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An analysis of a spherically symmetric braneworld configuration is performed when the intrinsic curvature
scalar is included in the bulk action. In the case when the electric part of the Weyl tensor is zero, all the
exterior solutions are found; one of them is of the Schwarzschild-(A)dS4 form, which is matched to a modified
Oppenheimer-Volkoff interior solution. In the case when the electric part of the Weyl tensor is non zero, the
exterior Schwarzschild-(A)dS4 black hole solution is modified receiving corrections from the non-local bulk
effects. A non-universal gravitational constant arises, depending on the density of the considered object
and the Newton’s law is modified for small and large distances; however, the conventional limits are easily
obtained.
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1 Introduction

Branes are solitonic solutions of ten-dimensional string theories. In the most simplified picture of
the braneworld scenario, our physical world is realized as a four-dimensional hypersurface embedded
in a five-dimensional space called bulk. All matter and gauge interactions live on the brane, while
the gravitational interactions are effective in the whole five-dimensional space. This novel approach
of visualizing our world, offers a new understanding of the four fundamental forces. While in the
so-called symmetric picture all known interactions were tried to be unified under the same symmetry
group, the braneworld scenario treats the weak, electromagnetic and strong interactions differently
than gravitational interactions. This allowed to define a gravitational scale of the whole space, which
if the extra dimensions are large, can be as low as the TeV scale [1, 2], while the four-dimensional
gravitational scale of our world is at the Planck scale. This happens because our four-dimensional
world is confined on the brane and can “see” only the four-dimensional localized gravitational field.

Braneworld solutions can give us information about the structure and nature of the extra dimen-
sions. Very recently, we have a plethora of observational data, both cosmological and astrophysical.
Consistency of cosmological and local braneworld solutions with these data can give information
about the parameters of the theory, like the energy scale, the size of the extra dimensions or the
strength of the gravitational force of the extra dimensions. For example, spherically symmetric local
braneworld solutions can give information about the crossover scale above which the extra dimen-
sions appear, how the Newton’s constant changes with matter density, or what are the corrections
of the gravitational potential at high energies.

Braneworld solutions can be obtained following two different approaches. In the first approach,
the dynamics and the geometry of the whole space is primarily considered, and then, the dynamics
on the brane is extracted using mainly consistency checks like the Israel matching conditions. The
second approach is to specify the dynamics and the geometry on the brane first, and then try to
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extent the solution to the bulk. A disadvantage of this method is that finding the bulk geometry
in which the brane consists its boundary may be a very difficult task. Another difficulty in this
approach is, as we will discuss later, that it is not always possible to obtain a closed set of equations
on the brane, so that only with data on the brane to be able to predict the behavior of the fields on
the brane. However, this method is basically the only way we have for finding non-trivial braneworld
solutions (i.e. solutions not arising from factorizable bulk geometries).

The effective brane equations have been obtained [3] when the effective low-energy theory in the
bulk is higher-dimensional gravity. However, a more fundamental description of the physics that
produces the brane could include [4] higher order terms in a derivative expansion of the effective
action, such as a term for the scalar curvature of the brane, and higher powers of curvature tensors
on the brane. If the dynamics is governed not only by the ordinary five-dimensional Einstein-Hilbert
action, but also by the four-dimensional Ricci scalar term induced on the brane, new phenomena
appear. In [5], it was observed that the localized matter fields on the brane (which couple to bulk
gravitons) can generate via quantum loops a localized four-dimensional worldvolume kinetic term
for gravitons (see also [6, 7, 8, 9]). That is to say, four-dimensional gravity is induced from the bulk
gravity to the brane worldvolume by the matter fields confined to the brane. It was also shown
that an observer on the brane will see correct Newtonian gravity at distances shorter than a certain
crossover scale, despite the fact that gravity propagates in extra space which was assumed there to
be flat with infinite extent; at larger distances, the force becomes higher-dimensional.

