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We construct five massive deformations of the unique nine–dimensional N = 2 supergravity, each with two
parameters. All of these deformations have a higher–dimensional origin via Scherk–Schwarz reduction and
correspond to gauged supergravities. The gauge groups we encounter are SO(2), SO(1, 1)+,R,R+ and the
two–dimensional non–Abelian Lie group CR1, which consists of scalings and translations in one dimension.

We make a systematic search for two classes of vacuum solutions: maximally symmetric solutions with

constant scalars and half-supersymmetric domain wall solutions. In the first category we find explicit solutions

in the form of (non-supersymmetric) de Sitter space solutions. In the second category we find precisely the

three classes of domain wall solutions that were given in an earlier work. We discuss which of the D=9 gauged

supergravities can be considered as candidate low-energy limits of compactified superstring theory.

1 Introduction

The procedure of gauging a global symmetry includes the replacement of the ordinary derivative by
a covariant derivative:

∂µ −→ Dµ = ∂µ + gAµ . (1)

Here Aµ is the gauge field and g is the gauge coupling constant which acts as a deformation
parameter of the ungauged theory. In the case of Einstein gravity with scalars one can consider as
an independent deformation the addition of a scalar potential V (ϕ):

R+ (∂ϕ)2 → R+ (∂ϕ)2 +m2V (ϕ) . (2)

In the supersymmetric case, i.e. the case of gauged supergravity, the two deformations are not
independent. Supersymmetry relates the two deformation parameters:

g = m. (3)
Due to the scalar potential the Minkowski spacetime is no longer a maximally supersymmetric

vacuum solution of the gauged supergravity. Instead we will search for other vacuum solutions, like,
e.g., non-supersymmetric de Sitter space solutions. A natural class of half-supersymmetric vacuum
solutions that makes use of the scalar potential is the set of domain wall solutions. Recently,
domain wall solutions of supergravity theories have attracted attention in view of their relevance
for a supersymmetric Randall-Sundrum scenario [1, 2], the domain wall/QFT correspondence [3, 4]
and applications to cosmology [5, 6]. In all these applications the properties of the domain walls
play a crucial role and these properties are determined by the details of the scalar potential.

Motivated by this we studied general domain wall solutions in D=9 dimensions [7]. We took D=9
because on the one hand this case shares some of the complexities of the lower-dimensional cases,
on the other hand the scalar potential for this case is simple enough to study the corresponding
domain wall solutions in full detail. The supergravity theory we considered in [7] was obtained
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by a generalized Scherk-Schwarz (SS) reduction of D=10 IIB supergravity. This is not the most
general possibility in D=9. In this talk we will present a systematic search for massive deformations
of the unique D=9, N=2 supergravity theory. All deformations we find correspond to gauged
supergravities. The hope is that the D=9 case will teach us something about the more complicated
situation in D < 9 dimensions. The results presented in this talk are taken from [8].

2 Massive deformations of D=9, N=2 Supergravity

The field content of the unique D = 9, N = 2 massless supergravity theory is given by (i = 1, 2)

eµ
a, φ, ϕ, χ,Aµ, A

(i)
µ , B

(i)
µν , Cµνρ, ψµ, λ, λ̃ . (4)

The massless 9–dimensional theory has four global scaling symmetries, with parameters α, β, γ and
δ, respectively. The scaling weights of all these symmetries are given in Table 1.

Table 1. The scaling weights of the 9 dimensional supergravity fields.

eµ
a eφ eϕ χ Aµ A

(1)
µ A

(2)
µ B

(1)
µν B

(2)
µν Cµνρ ψµ λ λ̃

α 9
7 0 6√

7
0 3 0 0 3 3 3 9

14 − 9
14 − 9

14

β 0 3
4

√
7

4 -3
4

1
2 −3

4 0 −1
4

1
2 −1

4 0 0 0

γ 0 −2 0 2 0 1 −1 1 −1 0 0 0 0

δ 8
7 0 − 4√

7
0 0 2 2 2 2 4 4

7 −4
7 −4

7

It turns out that only three out of the four scaling symmetries given in Table 1 are linearly
independent. There is a relation

4

9
α−

8

3
β = γ +

1

2
δ . (5)

The massless N=2, D=9 theory also has an SL(2,R) symmetry:

τ →
aτ + b

cτ + d
, ~A→ Ω ~A , ~B → Ω ~B , with Ω =

(
a b

c d

)

∈ SL(2,R) ,

ψµ →

(
c τ∗ + d

c τ + d

)1/4

ψµ , λ→

(
c τ∗ + d

c τ + d

)3/4

λ ,

λ̃→

(
c τ∗ + d

c τ + d

)−1/4

λ̃ , ε→

(
c τ∗ + d

c τ + d

)1/4

ε . (6)

The fields ϕ and C are invariant.

