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1 Early motivation for large extra-dimensions

Attempts to construct a consistent theory for quantum gravity have lead only to one candidate:
string theory. The only vacua of string theory free of any pathologies are supersymmetric. Not
being observed in nature, supersymmetry should be broken. In contrast to ordinary supergravity,
where supersymmetry breaking can be introduced at an arbitrary scale, through for instance the
gravitino, gaugini and other soft masses, in string theory this is not possible (perturbatively). The
only way to break supersymmetry at a scale hierarchically smaller than the (heterotic) string scale
is by introducing a large compactification radius whose size is set by the breaking scale. This has to
be therefore of the order of a few TeV in order to protect the gauge hierarchy [1]. This is one of the
very few general predictions of perturbative (heterotic) string theory that leads to the spectacular
prediction of the possible existence of extra dimensions accessible to future accelerators [2]. The
main theoretical problem is though that the heterotic string coupling becomes necessarily strong.

The strong coupling problem can be understood from the effective field theory point of view
from the fact that at energies higher than the compactification scale, the KK excitations of gauge
bosons and other Standard Model (SM) particles will start being produced and contribute to var-
ious physical amplitudes. Their multiplicity turns very rapidly the logarithmic evolution of gauge
couplings into a power dependence [3], invalidating the perturbative description, as expected in
a higher dimensional non-renormalizable gauge theory. A possible way to avoid this problem is
to impose conditions which prevent the power corrections to low-energy couplings [2]. For gauge
couplings, this implies the vanishing of the corresponding β-functions, which is the case for instance
when the KK modes are organized in multiplets of N = 4 supersymmetry, containing for every
massive spin-1 excitation, 2 Dirac fermions and 6 scalars. Examples of such models are provided
by orbifolds with no N = 2 sectors with respect to the large compact coordinate(s).

The simplest example of a one-dimensional orbifold is an interval of length πR, or equivalently
S1/Z2 with Z2 the coordinate inversion. The Hilbert space is composed of the untwisted sector,
obtained by the Z2-projection of the toroidal states, and of the twisted sector which is localized at
the two end-points of the interval, fixed under the Z2 transformations. This sector is chiral and can
thus naturally contain quarks and leptons, while gauge fields propagate in the (5d) bulk.

Similar conditions should be imposed to Yukawa’s and in principle to higher (non-renormalizable)
effective couplings in order to ensure a soft ultraviolet (UV) behavior above the compactification
scale. We now know that the problem of strong coupling can be addressed using string S-dualities
which invert the string coupling and relate a strongly coupled theory with a weakly coupled one.
For instance, the strongly coupled heterotic theory with one large dimension is described by a
weakly coupled type II theory with a tension at intermediate energies ∼ 1011 GeV [4]. Furthermore,
non-abelian gauge interactions emerge from tensionless strings whose effective theory describes
a higher-dimensional non-trivial infrared fixed point of the renormalization group. This theory
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incorporates all conditions to low-energy couplings that guarantee a smooth UV behavior above
the compactification scale. In particular, one recovers that KK modes of gauge bosons form N = 4
supermultiplets, while matter fields are localized in four dimensions. It is remarkable that the main
features of these models were captured already in the context of the heterotic string despite its
strong coupling [2].

In the case of two or more large dimensions, the strongly coupled heterotic string is described by
a weakly coupled type II or type I theory [4]. Moreover, the tension of the dual string becomes of the
order or even lower than the compactification scale. In fact, the string tension becomes an arbitrary
parameter [5]. It can be anywhere below the Planck scale and as low as a few TeV [6]. The main
advantage of having the string tension at the TeV, besides its obvious experimental interest, is that
it offers an automatic protection to the gauge hierarchy, alternative to low-energy supersymmetry
or technicolor [7, 8, 9].

