical for
a domain wall structure. Dividing this equation on r0 one can recognize here the mass balance
equation

m = Mint(r0) +Mem(r0), (15)

where m is total mass, Mint(r0) is ADM mass of core and Mem(r0) = e2/2r0 is ADM mass of
the external e.m. field. It should be mentioned, that gravitational field is extremely small at r0,
especially as r0 is much more of gravitational radius 5 ( r0/m ∼ 1042). Nevertheless, eq. (15) shows
that phase transition is controlled by gravity, but non-locally! Note, that Mint can be either positive
(that corresponds to dS interior) or negative ( AdS interior ). As we shall see, supergravity suggests
AdS vacua inside the bubble.

As consequence of this treatment we obtain also some demands to the supergravity field model
for corresponding matter source:

i - It has to provide a phase transition between internal and external vacua.
ii - External vacuum has to be (super)-Kerr-Newman black hole solution with long range elec-

tromagnetic field and zero cosmological constant.
iii - Internal vacuum has to be (A)dS space with superconducting properties.
These demands are very restrictive and are not satisfied in the known solitonlike bag, domain

wall and bubble models. Main contradiction is connected with demands ii) and iii) since in the
most of models external electromagnetic field is short range. An exclusion is the U(I) × Ũ(I)
field model which was used by Witten to describe the cosmic superconducting strings [21]. We
use a supersymmetric generalization of this field model for description the superconducting baglike
configuration.

3For a 6= 0 the Kerr coordinates r and θ are oblate spheroidal ones.
4In this case, as shows (12), gravitational singularity is regularized also by a 6= 0.
5In particular, if interior is flat (ρ = 0 ) r0 = e2/2m -‘classical electromagnetic radius’.
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5 Supersymmetric superconducting bag model

The model contains two Higgs sectors: A and B. The chiral field of sector A, φ(r) forms a structure
similar to “lumps”, Q-balls and the other known non-topological solitons 6. However, potential
is specific here and determined by a supersymmetric domain wall model. The gauge field of this
sector, Aµ, acquires mass from the field φ(r) in the core and forms the long range electromagnetic
field Fµν in external region.

Sector B is ‘dual’ in the sense that chiral field of sector B, σ(r), describes a cavity in supercon-
ductor, superconducting bag confining the gauge field Bµ ( FBµν = Bµ,ν −Bν,µ). Besides, there are
hints in flavor of the dual type of superconductivity for sector B.

Supersymmetric version of the Witten field model (suggested by J. Morris [23]) has effective
Lagrangian of the form

L = −2(Dµφ)(Dµφ)− 2(D̃µσ)(D̃µσ)− ∂µZ∂µZ̄
−1

4
FµνFµν − 1

4
F
µν
B FBµν − V (σ, φ, Z), (16)

where Dµ = ∆µ+ieAµ, D̃µ = ∆µ+igBµ. The potential V is determined through the superpotential
W as

V =
5∑
i=1

|∂iW |2, (17)

and the superpotential W (Φi) is a holomorphic function of the fife complex chiral fields Φi =
{Z, φ, φ̄, σ, σ̄},

W = λZ(σσ̄ − η2) + (cZ +m)φφ̄. (18)

In the effective Lagrangian the “bar” is identified with complex conjugation, so there are really
only three independent scalar fields, and the “new” (neutral) fields Z provides the synchronization
of the phase transition. The supersymmetric vacuum states corresponding to the lowest value of
the potential are determined by the conditions

∂iW = 0; (19)

and yield V = 0. These equations lead to two supersymmetric vacuum states:

I) Z = 0; φ = 0; |σ| = η; W = 0, (20)

we set it for external vacuum; and

II) Z = −m/c; σ = 0; |φ| = η
√
λ/c; W = λmη2/c, (21)

we set it as a state inside the bag.

The treatment of the gauge field Aµ and Bµ in B-sector is similar in many respects because of
the symmetry between A and B sectors allowing one to consider the state Σ = η in outer region
as superconducting one 7 in respect to the gauge field Bµ. Field Bµ acquires the mass mB = gη

in outer region, and the Ũ(I) gauge symmetry is broken, which provides confinement of the Bµ
field inside the bag. The bag can also be filled by quantum excitations of fermionic, or non Abelian
fields.

6See for example [22].
7The version of dual superconductivity in B-sector seems the most interesting.
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One can check the phase transition in the planar wall approximation (neglecting the gauge
fields). It can be shown that it is a BPS-saturated domain wall solution interpolating between
supersymmetric vacua I) and II). Using the Bogomol’nyi transformation one can represent the
energy density as follows

ρ = T00 =
1

2
δij [(Φ

i,z )(Φj ,z ) + (
∂W

∂Φi
)(
∂W

∂Φj
)] (22)

=
1

2
δij [Φ

i,z +
∂W

∂Φj
][Φj ,z +

∂W

∂Φi
]− ∂W

∂Φi
Φi,z , (23)

where the last term is full derivative. Then, integrating over the wall depth z one obtains for the
surface energy density of the wall

ε =

∫ ∞
0

ρdz =
1

2

∫
Σi(Φ

i,z +
∂W

∂Φi
)2dz +W (0)−W (∞). (24)

The minimum of energy is achieved when the first-order Bogomol’nyi equations Φi,z +∂W
∂Φi

= 0 are
satisfied, or in terms of Z,Φ,Σ

Z ′ = −λ(Σ2 − η2)− cΦ2, (25)

Σ′ = −λZΣ, (26)

Φ′ = −(cZ +m)Φ. (27)

Its value is given by ε = W (0) −W (∞) = λmη2/c. Therefore, this domain wall is BPS-saturated
solution. One can see that the field Z, which appears only in the supersymmetric version of the
model, plays an essential role for formation of the phase transition.