A realization of the induced gravity scenario in string theory was presented in [10]. Furthermore,
new closed string couplings on Dp-branes for the bosonic string were found in [11]. These couplings
are quadratic in derivatives and therefore take the form of induced kinetic terms on the brane. For
the graviton in particular these are the induced Einstein-Hilbert term as well as terms quadratic
in the second fundamental tensor. Considering the intrinsic curvature scalar in the bulk action,
the effective brane equations have been obtained in [14]. Results concerning cosmology have been
discussed in [15, 16, 17, 18, 19, 20, 21].

We will discuss static spherically symmetric solutions of braneworlds with induced gravity [12],
and we will present an exterior Schwarzschild-(A)dS4 solution which is matched to a modified
interior Oppenheimer-Volkoff solution. In this solution the gravitational constant get corrected for
very small matter densities. The conventional solar system bounds of General Relativity set the
crossover scale below the TeV scale. The above results were obtained by setting the electric part
of the Weyl tensor, Eµν to zero.

Then, we will generalize our study by including the non-local bulk effects [13], as they are ex-
pressed by a non-vanishing electric part of the Weyl tensor on the brane. By choosing gtt = −g−1

rr ,
the system of equations on the brane becomes closed and all the possible static black hole solutions
are found for these metrics. These solutions have generic new terms which give extra attractive
force compared to the Newtonian -(A)dS4 force, and represent the strong-gravity corrections to the
Schwarzschild-(A)dS4 spacetime.

2 Four-Dimensional Static Spherically Symmetric Solutions

We consider a 3-dimensional brane Σ embedded in a 5-dimensional spacetime. Capital Latin letters
A,B, ... = 0, 1, ..., 4 will denote full spacetime, lower Greek µ, ν, ... = 0, 1, ..., 3 run over brane world-
volume. For convenience, we can quite generally, choose a coordinate y such that the hypersurface
y = 0 coincides with the brane. The total action for the system is taken to be:
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S =
1

2κ2
5

∫ √
−(5)g ((5)R− 2Λ5)d5x+

1

2κ2
4

∫ √
−(4)g ((4)R− 2Λ4)d4x

+

∫ √
−(5)g Lmat5 d5x+

∫ √
−(4)g Lmat4 d4x. (1)

For clarity, we have separated the cosmological constants Λ5, Λ4 from the rest matter contents
Lmat5 , Lmat4 of the bulk and the brane respectively. Λ4/κ

2
4 can be interpreted as the brane tension

of the standard Dirac-Nambu-Goto action and can include quantum contributions to the four-
dimensional cosmological constant. We basically concern on the case with no fields in the bulk,
i.e. (5)TAB = 0. From the dimensionful constants κ2

i , the Planck masses Mi are defined as κ2
i =

8πG(i) = M i−2
i Then, a distance scale rc is defined as rc = M2

4 /M
3
5 .

Varying (1) with respect to the bulk metric gAB , and reducing the resulting equations to four
dimensions [14], we get four-dimensional Einstein gravity, coupled to a well-defined modified matter
content. More explicitly, one gets

(4)Gµν = κ2
4

(4)Tµν −
(

Λ4 +
3

2
α2
)
δµν + α

(
Lµν +

L

2
δµν

)
, (2)

where α ≡ 2/rc, while the quantities Lµν are related to the matter content of the theory through the
equation

L
µ
λL

λ
ν −

L2

4
δµν = T µν −

1

4

(
3α2 + 2T λλ

)
δµν , (3)

and L ≡ Lµµ. The quantities T µν are given by the expression

T µν =
(

Λ4 −
1

2
Λ5

)
δµν − κ

2
4

(4)Tµν +

+
2

3
κ2

5

(
(5)T µ

ν +
(

(5)T y
y −

(5)T

4

)
δµν

)
− E

µ
ν . (4)

Bars over (5)T
µ
ν and the electric part E

µ

ν of the Weyl tensor mean that the quantities are evaluated
at y = 0. E

µ
ν carries the influence of non-local gravitational degrees of freedom in the bulk onto

the brane [3] and makes the brane equations (2) not to be, in general, closed. This means that
there are bulk degrees of freedom which cannot be predicted from data available on the brane. One
needs to solve the field equations in the bulk in order to determine E

