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supersymmetric) 10d non-commutative Yang-Mills theory. The model contains a vector and 6
adjoint scalars and it is described by the following action

S = tr

∫
d4x

(

−
1

2g2
Fµν ? F

µν +Dµφ
i ? Dµφi

)

, (2)

where
Fµν = ∂µAν − ∂νAµ − i(Aµ ? Aν −Aν ? Aµ) (3)

and
Dµφ

i = ∂µφ
i − i(Aµ ? φ

i − φi ? Aµ) (4)

for i = 1...6. The model is invariant under the following non-commutative U(N) gauge transforma-
tion

δλAµ = ∂µλ− i(Aµ ? λ− λ ? Aµ), (5)

δλφ
i = −i(φi ? λ− λ ? φi)



in at least one of the external legs [7]. The amplitude in the case of 3 external gluons, when all
gluons are in the U(1) is
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We have ignored in this expression a factor cos p̃1p2/2, which appears in previous calculations of the
leading IR contribution to the 3-point function. The reason is that, in the approximation used to
obtain (9), i.e. p̃ipj � 1, we cannot distinguish between cos p̃1p2/2 and 1. We keep this convention
in the following. When one gluon is in the U(1) and the two other gluons are in the SU(N) the
amplitude takes the form

A
µνρ
(1−N−N) =

i64g3
√
N/2

(4π)2

p̃
µ
1 p̃

ν
1 p̃
ρ
1

p̃4
1

, (10)

where p̃1 is the momentum of the U(1) field. Similarly, the amplitude for two external scalars and
one gluon, all in the U(1), is

A
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In the case of two scalars and one gluon transforming in U(1) and SU(N) the amplitude is the
following

A
µ
(1−N−N) =
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(4π)2
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1

, (12)

where, again, p̃1 is the momentum of the U(1) field.
The information about the various non-planar diagrams can be summarized in the following

effective action

π2

2
SI = g2

∫
d4p

(

2
p̃µp̃ν

p̃4
trAµ(−p) trAν(p) +

1

p̃2
trφi(−p) trφi(p)

)

+
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(2π)4

∫
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{
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µ
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p̃4
1

trAµ(p1) trAν(p2)Aρ(p3)

+
p̃
µ
1

p̃2
1

(
trAµ(p1) trφi(p2)φi(p3) + 2 trφi(p1) trφi(p2)Aµ(p3)

)
}

. (13)

Apart from the terms which are summarized in the effective action (13), there are other contri-
butions which are less singular when θ → 0. In contrast to the poles, these terms (which as we shall
see in a moment are log-like terms) do not cancel even in the supersymmetric case, apart from the
N = 4 SYM case [5]. These terms have a different Lorentz structure than the poles and they are
all proportional to the one-loop beta function coefficient.

The gluon propagator (for the U(1) degrees of freedom) contains the following non-planar con-
tribution

M
µν
(1−1) = −

26g2N

3(4π)2
(p2gµν − pµpν) logm2p̃2, (14)

where m2 is an IR cut-off. We can think about it as a mass term for the scalars (and vectors), given
via a Higgs mechanism. Similarly to the gluon, the correction to the scalar propagator is

M(1−1) = −
26g2N

3(4π)2
p2 logm2p̃2. (15)
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The subleading corrections to the 3-point vertices are the following: for 3 gluons, all in the U(1),
we have

M
µνρ
(1−1−1) = −

i26g3
√
N/2

3(4π)2
sin(

1

2
p̃1p2)(logm2p̃2

1 g
νρp

µ
1 + perm.), (16)

where ’perm.’ means permutations of the three momenta and Lorentz indices due to the symmetry
of the amplitude. Similarly for the case of 1 gluon in the U(1) and 2 gluons are in the SU(N)

M
µνρ
(1−N−N) = −
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√
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3(4π)2
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where now p1 is the momentum of the U(1) gluon, and the permutations are with respect to the 2
gluons in the SU(N).