We now turn to massive deformations of the 9D theory. To obtain these deformations we will
apply a SS reduction which can be best illustrated by an example. Consider a single scalar field
coupled to gravity:

L̂ = −
1

2

√
−ĝ
(
∂φ̂
)2
, (7)
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which is invariant under the R–symmetry φ̂ → φ̂ + c. In the SS procedure one gives the field a
dependence on the compactification coordinate x which is governed by a global symmetry, in this
case the R–symmetry:

φ̂(x, z) = φ(x) +mφx . (8)

Using the standard reduction rules1 the Lagrangian reduces to

L = −
1

2

√
−g
((
Dφ
)2

+m2
φ

)
, (9)

where Dµφ = ∂µφ − mφAµ with Aµ



Fig. 1. Overview of all reductions discussed in this talk. These cases can all be interpreted as gauged su-
pergravities, with gauged symmetry and corresponding gauge field as given in the Figure. Mass
parameters in the same box, such as m11,mIIA or m1,m2,m3, form a multiplet under SL(2,R).

Note that the different massive deformations can be related. Symmetries of the massless theory
become field redefinitions in the massive theory that only act on the massive deformations. This
means that the mass parameters transform under such transformations: they have a scaling weight
under the different scaling symmetries and fall in multiplets of SL(2,R). In Table 2 the multiplet
structure of the massive deformations under SL(2,R) is given. The mass parameter m̃4 is defined
as the S-dual partner of m4 and can not be obtained by a SS reduction of IIA supergravity.

Table 2. This tables indicates the different multiplets that the D=9 mass parameters form under SL(2,R).

Mass parameters SL(2,R)

(m1,m2,m3) triplet
(m4, m̃4) doublet
(m11,mIIA) doublet
mIIB singlet

All these deformations correspond to a gauging of a 9D global symmetry. In particular, it
is always the symmetry that is employed in the SS reduction Ansatz that becomes gauged upon
reduction with the gauge field being the Kaluza-Klein vector. In all but one case this is the complete
story and one finds an Abelian gauged supergravity. It turns out that there is one exception, i.e. the
case with m4 6= 0, where we find a non-Abelian gauge symmetry. The (non-semi-simple) gauge group
is CR1, the group of scalings and translations of the real line. Further details of the different massive
deformations can be found in [8].
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3 Combining Massive Deformations

We next try to combine the different massive deformations we found above. Requiring that the
fermionic field equations transform under supersymmetry to a complete set of bosonic field equations
restricts us to five cases, each containing two nonzero mass parameters:

• Case 1 with {mIIA,m4}: this combination can also be obtained by Scherk-Schwarz reduction
of IIA employing a linear combination of the symmetries α̂ and β̂, guaranteeing its consistency.
It is also a gauging of both this symmetry and (for m4 6= 0) the parabolic subgroup of SL(2,R)
in 9D, giving the non-Abelian gauge group CR1.

• Case 2,3,4 with {~m,mIIB}: as in the case with mIIB = 0 and only ~m this combination
contains three different, inequivalent cases depending on ~m2 (depending crucially on the fact
that mIIB is a singlet under SL(2,R)):

– Case 2 with {~m,mIIB} and ~m2 = 0.

– Case 3 with {~m,mIIB} and ~m2 > 0.

– Case 4 with {~m,mIIB} and ~m2 < 0.

All these combinations can also be obtained by Scherk-Schwarz reduction of IIB employing a
linear combination of the symmetries δ̂ and (one of the subgroups of) SL(2,R), guaranteeing
its consistency. All cases (assuming that mIIB 6= 0) correspond to the gauging of an Abelian
non-compact symmetry in 9D. Only in the special case ~m2 < 0,mIIB = 0 corresponds to a
SO(2)–gauging.

• Case 5 with {m4 = −12
5 mIIA,m2 = m3}: this case can be understood as the generalized

dimensional reduction of Romans’ massive IIA theory, employing the R+ symmetry that is
not broken by the mR deformations: β̂ − 5

12 α̂. It gauges both this linear combination of R+’s
and the parabolic subgroup of SL(2,R) in 9D, giving a non-Abelian gauge group provided
m4 6= 0.

