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We set up a hypothesis in which the matter density of the Universe is much higher than its estimate

obtained from the recent astronomical data. On this basis the gravitational phenomena are considered as

the macroscopic quantum effects attributed by the low temperature of the weakly interacting particles of

the Universe. The theory is constructed in which polarization fields describing the ground state of the

Universe and defining the geometrical structure of the space–time (in particular, its dimensionality) play the

fundamental role.

1. Introduction

In 1925 Shirokov [1] has shown, that the solution of the Laplace equation dependent only on
the spatial interval r and possible only when the space curvature is a constant one has the form:
V (r) = (c1/R) cot(r/R) + c2, if the curvature is positive (R is a radius of the curvature; c1, c2 are
arbitrary constants), or [2]

V (r) = (c1/L) coth(r/L) + c2, (1.1)

when the curvature of space is negative (L is the Lobachevsky constant). For obtaining the Newton
(or Coulomb) potential it is necessary to put c2 = −c1/L, L → ∞ (c2 = −c1/R, R → ∞).
Let’s consider hereinafter, that the Newton potential should be exchanged by a potential (1.1), in
which c2 = −c1/L, which was studied by Lobachevskiy [2], in his investigation of the spaces with
negative curvature. For such a potential the Seeliger paradox does not take place [3]. For the
Lobachevsky potential, as it is easy to note, the divergence is absent (the relativistic generalization
of the Lobachevsky theory on the basis of the Einstein theory was proposed by Chernikov [2]).

We represent the Lobachevsky gravity potential in the form:

V (r) =
A

L
(1− coth

r

L
) = −

2A

L

e−2r/L

1− e−2r/L
= −

2A

L

∞∑

n=1

e−2rn/L, (1.2)

where A = GNm1m2 (GN ≈ 6.7 · 10−39GeV −2 is the Newton gravitational constant; the system of
units will hereinafter be used h/(2π) = c = 1, where h is the Planck constant, and c is the speed of
light; m1,m2 are the masses of interacting bodies). Let’s remark, that the asymptotical behavior
of the Lobachevsky potential is reduced to the behavior of the potential

V (r) = −(A/r)e−Br, (1.3)

which, to opinion, was offered for the first time by Neumann [4] and which is more known as the
Yukawa potential, introduced for the description of short-range nuclear forces (the similar potential
is also used for the description of short-range electromagnetic fields in a plasma). As a result the
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constant B = 1/L in gravity potential (1.3), as well as L in the potential (1.2), should be determined
by properties of a medium (dark matter [5], quintessence etc.), in addition a fundamental role should
play the background neutrinos of the Universe. It is possible to assume, that the constant B = 1/L
coincides with the value of the Hubble constant H ≈ 1.134 · 10−42GeV (or even B ∝ H), which in
this case will serve one of the characteristics of the Universe background matter.

The Bashkin’s works [6] on the propagation of spin waves in the polarized gases, which have
appeared in eighties, have allowed to make the assumption [7], that similar collective oscillations
are possible under certain conditions in the neutrino medium as well. As a result, with help of
the Casimir effect, it was possible to associate [8] the gravitational constant GN with parameters
of the electroweak interactions: GN ∼ σeν ∼ α G2

F T 2 (α ≈ 1/137 is the fine structure constant,
GF ≈ 1.166 · 10−5GeV −2 is the Fermi constant, T ≈ 1.9K ≈ 1.64 · 10−13GeV is the effective
temperature of the neutrinos background of the Universe, σeν is the scattering cross–section of a
neutrino on an electron, when the energy of a particle is close to T ). Let’s remark, that in 1937 [9]
Gamow and Teller tried to use neutrinos for explanation of the gravitation, but their mechanism is
related to for the exchange of neutrino–antineutrino pairs.

2. Weakly interacting particles of Universe

We shall divide the matter of the Universe into a rapid subsystem and a slow one, considering,
that all known particles (excluding neutrino) belong to the rapid subsystem and are described
by standard fields of the quantum field theory. Considering fundamental particles as coherent
elements in open systems, characterizing by a quasi-group structure, we shall use inhomogeneous
(quasi-homogeneous) space-time manifold allowed by the geometrical structure of the Riemannian
space. For the description of the slow subsystem (weakly interacting particles) we shall apply the
condensed matter description through mixtures of gauge fields having non-zero vacuum averages [10]

(in particular it is convenient to use fields Φ
(k)
i (x),Φj

(l)(x) [11]; indices i, j, k, l, ... and i, j, k, l, ...

take the values 1, 2, 3, 4; a point x ∈ M4, where M4 is the space-time manifold; Φ
(k)
i Φj

(k) = δ
j
i ,

Φ
(k)
i Φ

(l)
j η(k)(l) = gij , δ

j
i are the Kronecker delta symbols, η(k)(l) are the covariant components of

the metric tensor of the Minkowski space, gij are the covariant components of the metric tensor
of the Riemannian space-time), using them as gravity potentials. For obtaining the gravitational
equations [12] let’s write the total Lagrangian Lt