2 Type I string theory and D-branes

Type I (in general type I′) is a ten-dimensional theory of closed and open unoriented strings. Closed
strings describe gravity, while gauge interactions are described by open strings whose ends are con-
fined to propagate on p-dimensional sub-spaces defined as Dp-branes. Assuming that the Standard
Model is localized on a p-brane with p ≥ 3, the internal space has 6 compactified dimensions, p− 3
longitudinal and 9− p transverse to the Dp-brane.

The gauge and gravitational interactions appear at different order in string loops perturbation
theory, leading to different powers of the string coupling gs in the corresponding effective action:
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where V‖ (V⊥) denotes the compactification volume longitudinal (transverse) to the Dp-brane. From
the second relation above, it follows that the requirements of weak coupling gYM ∼ O(1), gs < 1
imply that the size of the longitudinal space must be of order of the string length (V‖ ∼ l

p−3
s ),

while the transverse volume V⊥ remains unrestricted. Using the longitudinal volume in string units
v‖ >∼ 1, and assuming an isotropic transverse space of n = 9− p compact dimensions of radius R⊥,
we can rewrite these realtions as:

M2
p =

1

g4
YMv‖

M2+n
s Rn⊥ , gs = g2

YMv‖ . (3)

From the relations (3), it follows that the type I string scale can be chosen hierarchically smaller
than the Planck mass at the expense of introducing extra large transverse dimensions that are felt
only by the gravitationally interacting light states, while keeping the string coupling weak [8]. The
weakness of 4d gravity compared to gauge interactions (ratio MW /Mp) is then attributed to the
largeness of the transverse space R⊥/ls. An important property of these models is that gravity
becomes (4+n)-dimensional with a strength comparable to those of gauge interactions at the string
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scale. The first relation of eq.(3) can be understood as a consequence of the (4 + n)-dimensional
Gauss law for gravity, with

G
(4+n)
N = g4

YM l
2+n
s v‖ (4)

the Newton’s constant in 4 + n dimensions. Taking the type I string scale Ms to be at 1 TeV, one
finds a size for the transverse dimensions R⊥ varying from 108 km, .1 mm (10−3 eV), down to .1
fermi (10 MeV) for n = 1, 2, or 6 large dimensions, respectively. This shows that while d⊥ = 1 is
excluded, d⊥ ≥ 2 are allowed by present experimental bounds on gravitational forces [10].

3 Ultraviolet - Infrared correspondence

In addition to the open strings decscribing the gauge degrees of freedom, consistency of string
theory requires the presence of closed strings associated with gravitons and different kind of moduli
fields ma. There are two types of extended objects: D-branes and orientifolds. The former are
hypersurfaces on which open strings end while the latter are hypersurfaces located at fixed points
when acting simultaneousely with a Z2 parity on the transverse space and world-sheet coordinates.

Closed strings can be emitted by D-branes and orientifolds, the lowest order diagrams being
discribed by a cylinderic topology. In this way D-branes and orientifolds appear as to lowest order
classical point-like sources in the transverse space. For weak type-I string coupling this can be
described by a lagrangian of the form

∫
dnx⊥

[ 1

g2
s

(∂x⊥ma)
2 +

1
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∑

s

fs(ma)δ(x⊥ − x⊥s)
]
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where x⊥s is the location of the source s (D-branes and orientifolds) while fs(ma) encodes the
coupling of this source to the moduli ma. As a result while ma have constant values in the four-
dimensional space, their expectation values will generically vary as a function of the transverse
coordinates x⊥ of the n directions with size ∼ R⊥ large compared to the string length ls.