The structure of stress-energy tensor contains the typical for domain walls tangential stress.
The non-zero components of the stress-energy tensor have the form

T00 = −Txx = −Tyy =
1

2
[δij(Φ

i,z )(Φj ,z ) + V ]; (28)

Tzz =
1

2
[δij(Φ

i,z )(Φj ,z )− V ] = 0. (29)

6 Stabilization of spherical domain wall by charge

The energy of an uncharged bubble forming from the BPS domain wall is

E0bubble = Ewall = 4π

∫ ∞
0

ρr2dr ≈ 4πr2
0ε. (30)

However, the Tolman mass M =
∫
dx3√−g(−T 0

0 + T 1
1 + T 2

2 + T 3
3 ), taking into account tangential

stress of the wall, is negative

MTolm.bubble = −Ewall ≈ −4πr2
0ε. (31)

It shows that the uncharged bubbles are unstable and form the time-dependent states [24].

Charged bubbles have extra contribution caused by the energy and mass of the external elec-
tromagnetic field

Ee.m. = Me.m. =
e2

2r0
, (32)
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and contribution to mass caused by gravitational field of the external electromagnetic field ( deter-
mined by Tolman relation for the external e.m. field)

Mgrav.e.m. = Ee.m. =
e2

2r0
. (33)

As a result the total energy for charged bubble is

Etot.bubble = Ewall + Ee.m. = 4πr2
0ε+

e2

2r0
, (34)

and the total mass will be

Mtot.bubble = M0bubble +Me.m. +Mgrav.e.m. = −Ewall + 2Ee.m. = −4πr2
0ε+

e2

r0
. (35)

Minimum of the total energy is achieved by

r0 = (
e2

16πεmin
)1/3, (36)

which yields the following expressions for total mass and energy of the stationary state

M∗tot = E∗tot =
3e2

4r0
. (37)

One sees that the resulting total mass of charged bubble is positive, however, due to negative
contribution of M0bubble it can be lower than BPS energy bound of the domain wall forming this
bubble. This is a remarkable property of the bubble models, existence of the ‘ultra-extreme’ states
[24] gives a hope to overcome BPS bound and get the ratio m2 � e2 which is necessary for particle-
like models.

7 Peculiarities of the rotating model and role of supergravity

For the rotating Kerr case we have the basic relation J = ma, and for J ∼ 1/2 one can see that
parameter a ∼ 1/m has the Compton size. Coordinate r takes the oblate spheroidal form, and
the matter is foliated on the rotating ellipsoidal layers 8. Curvature of space is concentrated in
equatorial plane, near the former singular ring, forming a stringlike tube 9.

In supergravity, for strong fields there is also an extra contribution to stress-energy tensor leading
to negative cosmological constant Λ = −3k4ek

2K |W |2 which can yield AdS space-time for the bag
interior.

The considered here supersymmetric model is more complicated than the traditionally used
domain wall models [24], and it demonstrates some new properties. One of the peculiarities of this
model is the presence of gauge fields which, as it was shown in thin wall approximation, allow one
to stabilize bubble to a finite size. Second peculiarity is the presence of a few chiral superfields that
can give a nontrivial sense to Kähler metric Kij̄ of the supergravity field models. One can expect
that extra degrees of freedom of the Kähler metric can play essential role for formation of the bent
(spherical or ellipsoidal) domain wall configurations. In this case there appears a singularity in the
Kähler potential, and involving the axion and dilaton fields (coming from low energy string theory)

8It can be established since the stress-energy tensor is diagonalized in the locally corotating coordinate system [11].
9For the parameters of electron the phase transition region represents an oblate rotating disk of Compton size and

thickness ∼ e2/2m.
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can be necessary to suppress its influence. Therefore, some extra internal structure (“stringy or
dilatonic core”) can appear for the bent domain walls on the Plankian scale. This second core
has to be placed inside of the large Compton scale region connected with the above domain wall
structure and the chiral (Higgs) fields. It should be noted that the typical superstring BH solutions
do not contain the Higgs fields and are usually regular if only they are magnetically charged. On
the other hand, there was mentioned close similarity between N=2 black holes, N=4 black holes of
superstring vacua and domain wall solutions to N=1 supergravity [25, 24] (in particular they have
similar causal structure and a common classification in terms of the dilaton coupling parameter).
These facts suggest existence of non-perturbative regular solutions to supergravity having a hybrid
form in which a phase transition changes character of theory near the core: from electrically charged
external solution of the Einstein-Maxwell (super)gravity to an internal solution described by a dual
magnetically charged black hole solution to superstring theory.