µ

ν on the brane [28]. Due
to the contracted Bianchi identities, the following differential equations among L

µ
ν arise from (2)

L
µ
ν;µ +L; ν/2 = 0. We are looking for solutions of (2) for spherically symmetric braneworld metrics

ds2
(4) = −B(r)dt2 +A(r)dr2 + r2(dθ2 + sin2 θdφ2). (5)

The matter content of the 3-universe is considered to be a localized spherically symmetric perfect
fluid. We first consider the case E

µ
ν = 0 as the boundary condition of the propagation equations

in the bulk space. All the solutions outside a static localized matter distribution were found. One
of these is the Schwarzschild-(A)dS4 metric which is matched to a modified Oppenheimer-Volkoff
interior. The exterior solution was found to be

B>(r) =
1

A>(r)
= 1−

γ

r
− βr2 , r ≥ R , (6)

where γ is an integration constant and

β =
1

3
Λ4 +

1

2
α2 −

α

2
√

3

√
4Λ4 − 2Λ5 + 3α2 . (7)
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Considering a uniform distribution ρ(r) = ρo = 3M
4πR3 for the object, the interior solution was found,

and its matching to the above exterior specified the integration constant γ. The result is

1

A<(r)
= 1− (β +

γ

R3
) r2 , r ≤ R , (8)

B<(r) =
1− γ

R − βR
2

(
1 + 4πR3

3M p(r)
)2 , r ≤ R , (9)

p(r) = −ρo

√
1− (β + γ

R3 )r2 −
√

1− (β + γ
R3 )R2

√
1− (β + γ

R3 )r2 − ω
√

1− (β + γ
R3 )R2

, (10)

where

γ =
κ2

4M

4π
+
αR3

2
√

3

√
4Λ4 − 2Λ5 + 3α2 −

αR3

2
√

3

√

4Λ4 − 2Λ5 + 3α2 +
3κ2

4M

πR3
, (11)

ω−1 = 1−
2

κ2
4ρo

(
β +

γ

R3

)(
1−

√
3α

√
4Λ4 − 2Λ5 + 3α2 + 4κ2

4ρo

)−1
. (12)

The parameters γ and β of the Schwarzschild-(A)dS4 exterior solution (6) can be constrained by
solar system experiments. The bounds obtained fix the crossover scale below the TeV range. The
γ parameter in the 1/r term modifies the Newton’s gravitational constant which, as it is seen from
(11), for small matter densities deviates significantly from its conventional value, as it is shown in
Fig. 1.

Fig. 1. ρ0 dependence of Newton’s constant in
various models:(1) The Newton’s con-
stant variation in our model; If 4Λ4 −
2Λ5 � 3α2 then (1a), otherwise (1b).
(2) The behaviour of Newton’s constant
in another class of our solutions. (3) The
Newton’s constant variation in RS model.

So far we considered local corrections to the Einstein equations on the brane. The presence
of the electric part E

µ
ν of the Weyl tensor in (4) indicates the 5D gravitational stresses, which are

known as massive KK modes of the graviton. For brane observers, these stresses are non-local.
Local density inhomogeneities on the brane generate Weyl curvature in the bulk that “back-reacts”
non-locally on the brane [28, 22, 23, 24, 25, 26, 27]. Therefore, in general, this term cannot be
ignored.