In a compact space where flux lines can not escape to infinity, the Gauss-law implies that the total
charge, thus global tadpoles, should vanish, while local tadpoles may not. In that case, obtained
for generic positions of the D-branes, the tadpole contribution leads to the following behavior in
the large radius limit for the moduli ma [9]:

ma(x⊥s) ∼






O(R⊥Ms) for d⊥ = 1
O(lnR⊥Ms) for d⊥ = 2
O(1) for d⊥ > 2

, (6)

which is dictated by the large-distance behavior of the two-point Green function in the d⊥-dimensional
transverse space. There are some important implications of these results:

• The tree-level exchange diagram of a closed string can also be seen as one-loop exchange of
open strings. While from the former point of view, a long cylinder represents an infrared
limit where one computes the effect of exchanging light closed strings at long distances, in
the second point of view the same diagram is conformally mapped to an annulus describing
the one-loop running in the ultraviolet limit of very heavy open strings streching between the
two boundaries of the cylinder. Thus, from the brane gauge theory point of view, there are
ultraviolet effects that are not cut-off by the string scale Ms but instead by the winding mode
scale R⊥M

2
s .

• In the case of one large dimension d⊥ = 1, the corrections are linear in R⊥. Such correction
appears for instance for the dilaton field which sits in front of gauge kinetic terms, that
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drive the theory rapidly to a strong coupling singularity and, thus, forbid the size of the
transverse space to become much larger than the string length. It is possible to avoid such
large corrections if the tadpoles cancel locally. This happens when D-branes are equally
distributed at the two fixed points of the orientifold.

• The case d⊥ = 2 is particularly attractive because it allows the effective couplings of the brane
theory to depend logarithmically on the size of the transverse space, or equivalently on Mp,
exactly as in the case of softly broken supersymmetry at Ms. Both higher derivative and
higher string loop corrections to the bulk supergravity lagrangian are expected to be small for
slowly (logarithmically) varying moduli. The classical equations of motion of the effective 2d
supergravity in the transverse space are analogous to the renormalization group equations used
to resum large corrections to the effective field theory parameters with appropriate boundary
conditions.

4 Supersymmetry breaking and scales hierarchy

When decreasing the string scale, the question of hierarchy of scales i.e. of why the Planck mass
is much bigger than the weak scale, is translated into the question of why there are transverse
dimensions much larger than the string scale. For a string scale in the TeV range, from eq.(3), the
required hierarchy R⊥/ls varies from 1015 to 105, when the number of extra dimensions in the bulk
varies from n = 2 to n = 6, respectively.

We have seen in last section that although the string scale is very low, there might be large
quantum corrections that arise, dependending on the size of the large dimensions transverse to the
brane. This is as if the UV cutoff of the effective field theory on the brane is not the string scale
but the winding scale R⊥M

2
s , dual to the large transverse dimensions and which can be much larger

than the string scale. In particular such correction could spoil the nullification of gauge hierarchy
that remains the main theoretical motivation of TeV scale strings. Another important issue is to
understand the dynamical question on the origin of the hierarchy.

TeV scale strings offer a solution to the technical (at least) aspect of gauge hierarchy without
the need of supersymmetry, provided there is no effective propagation of bulk fields in a single
transverse dimension, or else closed string tadpoles should cancel locally. The case of d⊥ = 2
leads to a logarithmic dependence of the effective potential on R⊥/ls which allows the possible
radiative generation of the hierarechy between R⊥ and ls as for no-scale models. Moreover, it is
interesting to notice that the ultraviolet behavior of the theory is very similar with the one with
soft supersymmetry breaking at Ms ∼ TeV . It is then natural to ask the question whether there is
any motivation leftover for supersymmetry or not. This bring us to the problems of the stability of
the new hierarchy and of the cosmological constant [8].

In fact, in a non-supersymmetric string theory, the bulk energy density behaves generically as
Λbulk ∼M4+n

s , where n is the number of transverse dimensions much larger than the string length.
In the type I context, this induces a cosmological constant on our world-brane which is enhanced
by the volume of the transverse space V⊥ ∼ Rn⊥. When expressed in terms of the 4d parameters
using the mass-relation (3), it is translated to a quadratically dependent contribution on the Planck
mass:

Λbrane ∼M
4+n
s Rn⊥ ∼M

2
sM

2
p . (7)

This contribution is in fact the analogue of the quadratic divergent term StrM2 in softly broken
supersymmetric theories, with Ms playing the role of the supersymmetry breaking scale.

