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Some properties of quantum field theories on noncommutative space-time are reviewed. Studying the

general structure of the noncommutative (NC) local groups, we present a no-go theorem for NC gauge

theories. This no-go theorem imposes strong restrictions on the NC version of the Standard Model and

in resolving the standing problem of charge quantization in noncommutative QED. We also consider the

phenomenological implications of noncommutativity on the spectrum of the H-atom and derive a bound on

the noncommutativity parameter θ. Finally, in the framework of noncommutative quantum field theories

(NC QFT), we show the general validity of the CPT and spin-statistics theorems, with the exception of some

peculiar situations in the latter case.

1. Introduction

It is generally believed that the notion of space-time as a continuous manifold should break
down at very short distances of the order of the Planck length λP ≈ 1.6 × 10−33cm. This would
arise, e.g. from the process of measurement of space-time points based on quantum mechanics
and gravity arguments [1]. Arguments for noncommutativity arise also from string theory with a
constant antisymmetric background field, whose low-energy limit, in some cases, turns up to be a NC
QFT [2]. This in turn implies that our classical geometrical concepts may not be well suited for the
description of physical phenomena at very small distances. One such direction is to try to formulate
physics on some noncommutative space-time [1]-[3]. If the concepts of noncommutative geometry
are used, the notion of point as elementary geometrical entity is lost and one first expectation is
that an ultraviolet cutt-off appears. In [4] this expectation was shown not to be fulfilled in general.
Instead, a peculiar UV/IR mixing appears [5].

The usual way of constructing a noncommutative theory is through the Weyl-Moyal correspon-
dence: in a NC space-time the coordinate operators satisfy the commutation relation:

[xµ, xν ] = iθµν , (1)

where θµν is a constant antisymmetric matrix of dimension (length)2. In QFT the operator character
of the space-time coordinates (1) requires that the product of any two field operators be replaced by
their ?-product, or Weyl-Moyal product. The ?-product compatible with the associativity of field
products is given by:

φ(x) ? ψ(x) = e
i
2
θµν ∂

∂xµ
∂
∂yν φ(x)ψ(y)

∣
∣
∣
x=y

. (2)

An important step in constructing a physical noncommutative model is to develop the concept
of local gauge symmetry. Intuitively, because of the inherent nonlocality of noncommutative field
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theories, the notion of local symmetry in the noncommutative case should be handled with special
care. As a result, the pure noncommutative U(1) theory behaves similarly to the usual non-Abelian
gauge theories, but now the structure constants depend on the momenta of the fields [6]. This
feature induces a charge quantization problem [7], in the sense that the electric charges in the NC
QED based on NC U(1) group are quantized only to ±1, 0. The solution of this problem was sought
in the construction of a noncommutative version of the Standard Model (NC SM) [8], based on a
no-go theorem [9], and is discussed in Section II.

In Section III phenomenological implications of the noncommutativity are also addressed on a
concrete model of the H-atom, for which we present the noncommutative corrections to the spectrum
and, using the data for the Lamb shift, we find a bound on the noncommutativity parameter θ [10].

In Section IV, we show that a breaking of the spin-statistics relation in NC QFT could occur
only in the case of theories with NC time. We also present in Section V a general proof that the
CPT theorem remains valid in NC field theories, for general form of noncommutativity, although
the individual symmetries C,T and P are broken [11].

2. Noncommutative gauge groups. A no-go theorem

2.1. Charge quantization problem in NC QED

In [7] it was shown that in NC QED based on the NC U(1) group, one can encounter only fields
with charge +1:

ψ(x)→ ψ′(x) = U(x) ? ψ(x) ,
Dµψ = ∂µψ − iAµ ? ψ , (3)

fields with charge -1:

ψ(x)→ ψ′(x) = ψ(x) ? U−1(x) ,
Dµψ = ∂µψ + iψ ? Aµ (4)

and fields with charge 0:

χ(x)→ χ′(x) = U(x) ? χ(x) ? U−1(x) ,
Dµχ = ∂µχ+ i[χ,Aµ]? . (5)

This immediately raises the question about other known charges, i.e. the fractional charges of
quarks. The simple extension

Dµψ
(n) = ∂µψ

(n) − inAµ ? ψ
(n) , (6)

with
ψ(n) → ψ′(n) = U?n ? ψ(n) (7)

for the field ψ with integral multiple n of a (conventional) unit charge fails to transform covariantly.
In conclusion in NC QED, charge is quantized only to 0,±1. A possible way out from this situation
is to construct a NC version of the Standard Model, to which end we have to choose the gauge
groups and their representations and also define the direct product of group factors.