With respect to the privileged direction uµ, the symmetric and traceless tensor Eµν is uniquely
and irreducibly decomposed as follows

Eµν = U
(
uµuν +

1

3
hµν
)

+ Pµν + 2Q(µuν) , (13)
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where hµν = gµν + uµuν is the projection operator normal to uµ, while Pµνuν = Qµuµ = 0. U is
the non-local energy density, Pµν the non-local anisotropic stress, and Qµ the non-local energy flux
on the brane. Static spherical symmetry implies [28] that

Qµ = 0 , Pµν = P(r)
(
rµrν −

1

3
hµν
)
, (14)

where rµ is the unit radial vector. Thus, the non-vanishing components of the electric part of the
Weyl tensor are

E
0
0 = −U , E

r
r =

1

3
(U + 2P) , E

θ
θ = E

φ
φ =

1

3
(U − P) . (15)

One class of solutions of (2) with non-zero Eµν is

B =
1

A
= 1−

γ

r
− βr2

+ sg(ζ)
δ

r

[128

105
1F1

(15

8
,
23

8
; sg(ζ)z

)
z

+
9

8

(1

z
− sg(ζ)

8

7

)
e sg(ζ) z

]
z

7
8 , (16)

where γ is another integration constant (typically interpreted as 2GNM with M being the mass of
the point particle, GN the Newton’s constant),

β =
1

3
Λ4 +

1

2
α2 , ζ =

α2

9
(4Λ4 − 2Λ5 + 3α2) , (17)

and δ = 4
9( 9

8|P|)
1
8 |P|αc3 > 0. While

r =
( δ
√
|ζ|

) 1
3
z

1
8 e sg(ζ) z/3 . (18)

The electric components of the Weyl tensor are given by the equation, P = −2U = 9ζ/(2α2).
Comparing the solution (16) with the solution (6) having E

µ
ν = 0, we note that there is a new

term, besides the conventional Newtonian and (A)dS4 terms, which carries the information of the
gravitational field in the bulk. For ζ > 0, the asymptotic behavior r → ∞ of this new term in the
solution (16) is seen to be AdS4 –like, i.e.

√
ζ r2. Thus, asymptotically, the effective cosmological

constant is β −
√
ζ. For ζ < 0, the asymptotic behavior r → 0 of the new term in the solution

(16) is Newtonian, i.e. −2Γ(7/8)δ/r. Thus, the effective Newton’s constant in this regime appears
larger.

We know that for non-relativistic particles the effective potential is 2Φ = B − 1. As it can be
seen, the new force corresponding to the above non-local term is always attractive. For ζ > 0, its
magnitude is monotonically increasing with distance, while for ζ < 0, this happens in decreasing
distances (after a characteristic scale). In order for the new term not to disturb the well-measured
Newtonian law at distances from the cm to the solar-distance scale, one has in both cases to adjust
the quantity δ/γ as small as desired. For ζ > 0 and for larger distances, the sum of the Newtonian
and the new force decreases (in magnitude) slower than the Newtonian force, while for even larger
distances, this sum grows to infinity (Figure 2a). For ζ < 0, deviations between the total and the
Newtonian force appear only at small distances (Figure 2b). The (A)dS4 term βr2 is generally
considered to be of cosmological origin and is not considered here to be of importance at the local
level.

We notice also that this solution may have some interesting physical implications. For ζ > 0,
because the total gravitational force grows slower than the conventional Newtonian law, this force

28



may serve as a possible qualitative explanation for the yet unresolved problem of galactic rotation
curves. However, numerical fittings with real data remain to be done. On the other hand, the
solution with ζ < 0 could be considered if submillimeter deviations from the Newtonian law are
discovered.

r
force

r
force

(a): ζ > 0, β = 0 (b): ζ < 0, β = 0

Fig. 2. Dotted lines represent the Newtonian force. Continuous lines represent the total force, i.e. the sum
of the Newtonian and the new force.

These is a second class of solutions of (2) which are given by

B =
1

A
= 1−

γ

r
− βr2 ⊕

δ

r

∫
|v −

√
3|−

3(3−
√

3)
8 (v +

√
3)−

3(3+
√

3)
8

v

|v − 3|7/4
dv , (19)

where γ is another integration constant (typically interpreted as 2GNM with M being the mass of
the point particle, GN the Newton’s constant) and

β =
1

3
Λ4 +

1

2
α2 . (20)