The brane energy density (7) is far above the (low) string scale Ms and in general destabilizes
the hierarchy that one tries to enforce. One way out is to resort to special models with broken
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terms of the two gauge couplings and leads naturally to the right value of sin2 θW for a string scale
of the order of a few TeV. The electroweak gauge symmetry is broken by the vacuum expectation
values of two Higgs doublets, which are both necessary in the present context to give masses to all
quarks and leptons.

Another issue of this class of models with TeV string scale is to understand proton stability.
In the model presented here, this is achieved by the conservation of the baryon number which
turns out to be a perturbatively exact global symmetry, remnant of an anomalous U(1) gauge
symmetry broken by the Green-Schwarz mechanism. Specifically, the anomaly is canceled by shifting
a corresponding axion field that gives mass to the U(1) gauge boson. Moreover, the two extra U(1)
gauge groups are anomalous and the associated gauge bosons become massive with masses of the
order of the string scale. Their couplings to the standard model fields up to dimension five are fixed
by charges and anomalies.

5.1 Hypercharge embedding and the weak angle

The gauge group closest to the Standard Model one can hope to derive from type I string theory
in the above context is U(3) × U(2) × U(1). The first factor arises from three coincident “color”
D-branes. An open string with one end on them is a triplet under SU(3) and carries the same U(1)
charge for all three components. Thus, the U(1) factor of U(3) has to be identified with gauged
baryon number. Similarly, U(2) arises from two coincident “weak” D-branes and the corresponding
abelian factor is identified with gauged weak-doublet number. A priori, one might expect that
U(3) × U(2) would be the minimal choice. However it turns out that one cannot give masses to
both up and down quarks in that case. Therefore, at least one additional U(1) factor corresponding
to an extra “U(1)” D-brane is necessary in order to accommodate the Standard Model. In principle
this U(1) brane can be chosen to be independent of the other two collections with its own gauge
coupling. To improve the predictability of the model, here we choose to put it on top of either the
color or the weak D-branes. In either case, the model has two independent gauge couplings g3 and
g2 corresponding, respectively, to the gauge groups U(3) and U(2). The U(1) gauge coupling g1 is
equal to either g3 or g2.

Let us denote by Q3, Q2 and Q1 the three U(1) charges of U(3) × U(2) × U(1), in a self
explanatory notation. Under SU(3)× SU(2)× U(1)3 × U(1)2 × U(1)1, the members of a family of
quarks and leptons have the following quantum numbers:

Q (3,2; 1, w, 0)1/6,

uc (3̄,1;−1, 0, x)−2/3,

dc (3̄,1;−1, 0, y)1/3, (9)

L (1,2; 0, 1, z)−1/2,

lc (1,1; 0, 0, 1)1.

Here, we normalize all U(N) generators according to TrT aT b = δab/2, and measure the correspond-
ing U(1)N charges with respect to the coupling gN/

√
2N , with gN the SU(N) coupling constant.

Thus, the fundamental representation of SU(N) has U(1)N charge unity. The values of the U(1)
charges x, y, z, w will be fixed below so that they lead to the right hypercharges, shown for com-
pleteness as subscripts.

The quark doublet Q corresponds necessarily to a massless excitation of an open string with
its two ends on the two different collections of branes. The Q2 charge w can be either +1 or −1
depending on whether Q transforms as a 2 or a 2̄ under U(2). The antiquark uc corresponds to
fluctuations of an open string with one end on the color branes and the other on the U(1) brane
for x = ±1, or on other branes in the bulk for x = 0. Ditto for dc. Similarly, the lepton doublet L
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arises from an open string with one end on the weak branes and the other on the U(1) brane for
z = ±1, or in the bulk for z = 0. Finally, lc corresponds necessarily to an open string with one end
on the U(1) brane and the other in the bulk.