All five cases are gauged theories and have a higher–dimensional origin. Both case 1 and case 5
have a non-Abelian gauge group provided m4 6= 0.

4 Solutions

We have constructed a variety of gauged supergravities with 32 supersymmetries. They all have in
common that there is a scalar potential. Our next goal is to make a systematic search for solutions
that are based on this scalar potential. In the next Subsections we will search for two types of
solutions: (i) 1/2 BPS domain wall (DW) solutions and (ii) maximally symmetric solutions with
constant scalars, i.e. de Sitter (dS), Minkowski (Mink) or anti–de Sitter (AdS) solutions.

4.1 1/2 BPS Domain Wall Solutions

In [7] we already made a systematic search for half-supersymmetric Domain Wall (DW) solutions
of the gauged supergravities corresponding to the cases 2, 3 and 4 (with mIIB = 0). Due to a
one-to-one relationship with 7-branes in D=10 dimensions [10] we could even make a systematic
investigation of the quantization of the mass parameters by using the results of [15, 16].

We now want to investigate whether the five massively deformed supergravities we found in the
previous Section allow new half-supersymmetric DW solutions. Since we are looking for 1/2 BPS
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solutions it is convenient to solve the Killing spinor equations, which are obtained by setting the
supersymmetry variation of the gravitino and dilatinos to zero. The projector3 for a DW is given
by 1

2(1± γy), where y denotes the transverse direction. We find that, in order to make a projection
operator in the Killing spinor equations, we are forced to set all mass parameters to zero except
for ~m, which corresponds to cases 2, 3 and 4 of Section 3 with mIIB = 0. This is a consistent
combination of masses and we obtain three classes of domain wall solution which were discussed in
detail in [7].

To summarize, we find that there are no new codimension-one 1/2 BPS solutions to the D=9
supergravity theories we obtained in the previous Sections, as compared to the three classes of
domain wall solutions given in [7].

4.2 Maximally Symmetric Solutions with Constant Scalars

The second category of vacuum solutions we consider are the solutions with all three scalars constant.
This is a consistent truncation in two cases which both have two mass parameters. In this truncation
one is left with the metric only satisfying the Einstein equation with a cosmological term

Rµν −
1

2
gµνR = −Λgµν , (14)

with Λ quadratic in the two mass parameters. Depending on the sign of this term one thus has
anti-de Sitter, Minkowski or de Sitter geometry.

We find that solutions with constant scalars are possible in the following massive supergravities:

• D=10 with {m11} has Λ = +36m11
2e−3φ̂/2, which gives rise to de Sitter10 [17], breaking

all supersymmetry. The D=11 origin of this solution is Mink11 written in a basis where the
x–dependence is of the required form [17]:

Mink11 : ds2 = e2m11x
(
−dt2 + e2m11tdx2

9 + dx2
)
. (15)

• D=9, Case 1 with {mIIA = −2
3m4} has Λ = +63

4 m4
2eφ−3ϕ/

√
7, which gives rise to De

Sitter9, breaking all supersymmetry. This case follows from the reduction of Mink10 by using
a combination of IIA scale symmetries that leave the dilaton invariant so that. This particular
scale symmetry allows a SS reduction of a configuration with a zero dilaton sothat, after
reduction, one is left with a non-trivial metric field only.

• D=9, Case 4 with {mIIB,m3} has Λ = +28mIIB
2e4ϕ/

√
7, which gives rise to de Sitter9 for

non-vanishing mIIB. This case follows from the reduction of Mink10 by using a combination
of IIB scale symmetries that leave the dilaton invariant. Note that for vanishing mIIB this
reduces to Mink9, despite the presence of m3 [12]. For either mIIB or m3 non-zero this solution
breaks all supersymmetry.

5 Conclusions

We have constructed five different D=9 massive deformations with 32 supersymmetries, each con-
taining two mass parameters. All these five theories have a higher–dimensional origin via SS reduc-
tion from D=10 dimensions. Furthermore, the massive deformations gauge a global symmetry of the

3From a general analysis of the possible projectors in 9 dimensions, we find that there is a second projector given
by 1

2
(1± iγt). This projector would give a Euclidean DW, i.e. a DW having time as a transverse direction. Note that

such a Euclidean DW can never be 1/2 BPS since if there existed a Killing spinor it would square to a Killing vector
in the transverse direction, i.e. time, which is not an isometry of the euclidean DW.
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massless theory. The gauge group we have obtained are the Abelian groups SO(2), SO(1, 1)+,R,R+

and the unique two–dimensional non-Abelian Lie group CR1 of scalings and translations on the real
line.