In the case of amplitudes where there are two scalars and one gluon we have

M
µ
(1−1−1) = −

i26g3
√
N/2

3(4π)2
sin(

1

2
p̃1p2)(logm2p̃2

1 p
µ
1 + perm.), (18)

and the same expression for the SU(N)− SU(N)− U(1) amplitude.

The log-like amplitudes can be summarized by the following effective action

−
24π2

13
SII = g2

∫
d4p

(
(p2gµν − pµpν) logm2p̃2(tr Aµ(−p))(tr Aν(p))

+p2 logm2p̃2(tr φi(−p))(tr φi(p)
)

+
ig3

(2π)4

∫
d4p1 d

4p2 d
4p3 δ(p1 + p2 + p3)× sin(

1

2
p̃1p2)× logm2p̃2

1 p
µ
1 ×

{
(tr Aν(p1))(tr Aµ(p2)Aν(p3)) + (tr φi(p1))(tr Aµ(p2)φi(p3))

}
. (19)

The actions (13)(19) are not gauge invariant. In order to have a (non-commutative) gauge
invariant action, higher order terms in Aµ should be added. In the following sections we will derive
a manifestly gauge-invariant action which includes (13) and (19) as part of it.

3 The Effective Action – Field Theory Derivation

3.1 The Poles

We will start by considering the pole-like IR-divergent contributions to the 2- and 3-point functions
with only gluons as external legs. We observe that in both cases each vector field Aµ(pi) is contracted
with p̃µ = θµνpν , where pν is the total momentum flowing on each trace operator. This suggests
that these terms are related to the simplest gauge-invariant operators carrying non-zero momentum,
the straight open Wilson line defined by [11, 12]

W (p) = tr

∫
d4x P∗

(
ei g

∫ 1
0 dσ p̃

µAµ(x+p̃ σ)
)
∗ eipx . (20)

Indeed, the gluon 2- and 3-point functions (13) can be obtained as the first terms in the expansion
of the following gauge-invariant expression

SIeff =
2 +Ns

2π2

∫
d4p W ′(−p)f(p̃)W ′(p) , (21)

66



with f(p̃) a function that tends in the IR to 1/p̃4; Ns is the number of scalars in the adjoint
representation (Ns = 6 in the type 0 case). We denote by W ′(p) the Wilson loop operator (20) once
the O(g0) term has been subtracted

W ′(p) = i g p̃µtrAµ(p)− g2

∫
d4l

(2π)4

sin l̃p2
l̃p

p̃µp̃νtrAµ(p−l)Aν(l) + ... . (22)

By inserting (22) in (21), we immediately recover the gluon 2-point function. The expressions

(9),(10) for the gluon 3-point function are valid in the limit p̃ipj << 1. In that limit sin l̃p2 /
l̃p
2 → 1

and thus also the 3-point function is correctly obtained from (21). This was to be expected since
the IR divergent contribution to the 3-point function satisfies the Ward identity [8].

For the pure U(1) non-commutative theory, (21) can be obtained from a direct calculation of the
1-loop N-point functions. This will allow us to determine the function f in (21). Due to the structure
of the argument in the exponential of the Wilson loop, (21) contributes to the N-point function with
terms proportional to p̃µ1 ...p̃µN . The N-point functions will have in general a complicated Lorentz
index structure. However it is easy to isolate the terms of the mentioned form. They can only
come from diagrams with 3-point vertices. Diagrams with 4-point vertices will give rise to a tensor
structure containing gµiµj , and therefore are not of the desired form. We will like to point out that
diagrams with 4-point vertices can produce as strong an IR divergence as those with only 3-point
vertices. Indeed, the tadpole induces a quadratic pole-like contribution to the 2-point function of
the form gµν/p̃2. However the role of this term is to cancel a similar contribution coming from
diagrams with 3-point vertices, and which would otherwise violate the Ward identity [5]. The same
applies to the 3-point function. We will thus ignore diagrams with 4-point vertices when analizing
the leading UV/IR mixing effects.