The weak hypercharge Y is a linear combination of the three U(1)’s [17]:

Y = c1Q1 + c2Q2 + c3Q3 . (10)

c1 = 1 is fixed by the charges of lc in eq. (9), while for the remaining two coefficients and the
unknown charges x, y, z, w, we obtain four possibilities:

c2 = ∓
1

2
, c3 = −

1

3
; x = −1 , y = 0 , z = 0/− 1 , w = ∓1,

c2 = ∓
1

2
, c3 =

2

3
; x = 0 , y = 1 , z = 0/− 1 , w = ∓1. (11)

To compute the weak angle sin2 θW , we use eq. (10) to find:

sin2 θW ≡
g2
Y

g2
2 + g2

Y

=
1

1 + 4c2
2 + 2g2

2/g
2
1 + 6c23g

2
2/g

2
3

, (12)

with g1 = g2 or g1 = g3 at the string scale.
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Fig. 1. The experimental value of sin2 θW (thick curve),
and the theoretical predictions (12).

We now show that the above predic-
tion agrees with the experimental value for
sin2 θW for a string scale in the region of a
few TeV. For this comparison, we use the
evolution of gauge couplings from the weak
scale MZ as determined by the one-loop
beta-functions of the SM with three fam-
ilies of quarks and leptons and one Higgs
doublet. In order to compare the theoreti-
cal relations for g1 = g2 and g1 = g3 with
the experimental value of sin2 θW at Ms, we
plot in Fig. 1 the corresponding curves as
functions of Ms. The solid line is the ex-
perimental curve. The dashed line is the
plot of the function (12) for g1 = g2 with
c3 = −1/3 while the dotted-dashed line cor-

responds to g1 = g3 with c3 = 2/3. The other two possibilities are not shown because they lead to
a value of Ms which is too high to protect the hierarchy. Thus, the second case, where the U(1)
brane is on top of the color branes, is compatible with low energy data for Ms ∼ 6 − 8 TeV and
gs ' 0.9. This selects the last two possibilities of charge assignments in Eq. (11).

From the general solution (11) and the requirement that the Higgs doublet has hypercharge 1/2,
one finds the following possible assignments:

c2 = ∓
1

2
: H (1,2; 0,±1, 1)1/2 H ′ (1,2; 0,∓1, 0)1/2. (13)

It is straightforward to check that the allowed (trilinear) Yukawa terms are:

c2 = −
1

2
: H ′Quc , H†Llc , H†Qdc ; c2 =

1

2
: H ′Quc , H ′†Llc , H†Qdc. (14)
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Thus, two Higgs doublets are in each case necessary and sufficient to give masses to all quarks
and leptons. The presence of the second Higgs doublet changes very little the curves of Fig. 1 and
consequently our previous conclusions about Ms. Two important comments are in order:
(i) The spectrum we assumed in Eq. (9) does not contain right-handed neutrinos on the branes.
They could in principle arise from open strings in the bulk. Their interactions with the particles on
the branes would then be suppressed by the large volume of the transverse space. More specifically,
conservation of the three U(1) charges allow for the following Yukawa couplings involving the right-
handed neutrino νR:

c2 = −
1

2
: H ′ L νL ; c2 =

1

2
: H L νR. (15)

These couplings lead to Dirac type neutrino masses between νL from L and the zero mode of νR,
which is naturally suppressed by the volume of the bulk.
(ii) From Eq. (12) and Fig. 1, we find the ratio of the SU(2) and SU(3) gauge couplings at the
string scale to be α2/α3 ∼ 0.4. This ratio can be arranged by an appropriate choice of the relevant
moduli. For instance, one may choose the color and U(1) branes to be D3 branes while the weak
branes to be D7 branes. Then the ratio of couplings above can be explained by choosing the volume
of the four compact dimensions of the seven branes to be V4 = 2.5 in string units. This predicts
an interesting spectrum of KK states, different from the naive choices that have appeared hitherto:
the only SM particles that have KK descendants are the W bosons as well as the hypercharge gauge
boson. However since the hypercharge is a linear combination of the three U(1)’s the massive U(1)
gauge bosons do not couple to hypercharge but to doublet number.