The symbol ⊕ means − for ε = +1, v > 3 or for ε = −1, 1 < v <
√

3 ; for ε = +1, 2 < v < 3
or for ε = −1,

√
3 < v < 2 it means +. The above integral cannot be computed in terms of

known functions. However, this can be done in the asymptotic regimes r → ∞ and r → 0. For
r → ∞ (ε = +1), the new term in the solution (19) becomes AdS4 –like, i.e. (

√
2ζ/3

√
3) r2 and

thus, asymptotically, the effective cosmological constant is β − (
√

2ζ/3
√

3). For r → 0 (ε = −1),

approximating the integral in (19) around v =
√

3, we find that the new term scales as r2(2−
√

3) ,

giving therefore extra attractive force 1/r2
√

3−3 . Numerical evaluation of the integral in (19) leads
for ε = +1 qualitatively to the same picture as that of Figure 2a, where by adjusting the quantity
δ/γ as small as desired, deviations from Newtonian law appear only at large distances. Similarly, for
ε = −1, the picture for the solutions resembles qualitatively to that of Figure 2b, where deviations
from Newtonian law appear only at very small distances.

We have considered so far the motion of non-relativistic particles. However, the motion of a
freely falling photon in a static isotropic gravitational field (5) is described [33] by the equation

(
dφ

dr

)2

=
A

r4

(
1

J2B
−

1

r2

)−1

, (21)

where J is an integration constant. In the cases where the solutions (16), (19) deviate from Newton’s
law at large distances, it is seen from (21) that dφ/dr → 0 as r →∞, and thus, the photon moves
in a “straight” line of the background geometry in that region (even when a second horizon exists,
we consider it of cosmological size compared to the local distances of interest). More specifically, at
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large distances, it arises from (21) that φ(r) − φ(∞) ' ( 1
J2 + β −

√
ζ)−1/2 1

r for the solution (16),

while for the solution (19),
√
ζ is replaced by

√
2ζ/3

√
3 in the last expression. This means that

the “impact parameter” b is b = ( 1
J2 + β −

√
ζ)−1/2 for (16) (and respectively for (19) with the

change of
√
ζ). For our solutions, the total deflection angle in (21) cannot be computed explicitly.

However, we can understand the influence of the new term on the motion of a photon and compare
to the Newtonian deflection. For doing so, we have to refer to two photons with the same “initial
conditions”, i.e. the same impact parameter b, one moving in a Schwarzschild-(A)dS4 background
(denoted by the subscript 1) and the other in the background defined by the solutions (16), (19)
(denoted by the subscript 2). The following equations are easily obtained for the solutions (16),
(19) respectively:

1
√
ζ r4

(dr1)2 − (dr2)2

(dφ)2
=

√
z

ez

[
128

105
1F1

(
15

8
,
23

8
; z

)

z +
9

8

(
1

z
−

8

7

)

ez
]

− 1 , (22)

3
√

3
√

2ζ r4

(dr1)2 − (dr2)2

(dφ)2
=

⊕
3
√

3
√

2

|v − 3|
3
4 (v +

√
3)

3(
√

3−1)
8

(v −
√

3)
3(
√

3+1)
8

∫
(v −

√
3)−

3(3−
√

3)
8 (v +

√
3)−

3(3+
√

3)
8

vdv

|v − 3|7/4
− 1 . (23)

It is obvious that for the branch ε = +1, v > 3 which extends to infinity, the right-hand side of
equation (23) is negative, giving (dr2)2 > (dr1)2. Therefore, extra deflection of light compared to
the Newtonian deflection arises. This situation of increased deflection (compared to that caused
from the luminous matter) has been well observed in galaxies or clusters of galaxies and the above
solution might serve as a possible way for providing an explanation. One can easily check that
equation (22) provides less deflection compared to Newtonian deflection at the distances of interest.
On the other hand, it is easily checked that equation (22) provides less deflection compared to
Newtonian deflection at the distances of interest.