2.2. A no-go theorem

The following result was partially obtained in [12] in the framework of noncommutative gauge
groups and extended to a no-go theorem in [9]. In general, as discussed in [13], it is not trivial to
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define the noncommutative version of usual simple local groups, as the ?-productwill destroy the
closure condition. Consequently, the only group which admits a minimal noncommutative extension
is U(n) (we will denote its extention by U?(n)). However the NCSO and USp algebras have been
constructed in a more involved way [13].

To define the pure NC U?(n) gauge theory we take as generators of the u?(n) algebra: T a, a =
1, · · · , n2 − 1 (n × n su(n) generators) and T 0 = 1√

2n
1n×n. The u?(n) Lie-algebra is defined with

the star-matrix bracket:
[f, g]? = f ? g − g ? f , f, g ∈ u?(n) . (8)

The U?(n) gauge theory is described by the u?(n) valued gauge fields:

Gµ =
n2−1∑

A=0

GAµ (x)TA , (9)

with the infinitesimal gauge transformation

Gµ → G′µ = Gµ + i∂µλ+ g[λ,Gµ]? , λ ∈ u?(n) . (10)

Under the above tranformation, the field strength

Gµν = ∂[µGν] + ig[Gµ, Gν ]? , (11)

transforms covariantly:
Gµν → G′µν = Gµν + ig[λ,Gµν ]? . (12)

leaving invariant the action of the pure U?(n) gauge theory:

S = −
1

4π

∫
dDx Tr(Gµν ? G

µν) . (13)

One peculiar feature to be noticed in the case of the pure U?(n) gauge theory is that, fixing the
number of gauge field degrees of freedom (which is n2) the dimension of the matrix representation
is automatically fixed, i.e. the gauge fields must be in the n×n matrix form. The main physical
implication is that the matter fields coupled to the U?(n) gauge theory can only be in fundamental,
antifundamental, adjoint and singlet states.

Another nontrivial point in the noncommutative gauge theories is to define the direct product
of NC gauge groups. In the commutative case, if G1 and G2 are gauge groups, then G = G1 ×G2

is defined through:

g = g1 × g2 , g
′ = g′1 × g

′
2, gi, g

′
i ∈ Gi, g, g

′ ∈ G,
g · g′ = (g1 × g2) · (g′1 × g

′
2) ≡ (g1 · g

′
1)× (g2 · g

′
2) . (14)

In the noncommutative case, let G1 =U?(n) and G2 =U?(m). But now the group products in-
volve the ?-product, so that the group elements can not be re-arranged. As a result, the definition of
direct product cannot be straightforwardly generalized to the NC case and consequently the matter
fields cannot be in fundamental representations of both U?(n) and U?(m). The only possibility left is
for a matter field to be in the fundamental representation of a gauge group and the antifundamental
representation of another:

Ψ→ Ψ′ = U ?Ψ ? V −1, U ∈ U?(n), V ∈ U?(m). (15)

In the general case of n gauge groups

G =
N∏

i=1

U?(ni) , (16)

the matter fields can be charged under at most two of the U?(ni) factors.
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2.3. NC Standard Model. A solution to the charge quantization problem

Based on the above no-go theorem, we have built a noncommutative version of the Standard
Model [8]. The model is based on the gauge group U?(3) ×U?(2) ×U?(1) (the general elements of
the respective group factors will be denoted by U ∈ U?(3), V ∈ U?(2), v ∈ U?(1)) and comprises:
one gauge field, Bµ, valued in u?(1), four gauge fields of u?(2):

Wµ(x) =
3∑

I=0

W I
µ(x)σI , (17)

where σi, i = 1, 2, 3 are the Pauli matrices and σ0 = 12×2 and nine gauge fields of u?(3):

Gµ(x) =
8∑

A=0

GAµ (x)TA , (18)

where T a, a = 1, 2, · · · , 8 are the Gell-Mann matrices and T 0 = 13×3. This choice of the gauge group
is due to the fact that there is no straightforward noncommutative extension of the SU(n) groups.
However, compared to the commutative Standard Model, two additional gauge fields have appeared,
corresponding to the extra U(1) factors. The reduction of the extra U(1) factors is achieved through
a Higgs-type of mechanism, in two stages. First the mechanism is run with the symmetry-reducing
scalar field

Φ1(x)→ U1(x)Φ1(x)V −1
1 (x) , (19)

with U1 ∈ U(1) ⊂ U?(3) and V1 ∈ U(1) ⊂ U?(2). In the second stage, the symmetry is reduced
eventually to that of hyper-charge, throught the scalar particle

Φ2(x)→ s(x)Φ2(x)v−1(x) , (20)

with s ∈ U(1)residual and v ∈ U?(1). After the symmetry reduction, two of the gauge fields become
massive (G0 and W 0) and the gauge field corresponding to the residual U(1) symmetry will be the
(masless) hyper-photon Y .