5.2 The fate of U(1)’s and proton stability

The model under discussion has three U(1) gauge interactions corresponding to the generators Q1,
Q2, Q3. From the previous analysis, the hypercharge was shown to be either one of the two linear
combinations: Y = Q1 ∓ 1

2Q2 + 2
3Q3 . It is easy to see that the remaining two U(1) combinations

orthogonal to Y are anomalous. In particular there are mixed anomalies with the SU(2) and SU(3)
gauge groups of the Standard Model. These anomalies are canceled by two axions coming from
the closed string sector, via the standard Green-Schwarz mechanism [19]. The mixed anomalies
with the non-anomalous hypercharge are also canceled by dimension five Chern-Simmons type of
interactions [15]. The presence of such interactions has so far escaped attention in the context of
string theory.

An important property of the above Green-Schwarz anomaly cancellation mechanism is that the
two U(1) gauge bosons A and A′ acquire masses leaving behind the corresponding global symmetries.
This is in contrast to what would had happened in the case of an ordinary Higgs mechanism.
These global symmetries remain exact to all orders in type I string perturbation theory around
the orientifold vacuum. This follows from the topological nature of Chan-Paton charges in all
string amplitudes. On the other hand, one expects non-perturbative violation of global symmetries
and consequently exponentially small in the string coupling, as long as the vacuum stays at the
orientifold point. Once we move sufficiently far away from it, we expect the violation to become
of order unity. So, as long as we stay at the orientifold point, all three charges Q1, Q2, Q3 are
conserved and since Q3 is the baryon number, proton stability is guaranteed.

To break the electroweak symmetry, the Higgs doublets in Eq. (13) should acquire non-zero
VEV’s. Since the model is non-supersymmetric, this may be achieved radiatively [20]. From
Eq. (14), to generate masses for all quarks and leptons, it is necessary for both higgses to get non-
zero VEV’s. The baryon number conservation remains intact because both Higgses have vanishing
Q3. However, the linear combination which does not contain Q3, will be broken spontaneously, as
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follows from their quantum numbers in Eq. (13). This leads to an unwanted massless Goldstone
boson of the Peccei-Quinn type. The way out is to break this global symmetry explicitly, by moving
away from the orientifold point along the direction of the associated modulus so that baryon number
remains conserved. Instanton effects in that case will generate the appropriate symmetry breaking
couplings in the potential.

6 Gravity modification and sub-millimeter forces

Besides the spectacular experimental predictions in particle accelerators, string theories with large
volume compactifications and/or low string scale predict also possible modifications of gravitation
in the sub-millimeter range, which can be tested in “table-top” experiments that measure gravity
at short distances. There are three categories of such predictions:
(i) Deviations from the Newton’s law 1/r2 behavior to 1/r2+n, for n extra large transverse dimen-
sions, which can be observable for n = 2 dimensions of (sub)-millimeter size. This case is particularly
attractive on theoretical grounds because of the logarithmic sensitivity of Standard Model couplings
on the size of transverse space [9], which allows to determine the desired hierarchy [21], but also for
phenomenological reasons since the effects in particle colliders are maximally enhanced [22]. Notice
also the coincidence of this scale with the possible value of the cosmological constant in the universe
that recent observations seem to support.
(ii) New scalar forces in the sub-millimeter range, motivated by the problem of supersymmetry
breaking, and mediated by light scalar fields ϕ with masses [23, 24, 8, 12]:

mϕ '
m2
susy

MP
' 10−4 − 10−6 eV , (16)

for a supersymmetry breaking scale msusy ' 1−10 TeV. These correspond to Compton wavelengths
in the range of 1 mm to 10 µm. msusy can be either the KK scale 1/R if supersymmetry is broken by
compactification [24, 23], or the string scale if it is broken “maximally” on our world-brane [8, 12].
A model independent and universal attractive scalar force is mediated by the radius modulus (in
Planck units)