Lt = L(Ψ) + η(j)(m) [κo F
a
(i)(j) F

b
(k)(m) η

(i)(k) ηab+

κ1 (F
(k)
(i)(j)F

(n)
(l)(m) η

(i)(l) η(k)(n) + 2 F
(k)
(i)(j) F

(i)
(k)(m) − 4 F

(i)
(i)(j) F

(k)
(k)(m))]/4 (2.1)

(a, b, c, d, e = 5, 6, ..., 4 + r), where ηab are the covariant components of the metric tensor of the flat
space, κo = 1/(4π) and κ1 = 1/(4πGN ),
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gravitational constant GN to be a consequence of a large density of particles (quasi-particles) of the

slow subsystem described by fields Φ
(k)
i (x), Φj

(l)(x), and to rewrite the Lagrangian (2.1) in the form

Lt = L(Ψ) + κ {F γαβ F
ε
δκ [ηαδ (δκγ δ

β
ε − 2 δβγ δ

κ
ε ) + ηβκ (δαε δ

δ
γ − 2 δαγ δ

δ
ε )+

ηγε (ηαδ ηβκ − 2 ηαβ ηδκ)] + F
a
αβ F

b
δκ ηab (ηαδ ηβκ − 2 ηαβ ηδκ)}/4 (2.4)

(the cardinality of the values set of the Greek indexes is equal to N ), where ηαβ are the covariant
components of the metric tensor of the flat space, ηαβ η

αγ = δγα, κ is constant, and the generalization
of the formulae (2.2), (2.3) is obvious.

Let’s consider, that violation of symmetry in weak interactions is induced by a high density of
right-handed polarized neutrinos of different flavors and, accordingly, left-handed polarized antineu-
trinos, which at low energies do not participate in reactions owing to the large pressure in matching
degenerate Fermi — gases. In addition it is necessary to recall the Dirac hypothesis of 1930, in
which the dilemma (existence of negative-energy solutions to his equations) is resolved by filling by
electrons all states with negative energies in accordance with Pauli principle. In outcome a state
of vacuum is identifiable as state, in which all levels with negative energies are filled by particles
(weakly interacting particles), and all levels with positive energies are free, that corresponds to the
completely degenerate Fermi — gas at the zero temperature. The slightest increase of a temper-
ature, which can cause a fluctuation (here again it is necessary to recall a Boltzman hypothesis,
asserting, that observed by us the area of the Universe is outcome of a huge fluctuation) will cause
the appearance of excited states, i.e. known elementary particles with positive energy having colour
and (or only) electrical charges. If in addition the space-division of weakly interacting particles is
descending, we shall receive the charge asymmetrical Universe with a possible predominance of a
matter over an antimatter. Naturally, what exactly the predominance of u- and d-quarks (from
which the observed baryon matter is composed in known to us regions of the Universe) probably
indicates first of all the predominance of the conforming flavors of right-handed polarized neutrinos



the broken symmetry [14]. As the Higgs scalar particles till now are not found, it is possible to offer
a hypothesis, in which masses of fundamental particles, belonging to the rapid subsystem, are in-
duced by their interaction with particles of the slow subsystem (dark matter [5], quintessence, etc.).
In this connection we shall mark the huge value of the masses of the vector bosons W+,W−, Zo,
which (contrary to the massless photon) can interact with background neutrinos directly.

We shall prove the given statement for the vector boson from the Lagrangian (2.1), considering

M4 Minkowski space, and fields Φ
(k)
i (x),Φl

(j)(x) as constant, owing to large density of weakly inter-

acting particles and their homogeneous distribution in a space. Let r = 1, that assumes C
c
ab = 0.

For obtaining equations of fields A
b
i(x) in Feynman perturbation theory the gauge should be fixed.

For this we shall add the following

Lq = κo qbb g
ij gkl (∂iA

b
j − qo Ci A

b
j) (∂kA

b
l − qo Ck A

b
l )/2, (3.1)

where qo = ηbb/qbb, Ci = Ci
b
b. Besides let

Ta
(i)
(k) η

(j)(k) + Ta
(j)
(k) η

(i)(k) = εba tb η
(i)(j). (3.2)

As a result the equations of the vector field A
b
i(x) will be written as:

gjk[∂j∂kA
a
i − (1− 1/qo)∂i∂jA

a
k + (1− qo)CiCjA

a
k] +m2A

a
i = I

a
i /κo, (3.3)

where I
a
i =

gij
ηaa

∂L(Ψ)

∂A
a

j

and

m2 = (n− 1)(n− 2)κ1t
2
a/(2κoηaa)− g

jkCjCk. (3.4)

Notice that due to the vacuum polarization (Ci 6= 0) the propagator of the vector boson has rather
cumbersome form:

Dij(p) = [(1− qo)
(pipj − CiCj)(pkpk − qom2) + (1− qo)pkCk(piCj + Cipj)

(plpl − qom2)2 + (1− qo)2(plCl)2

−gij ]/(p
mpm −m

2), (3.5)

which is simplified and gets the familiar form (−gij/(pkpk −m2), pk is the 4-momentum, and m is
the mass of the vector boson) only in the Feynman gauge (qo = 1).