We will use the background field method in the following analysis; for the associated Feynman
rules see [8]. The diagrams we are interested in are those depicted in Fig.1. We have

(a) + (b) = (23)

(−2ig)N
∫

d4l

(2π)4

N∏

i=1

(2l + 2p1 + ..+ 2pi−1 + pi)µi
(l + p1 + ..+ pi−1)2

sin p̃i(l+p1+..+pi−1)
2 .

a

.
. .

.
..

b

Fig. 1. Amplitudes containing terms ∼ p̃µ1 ...p̃µN . Wavy lines refer to gauge bosons and doted lines to ghost.
The end points of the external lines are background vector fields Bµ.

As explained, we will disregard those parts of (23) whose tensor structure is such that they cannot
contribute to (21). This allows us to discard all the terms in the numerator proportional to external
momenta, and keep only 2lµi for each i. Expression (23) then reduces to

(−2ig)N
∑

νi

(−)n
∫

d4l

(2π)4

lµ1 ..lµN e
−ip̃l− i

2

∑
j<k p̃jpkνk

l2(l + p1)2...(l + p1 + ..+ pN−1)2
, (24)
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where the summation on νi, νi = ±1 for i = 1, .., N , comes from expanding the sine. We have
defined p =

∑
i pi

1−νi
2 and n =

∑
i

1−νi
2 . We can interpret the N vertices as twisted or untwisted

depending if ν = −1 or 1 respectively. Thus n is the number of twisted vertices and p the total
momentum flowing in the twisted vertices. The lµi in the numerator can now be substituted by
derivatives with respect to p̃µ acting on the exponential. In order to simplify the analysis will we
consider p̃ as an independent variable, and only in the end we will set p̃µ=θµνpν with p=

∑
i pi

1−νi
2 .

This allows us to bring the derivatives out of the integral, and rewrite (24) as

(−2ig)N ∂µ1 ...∂µN

∑

νi

(−)n
∫

d4l

(2π)4

e−ip̃l−
i
2

∑
j<k p̃jpkνk

l2(l + p1)2...(l + p1 + ..+ pN−1)2
. (25)

The evaluation of the previous integral gives1

J∗n(−p)

(
p̃

m

)N−2

KN−2 (mp̃) J∗N−n(p) , (26)

where KN−2 are modified Bessel functions. We have denoted by J∗n(−p) the kernel of the ∗n-
product defined in [13], i.e. J∗n(−p) ≡ J(−pr(1), ..,−pr(n)) where pr(j) are the n momenta entering
the twisted vertices and p =

∑
pr(j). A comment is now in order. Expression (26) is not the

complete answer, but the leading term in the infrared. Subleading terms are suppressed by powers
of p̃2pipj and therefore they do not give rise to infrared divergences for any N2. In the following,
we will keep in the evaluation of the N-point functions only the infrared-leading term. Then, (25)
reduces to

1

2π2
(−ig)N

∑

νi

(−)nJ∗n(−p)

[

∂µ1 ...∂µN

(
p̃

m

)N−2

KN−2 (mp̃)

]

J∗N−n(p) . (27)

Using the properties of the modified Bessel functions, it is easy to see that the term in square
brackets gives rise to a contribution of the form

(−)N p̃µ1 ...p̃µN
m2

p̃2
K2(mp̃) . (28)

Adding up all such contributions to the effective action we get

SIeff =
1

2π2

∞∑

N=2

(ig)N
∫
d4p

N−1∑

n=1

(−)n

n!(N − n)!
(29)

m2

p̃2
K2(mp̃) p̃µ1 ... p̃µN [Aµ1 ..Aµn ]∗n(−p) [Aµn+1 ..AµN ]∗N−n(p) .