ϕ ≡ lnR , (17)

with R the radius of the longitudinal (‖) or transverse (⊥) dimension(s), respectively. In the former
case, the result (16) follows from the behavior of the vacuum energy density Λ ∼ 1/R4

‖ for large R‖
(up to logarithmic corrections). In the latter case, supersymmetry is broken primarily on the brane
only, and thus its transmission to the bulk is gravitationally suppressed, leading to masses (16).
Note that in the case of two-dimensional bulk, there may be an enhancement factor of the radion
mass by lnR⊥Ms ' 30 which decreases its wavelength by roughly an order of magnitude [21].

The coupling of the radius modulus (17) to matter relative to gravity can be easily computed
and is given by:

√
αϕ =

1

m

∂m

∂ϕ
; αϕ =






∂ ln ΛQCD

∂ lnR ' 1
3 for R‖

n
n+2 = 1/2− 3/4 for R⊥

, (18)

where m denotes a generic physical mass. In the upper case of a longitudinal radius, the coupling
arises dominantly through the radius dependence of the QCD gauge coupling [24], while in the
lower case of transverse radius, it can be deduced from the rescaling of the metric which changes
the string to the Einstein frame and depends on the dimensionality of the bulk n (varying from
α = 1/2 for n = 2 to α = 3/4 for n = 6) [21]. Moreover, in the case of n = 2, there may be again
model dependent logarithmic corrections of the order of (gs/4π) lnRMs ' O(1). Such a force can
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be tested in microgravity experiments and should be contrasted with the change of Newton’s law
due the presence of extra dimensions that is observable only for n = 2 [10]. In principle there can be
other light moduli which couple with even larger strengths. For example the dilaton, whose VEV
determines the (logarithm of the) string coupling constant, if it does not acquire large mass from
some dynamical supersymmetric mechanism, can lead to a force of strength 2000 times bigger than
gravity [25].
(iii) Non universal repulsive forces much stronger than gravity, mediated by possible abelian gauge
fields in the bulk [26, 27]. Such gauge fields may acquire tiny masses of the order of M2

s /MP ,
as in (16), due to brane localized anomalies [27]. Although the corresponding gauge coupling
is infinitesimally small, gA ∼ Ms/MP ' 10−16, it is still bigger that the gravitational coupling
∼ E/MP for typical energies E of the order of the proton mass, and the strength of the new force
would be 106 − 108 stronger than gravity. This an interesting region which will be soon explored
in micro-gravity experiments (see Fig. 2). Note that in this case the supernova constraints impose
that there should be at least four large extra dimensions in the bulk [26].

Fig. 2. Limits on non-Newtonian forces at short dis-
tances, compared to new forces mediated by the
graviton in the case of two large extra dimensions,
and by the radion.

In Fig. 2 we depict the actual informa-
tion from previous, present and upcoming
experiments [21]. The vertical axis is the
strength, α, of the force relative to gravity;
the horizontal axis is the Compton wave-
length, λ, of the exchanged particle. The
solid lines indicate the present limits from
the experiments indicated. The excluded
regions lie above these solid lines. Mea-
suring gravitational strength forces at such
short distances is quite challenging. The
most important background is the Van der
Walls force which becomes equal to the
gravitational force between two atoms when
they are about 100 microns apart. Since the
Van der Walls force falls off as the 7th power
of the distance, it rapidly becomes negligi-
ble compared to gravity at distances exceed-
ing 100 µm. The dashed thick lines give the
expected sensitivity of the present and up-
coming experiments, which will improve the
actual limits by roughly two orders of mag-
nitude, while the horizontal dashed lines
correspond to the theoretical predictions for the graviton in the case of two large extra dimen-
sions and for the radion in the case of transverse radius.
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