We have analyzed the possibility of combining massive deformations to obtain more general
massive supergravities that are not gauged or do not have a higher–dimensional origin. Our analysis
shows that the only possible combinations are the five two–parameter deformations, which are all
gauged and can be uplifted. We have not made a systematic search for massive D=9 supergravities
that are not the combination of gaugings and we cannot exclude that there are more possibilities.
This requires a separate calculation.

Finally, not all gauged supergravities we constructed are necessarily the leading terms in a low-
energy approximation to (compactified) superstring theory. In particular, the relation to string
theory of those massive deformations that are based on a symmetry that is broken by α′ corrections
is less clear. In contrast, the massive deformations that are based on symmetries that are preserved
by the higher–order string corrections to supergravity can be considered as the low–energy limits
of compactified string theory. We have two such symmetries:

• The SL(2,R) (or rather its SL(2,Z) subgroup) symmetry of IIB. Thus the ~m = (m1,m2,m3) 6=
0 deformations correspond to the low–energy limits of three different sectors of compactified
IIB string theory (depending on ~m2 = 1

4(m1
2 + m2

2 −m3
2)). In [7] vacuum solutions were

constructed for all three sectors. Of these only the D7–brane has a well–understood role in
IIB string theory.

• The linear combination mIIA = 1
12m4 6= 0 of SO(1,1)–symmetries of IIA. Thus one can define

a massive deformation ms within Case I with {mIIA = 1
12ms,m4 = ms} which corresponds to

the low–energy limit of a sector of compactified IIA string theory. No vacuum solution has
been constructed for this sector. It would be very interesting to try to find a vacuum solution
and understand which role it plays in IIA string theory.

In fact, one can have a better understanding of the ms massive deformation of IIA from the
following point of view. The particular ms–deformation is based on a scale symmetry of IIA that
can be understood from its 11D origin as the general coordinate transformation x11 → λx11. This
explains why all α′ corrections transform covariantly under this specific scale symmetry: the higher–
order corrections in 11D are invariant under general coordinate transformations and upon reduction
they must transform covariantly under the reduced g.c.t.’s, among which is the scale symmetry that
leads to the ms–deformation.

The transformation x11 → λx11 can also be used for a Scherk–Schwarz reduction from 11D to
9D with a different procedure to give internal coordinate dependence to the fields. Let us call this
an SS2 reduction as opposed to the SS1 reduction, which is the method we have used throughout
the paper and which is based on global, internal symmetries of the higher–dimensional theory.
The SS2 procedure [18] instead uses a symmetry of the compactification manifold for the reduction
Ansatz4. The massive deformations resulting from a SS2 reduction can be expressed in terms of
the structure constants of the corresponding non–Abelian gauge group. Using the tranformation
x11 → λx11 in the SS2 reduction from 11D to 9D we obtain massive deformations which are equal
to the ms deformations upon relating the components of fab

c to ms. Indeed, this explains why the
ms deformations correspond to a gauging of the 2D non–Abelian Lie group CR1 rather than only a
scale symmetry.

The understanding of the ms deformation in terms of a SS2 reduction employing x11 → λx11

also explains why m̃4 (see Table 2) cannot be obtained from a SS1 reduction. Since S-duality

4It was already noted by Scherk and Schwarz that SS1 reduction with a symmetry that originates from a higher–
dimensional g.c.t. is equivalent to the corresponding SS2 reduction.
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interchanges x10 and x11, it is the g.c.t. x10 → λx10 that would give rise to a m11 = 1
12m̃4

deformation. However, this transformation is not an internal symmetry of 10D IIA supergravity
and thus cannot be exploited in a SS1 reduction. Since m11 does have a 10D origin, this implies
that m̃4 cannot be obtained from 10D IIA.

The D=9 gauged supergravities involving m11,mIIB or mIIA 6= 1
12m4 have the same status as the

D=10 gauged supergravity discussed above, i.e. these theories are based upon symmetries that are
broken by α′–corrections. Note that all the de Sitter space solutions we found in Section 4 involve
either m11, mIIB or mIIA 6= 1

12m4. It would be interesting to see whether these de Sitter spaces
could occur as the `s → 0 limit of an exact solution of string theory.
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