3 Conclusions

We presented a new class of brane black hole solutions with induced gravity. It is known
that the non-local bulk effects, as they are expressed via the projection of the Weyl tensor on the
brane, do not make the brane dynamics closed. We need to know the geometry of the bulk space
in order to be able to deal with the dynamics on the brane. In the case where gtt = −g−1

rr , the
system of equations consisting of the modified Einstein equations and the Bianchi identities is closed
and we found all the possible black hole solutions. If we had to look for more general spherically
symmetric solutions, some extra information would be needed for the non-local energy density U or
the non-local anisotropic stress P.

There has been argued [29, 30] on kinematical grounds, irrespectively from the gravitational
dynamics, that the only spherically symmetric geometries which may be candidates for explaining
from one side the extra deflection of light observed in galaxies and clusters of galaxies and from
the other side the galactic rotation curves are of the form gtt = −g−1

rr . However, severe criticism
has appeared on this [31]. In the present paper, we use this interesting and reasonable condition to
make the brane dynamics autonomous.

The black hole solutions with non-zero Eµν are representing strong-gravity corrections to the
spherically symmetric Schwarzschild-(A)dS4 braneworld solutions. Their characteristic is that they
predict a new attractive force. There are classes of solutions with increasing r, where this attractive
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force combined with the Newtonian one, results to a net force which decreases slower than the
Newton’s force. This might have interesting physical implications for the explanation of galactic
rotation curves. Within this class, a solution giving extra deflection of light compared to General
Relativity predictions at galactic scales was found. It is interesting to observe that this solution has
non-trivial (i.e. not constant) non-local energy U and anisotropic stress P. In another class of solu-
tions with decreasing r, the new force starts to deviate from the Newton’s force at small distances,
indicating that at submillimeter scale we could have testable deviations from the Newtonian law.

In our solution with Eµν=0, we also had deviations from the Newton’s law at large distances.
This deviation was caused by the presence of the (A)dS4 term βr2, which for β < 0 can also give
extra attraction. In our new solutions, the extra attractive force appears because of the presence of
a new term which only asymptotically (when defined in this regime) behaves like AdS4. This new
term arises because of the presence of the electric part of the Weyl tensor and for an observer on
the brane is a pure non-local effect. We had also found in [12] modifications to Newton’s law as a
result of a change of the Newton’s constant due to the finite interior of the rigid object. This effect
must have an analogous contribution here if one solves the interior problem.

We have followed a braneworld viewpoint for obtaining braneworld solutions, ignoring the exact
bulk space. We have not provided a description of the gravitational field in the bulk space, but
confined our interest to effects that can be measured by brane-observers. By making assumptions
for obtaining a closed brane dynamics, there is no guarantee that the brane is embeddable in a
regular bulk. This is the case for a Friedmann brane [32], whose symmetries imply that the bulk
is Schwarzschild-AdS5 [34, 35]. A Schwarzschild brane can be embedded in a “black string” bulk
metric, but this has singularities [36, 37, 38]. The investigation of bulk backgrounds which reduce
to Schwarzschild-(A)dS4 or more general black holes is in progress.

Acknowledgement
We would like to thank the organizers of this workshop for their warm hospitality.

References

[1] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436 (1998), hep-ph/9804398;
N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D59 (1999), 086004, hep-th/9807344.

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999), 3370, hep-th/9905221; Phys. Rev. Lett. 83
(1999), 4690, hep-th/9906064.

[3] T. Shiromizu, K. Maeda and M. Sasaki, Phys. Rev. D62 (2000), 024012, gr-qc/9910076.

[4] R. Sundrum, Phys. Rev. D59 (1999) 085009, hep-ph/9805471.

[5] G. Dvali, G. Gabadadze and M. Porati, Phys. Lett. B485 (2000), 208, hep-th/0005016; G. Dvali and G.
Gabadadze, Phys. Rev. D63, 065007 (2001),hep-th/0008054.

[6] D.M. Capper, Nuovo Cim. A25 (1975), 29.

[7] S.L. Adler, Phys. Rev. Lett. 44 (1980) 1567; Phys. Lett. B95 (1980) 241; Rev. Mod. Phys. 54 (1982)
729; Erratum-ibid. 55 (1983), 837.