We would also like to note, that the connected with superconductivity chiral fields acquire a
nontrivial geometrical interpretation in the Seiberg–Witten theory and in the Landau – Ginzburg
theory where the N = 2 chiral superfields refer to the moduli of the internal Calabi–Yau spaces [26].
In the case of a few chiral fields it gives an interesting link to higher dimensions with an alternative
look on the problem of compactification.

8 Conclusion

The treatment shows that:

• super-Kerr geometry displays very rich complex, stringy and super-structures and represents
one of the most adequate backgrounds in non-perturbative approach to the structure of spin-
ning particles;

• regularization of the Kerr singularity can be achieved by a phase transition to some new
vacuum state described by supersymmetric domain wall model;

• in spite of the extreme smallness of the local gravitational field, supergravity can control the
position of phase transition at large distances;

• core of the Kerr spinning particle has the shape of oblate rotating disk (of the Compton
size), and one can expect a sensitivity of differential sections for polarized spinning particles,
depending on the direction of polarization.

It should also be mentioned that the parameters of elementary particles are very far from the
typical extreme values of black hole parameters, (m � e), and quantum corrections can be high,
leading to quantum excitations of the fields inside the bag (circular traveling waves) as well as of
the bag boundary. It has to lead to a nonstationary Kerr background [13, 27] that represents a still
unsolved problem.

The model suggests that the formation of spin can be connected with a non-trivial rotating
vacuum state forming the disklike bag. Since gravitational field is extremely small, its influence
on the geodesic motion of the scattering particles has to be negligible besides very thin region
(string) near the border of the Kerr disk where the strong fields are concentrated. Vacuum state
has relativistic boost in this region. The trapped partons have also to be relativistically boosted,
reproducing Zitterbewegung similarly to some old models of spin built of the lightlike circular
currents and traveling waives (H. Hönl, A. Schild and others [28]).

Thus, interaction by particle collisions can occur only by direct contact with this thin string
or with partons inside the bag, either via the Coulomb excitation (including the case of very soft
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photons). Apparently, one can expect also excitation of the vacuum state of the bag (Higgs fields)
in the deep inelastic processes.

We would like to thank Organizing Committee for kind invitation to give this talk and for financial

support.
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Peŕjes eds,), Academiai Kiado, Budapest 1994, pp. 149-158, gr-qc/9303003.

[7] A. Sen, Extremal black holes and elementary string states, Modern Phys. Lett. A 10(1995)2081.

[8] A. Sen, Rotating charged black hole solution in heterotic string theory, Phys.Rev.Lett., 69(1992)1006.

[9] A. Burinskii, Some properties of the Kerr solution to low energy string theory, Phys.Rev.D 52(1995)5826.

[10] A. Burinskii, Kerr spinning particle, strings and superparticle models, Phys.Rev.D 57 (1998)2392. Super-
Kerr-Newman solution to broken N=2 supergravity, Class. Quantum Grav.16(1999)3497.

[11] A. Burinskii, Supersymmetric superconducting bag as a core of Kerr spinning particle, hep-th/0008129;
Rotating super black hole as spinning particle, In:Noncommutative Structures in Mathematics and Physics,
S. Duplij and J.Wess (eds.),pp.181-193, 2001, Kluwer Academic Publishers;

A. Burinskii, E. Elizalde, S. R. Hildebrandt and G. Magli, Regular sources of the Kerr-Schild class for
rotating and nonrotating black hole solutions, gr-qc/0109085.

[12] E.T. Whittacker and G.N. Watson, A course of modern analysis, Cambrige Univ. Press London/New
York,p.400, 1969 .

[13] A. Burinskii, R.P. Kerr and Z. Perjes, Nonstationary Kerr Congruences, gr-qc/9501012.

[14] A. Burinskii, The Kerr geometry, complex world lines and hyperbolic strings, Phys.Lett. A 185(1994)441.

[15] S. Deser and B. Zumino, Consistent supergravity, Phys. Lett., B 62 (1976) 335.

[16] S. Deser and B. Zumino, Broken supersymmetry and supergravity, Phys. Rev. Lett. 38(1977) 1433.

[17] S. Ferrara and P. van Nieuwenhuizen, Consistent supergravity with complex spin-3/2 gauge field,
Phys.Rev. Lett. 37 (1976)1669.

[18] D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16(1972)367.

[19] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton, New Jersey 1983.

[20] I. Dymnikova, Vacuum nonsingular black hole, Gen.Rel.Grav. 24(1992)235.

[21] E. Witten, Superconducting strings, Nucl.Phys., B249(1985)557.

[22] S. Coleman, Q balls, Nucl. Phys. B262 (1985) 263.

[23] J.R. Morris,Supersymmetry and gauge invariance constraints in a U(1)×U(1)′ – Higgs superconducting
cosmic string model, Phys.Rev.D 53(1996)2075.
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