So, the transition to the hot state of Universe was connected with the destruction of the Bose
condensate and the increase of the Fermi gas pressure accordingly. In addition during some time the
temperature of background particles of Universe could remain equal or close to zero (the stage of
inflation). As a result the rest–mass of W+,W−, Zo bosons have decreased so, that weak interaction
has stopped to be weak and all (or nearly so all) particles from a ground (vacuum) state started
to participate in an installation of a thermodynamic equilibrium. The given phenomenon also has
become the cause of an apparent increase of a density of particles in the early Universe. Suggesting,
that mean density no of particles in the Universe did not vary at the same time and the hot model
in general is correct, we come to the following estimation no ≥ m3

π ∼ 10−3GeV 3 (mπ is a mass of
a π meson). This result allows us to give explanation to a known ratio [15] Ho/GN ≈ m3

π, if to
consider, that the Hubble constant Ho gives an estimation 1/Ho to the length l ∼ 1/(noσν) of a free
path of particle in “vacuum” at present stages of the Universe evolution (σν is a scattering cross–
section of neutrinos on a charged particle) and to take into account the estimation given earlier
for the gravitational constant GN (GN ∼ σν). Thus the gravitational constant GN is inversely
proportional to the time of a free run of a charged particle in the neutrinos medium characterizing
a kinetic phase of the relaxation process in the Universe.
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4. The hot stage of the Universe evolution and the total Lagrangian

The given requirement causes us the return to the foundations of the very construction. Let’s
consider the Boltzmann hypothesis of the Universe birth from to a gigantic fluctuation not in an
empty space but in a medium which consists of weakly interacting particles characterized by zero
temperature and forming the Bose condensate. Certainly, if the particles are fermions they should
be in the bound state. For the description of such state of the Universe matter (this state we shall
consider pure one) it is necessary to introduce an amplitude of probability B with components Bba(ω)
(a, b, c, d, e, f, g, h = 1, 2..., r) dependent on points ω of a manifold Mr (including the limiting case
r →∞). In this case we can not define the metric but for its definition we need a density matrix ρ(B)
(the rank of which equals to 1 for a pure state), determining its standard mode BB+ = ρ tr(BB+)
(tr ρ = 1, ρ+ = ρ, the top index “+′′ is the symbol of the Hermitian conjugation).

Since the influencing of the macroscopic observer will display in an approximation of the tran-
sition operator by the differential operators ∂i then it is necessary to introduce differentiable fields
given in a differentiable manifold Mn which we shall call space–time and the points x of which will
have coordinates xi (i, j, k, l... = 1, 2..., n). Probably the rank of the density matrix ρ equals n,
but it is impossible to eliminate that the generally given equality is satisfied only approximately
when some components of a density matrix can be neglected. In any case we shall consider that
among fields B the mixtures Πi

a were formed with non-zero vacuum means hia which determine
differentiable vector fields ξia(x) as:

Πi
a = Bba ξ

i
b (4.1)

for considered area Ωn ⊂Mn (field ξia(x) determine a differential of a projection dπ from Ωr ⊂Mr

in Ωn). It allows to define a space–time Mn as a Riemannian manifold, the basic tensor gij(x) of
which we shall introduce through a reduced density matrix ρ′(x).

So let components ρji of a reduced density matrix ρ′(x) are determined by the way [12]:

ρ
j
i = ξ



(ηab are metric tensor components of the flat space and ηab are tensor components of a converse to
basic one) then the given Lagrangian is most suitable one at the description of the hot stage of the
Universe evolution because it is most symmetrical one concerning intensities of the gauge fields Fcab.
What is more we shall require the realization of the correlations: Ta

b ηcd + Ta
d
c η

cb = 0, that the
transition operators Ta

b generate the symmetry, which follows from the our assumptions. In absence
of fields Πi

a(x) and Ψ(x) at earlier stage of the Universe evolution the Lagrangian (5) becomes even
more symmetrical (Lt ∝ B4), so that the formation of fermions (the appearance of fields Ψ in a
total Lagrangian Lt) from primary bosons is a necessary condition (though not a sufficient one) of
the transition of Universe to the present stage of its development with a spontaneous symmetry
breaking. Only the formation of the Bose condensate from pairs of some class of fermions (the
neutrinos of different flavors) has resulted in a noticeable growth of rest–masses of those vector
bosons (W+,W−, Zo), which interact with this class of fermions. In parallel there could be an
increase of masses of other fundamental particles, though not all (photon and gluon, which do not
interact with neutrino directly remain massles).
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