This expression reproduces (21) by setting 2f(p̃) = m2

p̃2 K2(mp̃). Although the ∗n also appear in

the effective action of the non-commutative Φ3 theory, they only combine to form the scalar analog
of Wilson loop operators in the limit of large non-commutative parameter. On the contrary, the
invariance of the effective action with respect to gauge transformations of the background field
suggests that, in gauge theories, Wilson loop operators will play an important role for any value
of θ. As a first example, a Wilson loop completion of the non-planar contributions to the F 4

1This result is not affected by considering p and p̃ as independent variables.
2It is interesting that the subleading terms do not seem to have such a simple expression in terms of ∗n products

as (26).

68



terms in N = 4 gauge theory has been proposed in [14]. We have just seen that the puzzling
pole-like divergent terms originating from UV/IR mixing are part of the simplest gauge-invariant
double-trace operator that can appear in the effective action. We will leave for the next section the
extension of the previous considerations to gauge theories with adjoint matter.

3.2 The Logarithms

We would like to comment on the IR logarithmic-divergent terms arising from UV/IR mixing.
As already mentioned, these subleading contributions occur also in the supersymmetric case. We
suggest here a gauge invariant completion of the IR logarithmic divergent terms. This suggestion is
not as rigorous as the derivation in the previous subsection, but our result is fixed by the requirement
of gauge invariance.

It was shown in [8] that the logarithmic singularities of the 2-, 3- and 4-point function of pure
NC U(1), in the limit |p̃i| ∼ |p̃i + p̃j | ∼ θΛIR → 0, combine into the following contribution to the
effective action:

SIIeff =
1

4
β0 log (θΛIR)2

∫
d4x FµνFµν , (30)

with ΛIR an infrared cut-off and β0 the coefficient of the 1-loop beta function. It is tempting to
propose the following gauge-invariant completion of (30), which generalizes to the U(N) case

SIIeff =
1

4
β0

∫
d4pOµν(−p)K0(mp̃)Oµν(p) , (31)

where the operator Oµν is defined by

Oµν(p) = tr

∫
d4x L∗

(
Fµν(x) ei g

∫ 1
0 dσ p̃µAµ(x+p̃σ)

)
∗ eipx . (32)

Following the notation of [14], L∗ denotes integration of Fµν along the open Wilson line together
with path ordering with respect of the ∗-product of all terms inside the parenthesis. The action
(31) reproduces the pure gluonic log-like N-point functions (19) in the small m limit.

4 The Effective Action via Closed Strings Exchange

Fig. 2. The annulus am-
plitude.

The recent interest in the study of non-commutative field theories has been
mainly motivated by their connection to string theory. The world-volume
coordinates of D-branes in the presence of a constant B-field background
turn out to satisfy the relation [xµ, xν ] = iθµν , with θµν ∼ 1/Bµν . As a
consequence, the low energy theory on the brane is a non-commutative
gauge theory. In this section we would like to analyze (21) and (31)
(or (13) and (19)) from a string-inspired point of view. In a series of
recent papers it has been shown that closed string modes couple to non-
commutative D-branes through open Wilson line operators [14, 15, 16, 17].
This result was obtained by evaluating the disk amplitude between a
closed string and open string modes.

Let us consider the annulus diagram with boundaries on non-
commutative D-branes as in Fig.2. It can be seen as a loop of open
strings or a tree level exchange of closed strings. In the limit of a large
cylinder the closed string channel picture is more adequate since the an-
nulus diagram factorizes to closed string insertions on a disk connected
by a closed string propagator [18].
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In the opposite limit of a small cylinder, the exchange of the lowest open string modes dominates.
This provides the field theory limit, and the annulus amplitude reproduces the 1-loop field theory
effective action. Thus in general we could expect in the field theory effective action more complicated
contributions than (21) and (31), which structurally are reminiscent of a closed string exchange.
Notice that a similar structure was proposed as the gauge-invariant completion of the non-planar
F 4 terms in the effective action of N = 4 non-commutative Yang-Mills [13, 14]. In that case,
the function f had the interpretation of a closed string propagator in type II string theory. This
however comes as no surprise since the F 4 terms in the maximally supersymmetric case are protected
by non-renormalization theorems [18]. In contrast, it is remarkable that (21) emerges in a non-
supersymmetric theory. We will show below that the function f appearing in the IR-divergent
terms can also be directly related to a closed string propagator.