[8] A. Zee, Phys. Rev. Lett. 48 (1982), 295.

[9] N. N. Khuri, Phys. Rev. D26 (1982), 2664.

[10] E. Kiritsis, N. Tetradis and T.N. Tomaras, JHEP 0108 (2001), 012, hep-th/0106050.

[11] S. Corley, D. Lowe and S. Ramgoolam, JHEP 0107 (2001), 030, hep-th/0106067.

31



[12] G. Kofinas, E. Papantonopoulos and I. Pappa, Phys. Rev. D66, (2002), 104014, hep-th/0112019.

[13] G. Kofinas, E. Papantonopoulos and V. Zamarias,Phys. Rev. D66, (2002), 104028, hep-th/0208207

[14] G. Kofinas, JHEP 0108 (2001), 034, hep-th/0108013.

[15] H. Collins and B. Holdom, Phys. Rev. D62 (2000), 105009, hep-ph/0003173.

[16] Y. Shtanov, “On brane-world cosmology”, hep-th/0005193.

[17] S. Nojiri and S.D. Odintsov, JHEP 0007 (2000), 049, hep-th/0006232.

[18] C. Deffayet, Phys. Lett. B502 (2001), 199, hep-th/0010186.

[19] N.J. Kim, H.W. Lee and Y.S. Myung, Phys. Lett. B504 (2001), 323, hep-th/0101091.

[20] C. Deffayet, G. Dvali and G. Gabadadge, Phys. Rev. D65 (2002), 044023, astro-ph/0105068.

[21] C. Deffayet, S.J. Landau, J. Raux, M. Zaldarriaga, P. Astier, Phys. Rev. D66 (2002), 024019, astro-
ph/0201164.

[22] C. Germani and R. Maartens, to app. Phys. Rev. D, hep-th/0107011.

[23] N. Dadhich, R. Maartens, P. Papadopoulos and V. Rezania, Phys. Lett. B487 (2000), 1, hep-th/0003061.

[24] A. Chamblin, H.S. Reall, H. Shinkai and T. Shiromizu, Phys. Rev. D63 (2001), 064015, hep-th/0008177.

[25] N. Deruelle, gr-qc/0111065.

[26] R. Casadio, A. Fabbri and L. Mazzacurati, Phys. Rev. D65 (2002) 084040, gr-qc/0111072.

[27] N. Dadhich, Phys. Lett. B492 (2000) 357, hep-th/0009178; P. Singh and N. Dadhich, Phys. Lett. B511
(2001), 291, hep-th/0104174.

[28] R. Maartens, Phys. Rev. D62 (2000), 084023, hep-th/0004166; gr-qc/0101059.

[29] A. Edery, Phys. Rev. Lett. 83 (1999), 3990, gr-qc/9905101.

[30] A. Edery and M.B. Paranjape, Phys. Rev. D58 (1998) 024011, astro-ph/9708233.

[31] J.D. Bekenstein, M. Milgrom and R.H. Sanders, Phys. Rev. Lett. 85 (2000), 1346, astro-ph/9911519.

[32] P. Binétruy, C. Deffayet, U. Ellwanger and D. Langlois, Phys. Lett. B477 (2000), 285, hep-th/9910219.

[33] S. Weinberg, “Gravitation and Cosmology”, John Wiley and Sons Inc., 1972.

[34] S. Mukoyama, T. Shiromizu and K. Maeda, Phys. Rev. D62 (2000) 024028, hep-th/9912287.

[35] P. Bowcock, C. Charmousis and R. Gregory, Class. Quant. Grav. 17 (2000) 4745, hep-th/0007177.

[36] A. Chamblin, S.W. Hawking and H.S. Reall, Phys. Rev. D61 (2000) 065007, hep-th/9909205.

[37] R. Gregory, Class. Quant. Grav. 17 (2000) L125, hep-th/0004101.

[38] I. Giannakis and H.c. Ren, Phys. Lett. B528 (2002), 133, hep-th/0111127.

32