When coupling matter fields to the U?(3) ×U?(2) ×U?(1) theory, we have to keep in mind that,
according to [9], the fields can be only in the fundamental and/or anti-fundamental representation of
the group factors. It is interesting to note that the no-go theorem allows six different types of charged
particles in the case of three simple group factors and the matter content of the original Standard
Model (including the Higgs particle) exhausts those possible types of charges. By properly taking
the representations of the matter fields and performing the U(1) symmetry reduction introduced
earlier, it is straightforward to show that the couplings of all matter fields to the hyper-photon Yµ are
realized through the usual hypercharges [8]. Moreover, after performing the spontaneous symmetry
breaking of the original Standard Model, all particles will couple to the photon Aµ through the
usual electric charges, i.e. 1, -1, 0, -1/3, 2/3, so this model provides a solution to the NC charge
quantization problem.

Another proposal for a noncommutative version of the Standard Model is based on the Seiberg-
Witten (SW) map [14], which assigns to commutative gauge configurations the noncommutative
equivalent configurations, linked by field-dependent noncommutative gauge transformations. This
version of the NC SM is constructed from NC fields realized by SW map as a tower of commutative
fields, transforming under G = U(1) × SU(2) × SU(3). There are no additional U(1) gauge fields,
so there is no need for the U(1) factor reduction. The gauge symmetry is considered on Lie algebra
level and not Lie group level. Consequently, arbitrary (fractional) U(1) charges are admissible.
However, this last point can be considered as a disadvantage: in the NC SM based on the no-go
theorem, the U(1) factor reduction fixes the correct (hyper) charges for all SM particles.
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3. Lamb shift in NC QED. Bounds on θ

In this section we focus on the hydrogen atom and, using the non-relativistic limit of NC QED
results, we propose the Hamiltonian describing the NC H-atom. Given the Hamiltonian and as-
suming that the noncommutativity parameter (θij) is small, we study the spectrum of H-atom. We
show that because of noncommutativity, even at field theory tree level, we have some corrections to
the Lamb shift (2P1/2 → 2S1/2 transition) [10].

Hereafter, we shall consider the electron of the H-atom moving in the external field of the proton.
However, similar results (up to a numerical factor) would be obtained by treating the proton as a
composite particle, e.g., in the naive quark model [15]. The latter analysis infirms the treatement
of [16], where the proton is taken as an elementary particle, thereby obtaining no noncommutative
corrections for the H-atom spectrum at tree level.

To start with, we propose the following Hamiltonian for the noncommutative H-atom:

H =
p̂.p̂

2m
−
Ze2

√
x̂x̂

, (21)

with

[x̂i, x̂j ] = iθij , [x̂i, p̂j ] = ih̄δij , [p̂i, p̂j ] = 0 . (22)

The NC Coulomb potential

V (r) = −
Ze2

r
−

e

4h̄
(θ × p) · (−

Zer

r3
) +O(θ2) , (23)

with θij = 1
2εijkθk can be obtained either as the nonrelativistic limit from the NC photon exchange

diagram or from the change of variables:

xi = x̂i +
1

2h̄
θij p̂j , pi = p̂i , (24)

where the new variables satisfy the usual canonical commutation relations:

[xi, xj ] = 0 , [pi, pj ] = 0 , [xi, pj ] = ih̄δij . (25)

Using the usual perturbation theory, the leading corrections to the energy levels due to noncom-
mutativity, i.e. first order perturbation and in field theory tree level, are:

∆EH−atomNC = −
mec

2

4
(Zα)4 θ

λ2
e

jz(1∓
1

2l + 1
)

× fn,l δll′δjzj′z (26)

for j = l ± 1
2 and fn,l = 1

n3l(l+ 1
2

)(l+1)
. The case of our interest, the 2P1/2 → 2S1/2 transition (Lamb

shift), for the noncommutative H-atom, besides the usual loop effects, depends on the jz quantum
number (only for the 2P1/2 level, as the levels with l = 0 are not affected) and is there, even in the
field theory tree level. Hence we call it polarized Lamb shift. New transition channels are opened

(notation nljzj ), i.e. 2P
−1/2
1/2 → 2P

1/2
1/2 and a split of the usual Lamb shift occurs: 2P

1/2
1/2 → 2S1/2 and

2P
−1/2
1/2 → 2S1/2.