In the rest of this section we will consider type 0 string theory. This theory can be obtained as
a world-sheet orbifold of type II, which projects out space-time fermions. It contains a closed string
tachyon arising from the twisted sectors. There are however no open string tachyons on D-branes
in type 0 theory. This makes it especially adequate for our considerations. We will work with the
gauge theory on N electric D3-branes. It is given by the dimensional reduction of pure Yang-Mills
in 10 dimensions, i.e. gauge fields plus 6 scalars in the adjoint representation.

We start by analysing which closed string modes couple to the open Wilson line operator (20).
The first candidate is the type 0 tachyon. In the absence of B-field and at leading order in α′, it
couples to the brane tension as [19, 20]

N

4 (2πα′)2
. (33)

Following the same analysis done for bosonic and type II string theory [14, 16], it is easy to see
that the trivial field theory operator (33) gets promoted to an open Wilson loop in the presence
of a B-field. The coupling of the type 0 tachyon to the D-brane field theory at leading α′ order is
described by

SI =
κ10

g2
YM

∫
d10P

(2π)10

√
det G T (P ) O(−P ) , (34)

where G is the open string metric and

O(P ) =
1

4 (2πα′)2
tr

∫
d4xW (x,C) ∗ eipx . (35)

We denote by PM the 10-dimensional momentum, pµ the momentum along the 4-dimensional world-
volume of the D3-brane and p⊥i the momentum in the transverse directions. In the previous
expressions W (x,C) is a generalization of (20) which involves the transverse scalars

W (x,C) = P∗

(
ei g

∫ 1
0 dσ p̃

µAµ(x+p̃σ)+yiφ
i(x+p̃σ)

)
, (36)

where we have defined yi = 2πα′p⊥i and φi = Xi/2πα′ for i = 1, ..., 6, which provides the correct
normalization for the field theory scalar fields.

The on-shell condition for the type 0 tachyon is PMg
MNPN = −2/α′, with g the closed string

metric. Closed and open string metrics are related by g−1 = G−1−θGθ/(2πα′)2 [2]. In the Seiberg-
Witten limit, i.e. α′→0 keeping G and θ fixed, the on-shell condition becomes [14, 16]

p̃2 + y2 = 8π2α′ . (37)

The closed string mass is a subleading effect with respect to the momentum in the non-commutative
directions in the Seiberg-Witten limit. In spite of that, it will be crucial in the following to keep its
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contribution to the mass-shell condition. We want to analyse how the tachyon exchange contributes
to the annulus amplitude. For two D3-branes separated by a distance r we obtain

SIeff =
κ2

10

g4
YM

∫
d10P

(2π)10

detG
√

det g
O(P )O(−P )

eip⊥r

M2

(2πα′)2 + p2
⊥

. (38)

The quantity M2/(2πα′)2 is the effective mass of the closed string tachyon propagating in the six
transverse dimensions; from (37) M2 = p̃2 − 8π2α′.

In order to make contact with the previous section we will first consider the dependence of O on
the gauge fields only. Then O= 1

(4πα′)2W (p), with W (p) given by (20). Using (see for example [14])

κ2
10

g4
YM

= π(2πα′)4

√
det g
√

detG
, (39)

and defining m = r/2πα′, the previous expression can be rewritten as

SIeff =
π

(4πα′)4

∫
d4p

(2π)4

√
detG trW (p) trW (−p) G(p) , (40)

where

G(p) =

∫
d6y

(2π)6

eiym

M2 + y2
=

1

(2π)3

M2

m2
K2(mM) . (41)

G(p) represents the closed string propagator in the transverse dimensions, rescaled appropriately
to the field theory limit. Indeed, it is finite in the limit α′→0. However (40) diverges in this limit
due to the O(α′−2) dependence of the brane tension to which the tachyon couples. We can define
a finite contribution to (40) by expanding G(p) to O(α′4), using the explicit dependence of M2 on
α′. We then obtain a contribution to the field theory effective action of the form (21), with

f(p) ≡ G(p)|α′4 = c
m2

p̃2
K2(mp̃) , (42)

with c= 4π5

3 . This agrees with the result derived from the field theory calculation, up to a global
coeficient. We will comment on this below.

Notice that in order to obtain the IR divergent terms from the string exchange, it was essential
that the field theory operator that couples to the tachyon carries negative powers of α′. The
reason for this is that at O(α′0), G ∼ 1/m4 as p̃ → 0. Such a term is related to the ordinary
infrared problems of a field theory with massless degrees of freedom. However, remarkably, G(p)
contains information about the new divergences due to UV/IR mixing effects in non-commutative
field theories when expanded to higher orders in α′. We have analyzed above the coupling of the
type 0 tachyon to the D-brane field theory at leading order in α′. At O(α′0) it couples to the field
theory operators trF 2 and (Dφi)2 [19, 20]. For the reasons just exposed, the coupling of the tachyon
to these operators would contribute non-singular terms in the effective action and therefore we will
not consider them.

Equation (40) differs from (21), as we subtracted the ’1’ from the open Wilson line in (21). The
’1’ in coordinate space is in fact δ(p), as we work in Fourier space, and therefore this difference
affects only the pµ = 0 component of W . We would like to stress that the expansion of G(p) in
α′ powers requires that p̃ is non zero. At p̃ = 0 and in the limit α′ → 0, the string propagator is
G ∼ 1/m4. The associated contribution to the effective action is proportional to

1

(α′m)4
δ(4)(0) → Λ4

∫
d4x , (43)
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where 1/(α′m) ∼ Λ can be interpreted as a field theory scale. Therefore the difference between (40)
and (21) reflects the vacuum energy of the gauge theory, which is taken into account in the string
theory calculation. Once this infinity is substracted, the string exchange just reproduces the field
theory result (21).

We will now show that (38) can also reproduce the pole-like divergent terms associated with
the adjoint scalars. Expanding O to linear order in the fields, we obtain the following contribution
involving the adjoint scalars

S′Ieff ∼
∫

d4p

(2π)4

√
detG trφi(p) trφj(−p) fij(p) , (44)

where

fij =

∫
d6y

(2π)6

eiym yiyj

M2 + y2

∣
∣
∣
∣
α′4

=

= −∂mi∂mjG(p) = c

(

δij
m

p̃
K1(mp̃) +mimjK0(mp̃)

)

. (45)

The first term in (45) leads to the action

S′Ieff ∼
∫

d4p

(2π)4

√
detG trφi(p) trφi(−p)

m

p̃
K1(mp̃) , (46)

which corresponds, in the mp̃ → 0 limit, to the pole-like contribution in the effective action of the
scalars (13). The second term in (45) yields a m2 log contribution which vanishes when m → 0.
Notice that while f in (42) tends to 2c/p̃4 in the infrared limit, fij tends to c/p̃2. This reproduces
the relative factor of two between the pole-like contributions to the propagator of the gauge field and
adjoint scalars, eq.(7),(8). The same applies to the linear poles of the 3-point functions. Therefore
the gauge invariant expression (40), defined such that we only keep the finite terms in the α′ → 0
limit, accounts for all pole-like divergent terms of the field theory up to a global coefficient.

The discrepancy in the global coefficient can be related to the fact that not only the tachyon,
but also massive scalar closed strings couple to the brane tension. In the Seiberg-Witten limit these
contributions are of the same form as that of the tachyon, since momentum in the non-commutative
directions dominates over the oscillator mass. Thus they will renormalize the overall coefficient in
front of the effective action. To summarize, we have seen that the gauge invariant effective action
containing the infrared poles can be directly related to a closed string exchange between D-branes.
It is tempting to think of this as the exchange of an “effective closed string mode”. Remarkably,
among the original closed string modes that contribute to this effect is the tachyon mode.

We will briefly address the log like contributions which appear also in the supersymmetric field
theory (19). Consider a two-form (denoted by MMN ) closed string which couples to the operator
OMN (separated into 4d and 6d indices):

SII =
κ10

g2
YM

∫
d10P

(2π)10

√
det G

(
Mµν(P )Oµν(−P ) +Mµi(P )Oµi(−P )

)
, (47)

with

Oµν(P ) =
1

2πα′
tr

∫
d4xL∗(F

µνW (x,C)) ∗ eipx ,

Oµi(P ) =
1

2πα′
tr

∫
d4xL∗(D

µφiW (x,C)) ∗ eipx . (48)
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Repeating the same steps as for the tachyon field we can write the effective action due to an exchange
of a massive 2-form as

SIIeff ∼
∫
d4pd6y

(2π)10

√
detG OMN (p, y)OMN (−p,−y)

eiym

M2 + y2
, (49)

with M2 = p̃2+8π2lα′ and l some positive integer number which corresponds to the string excitation
number. For simplicity let us set the adjoint scalar fields to zero in W (x,C), which does not affect
gauge invariance. We get then

SIIeff ∼
∫

d4p

(2π)4

(
Oµν(p)Oµν(−p) +Oµi(p)O

µi(−p)
)
G(p) , (50)

but now we should simply keep the terms in G(p) which are O(α′2). This yields

G(p)|α′2 ∼ K0(mp̃) . (51)

which reproduces the action (31) and in addition the log like pieces of the scalars (19).
Thus, we have shown that the logarithmic like (K0, in fact) contribution to effective action can

be understood from massive 2-form closed strings exchange. Note that the massless NS-NS 2 form
does not contribute here. Only massive modes. Another comment is that we could not reproduce
the overall factor in front of the effective action, β0. The understanding of the overall factor, from
the string theory point of view, is equivalent to the understanding of the weight of each individual
massive string in the coupling to the operator FMN on the brane. We will not address this problem
here.

5 Discussion

In this talk we have discussed UV/IR effects in a non-supersymmetric gauge theory. Our main
results are two effective actions which involve logs and poles.

The log like contributions exist also in the supersymmetric theory, apart from the N = 4 SYM
theory. The picture that emerges from our work is that one can understand these effects as due to
an exchange of massive two-form closed strings which couple to the operator tr Fµν .

The more interesting contributions are the poles. These poles cancel in the supersymmetric
gauge theory. Our picture here is that these terms can be understood as due to an exchange of a
tachyon and massive scalar closed strings that couple to the brane tension. In the superstring theory
there is no tachyon. Moreover, the contributions from the NS-NS sector cancel the contributions
from the R-R sector and this is our explanation of why we do not see such effects in the (super-)gauge
theory side.

The (partial) contribution of the closed string tachyon to the tachyonic instabilities of the non-
commutative theory suggests that the two phenomena are related. Indeed, it is true that the
poles are also due to massive closed strings, since in the Seiberg-Witten limit all the massive tower
contributes similarly to the exchange between the D-branes [6]. Therefore we do not argue that the
tachyon in the field theory has a one to one correspondence with the closed string tachyon.

In the light of our picture, we would like to address the problem of the stability of the non-
commutative non-supersymmetric Yang-Mills theory. Since this theory is tachyonic, similarly to
type 0 string theory, we suggest that the consistency issue is related to the fate of the closed string
tachyon. It is tempting to suggest that if there is tachyon condensation in type 0 string theory,
there will be examples of non-commutative non-supersymmetric gauge theories which are consistent
and that (1) is a consequence of the expansion around the perturbative vacuum.
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