One can use the data on the Lamb shift to impose some bounds on the value of the noncommu-
tativity parameter θ. Of course, to do it, we only need to consider the classical (tree level) results,
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(26). Comparing these results, the contribution of (26) should be of the order of 10−6−10−7 smaller
than the usual one loop result and hence,

θ

λ2
e

>
∼10−7α or

1
√
θ

>
∼ 10 TeV . (27)

The same bound is obtained also from the violation of Lorentz invariance, based on the clock-
comparison experiments, which monitor the difference between two atomic hyperfine or Zeeman
transition frequencies, searching for variations as the Earth rotates [17].

4. Noncommutative quantum field theory and spin-statistics theorem

Pauli’s spin-statistics relation [18] is responsible for the entire structure of the matter and for
its stability. Experimentally, the relation has been verified to high accuracy. Theoretically up to
now there has been no compelling argument or logical motivation for its breaking. However, the
violation of Lorentz invariance as well as the intrinsic nonlocality of noncommutative field theories
may suggest that a (presumably very small, of the order of |θµν |m2) breaking of this fundamental
theorem, as well as of the CPT theorem, might be possible.

Pauli demonstrated [18] the spin-statistics relation based on the following requirements: i) The
vacuum is the state of lowest energy; ii) Physical quantities (observables) commute with each other
in two space-time points with a space-like distance; iii) The metric in the physical Hilbert space is
positive definite.

In the noncommutative case the physical quantities (observables) which are in general products
of several field operators, are no more local quantities and could therefore fail to fulfil the above
requirement ii). For instance, taking the normally ordered product : φ2(x) : for a real scalar
field with mass m, its noncommutative version : φ(x) ? φ(x) : could give a nonvanishing equal-time
commutation relation (ETCR). In particular, the matrix element between vacuum and a two-particle
state, on a d-dimensional space, when Bose statistics is used, is [11]:

〈0|[: φ(x) ? φ(x) : , : φ(y) ? φ(y) :]
∣
∣
∣
x0=y0

|p, p′〉 = −
2i

(2π)2d

1
√
ωpωp′

×(e−ip
′x−ipy + e−ipx−ip

′y)

∫
d~k

ωk
sin[~k(~x− ~y)] cos(

1

2
θµνkµpν) cos(

1

2
θµνkµp

′
ν), (28)

where ωk = k0 =

√
~k2 +m2 and ~k = (k1, ..., kd). The r.h.s. of (28) is nonzero only when θ0i 6= 0.

This holds for observables expressed as any power of both bosonic fields and their derivatives, with
?-product analogous to (28), and spinor fields and their derivatives, with anti-commutation relation
used in the latter case. The study of NC QFT also showed a violation of both causality [19] and
unitarity [20] conditions, for theories with noncommutative time (θ0i 6= 0). Indeed, while the low-
energy limit of string theory in a constant antisymmetric background field Bmn, which exhibits
noncommutativity, reduces to field theory with the ?-product when θ0i = 0, for the case θ0i 6= 0
there is no corresponding low-energy field theory limit.

The field theories with light-like noncommutativity, θµνθµν = 0, i.e. θ0i = −θ1i, become very
interesting from this point of view as they preserve unitarity [21]. In this case, however, the
microcausality in the sense of ETCR (28) is still violated [11].

If the field theory with light-like noncommutativity is indeed the low-energy limit of string
theory, as stated in [21], it is then intriguing that the theory is unitary but acausal (as it is known
that a low-energy effective theory should not necessarily be unitary, as is the case, e.g., for the Fermi
four-spinor interaction).
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5. CPT Theorem in NC Field Theories

The CPT theorem [22] (see also [23] for a review) is of a universal nature in that it is valid
in all the known field theories. The general validity of the CPT theorem for any noncommutative
quantum field theory of the type (1) was shown in [11] (for partial results, see [24]). Based on the
anti-unitary character of the CPT transformation (denoted hereafter by �):

(c1A+ c2b)
� = c1A

� + c2B
� (linearity) ,

(AB)� = B�A�, (29)

where c1 and c2 are c-number coefficients, and the set of CPT transformations for local elementary
fields [25]:

ψ�α(x) = (iγ5)αβψβ(−x) , ψ̄�α(x) = ψ̄β(−x)(iγ5)βα ,
φ�λ1...λn(x) = (−1)nφλ1...lambdan(−x) (30)

it is easy to show that
H�int(x) = Hint(−x) , (31)

where

H(x) =
∑

i1...in

fi1...inφ
1
i1(x) ? ... ? φnin(x) . (32)

Here ij with j = 1, ..., n stand for spinorial or tensorial indices and the coefficients fi1...in are so
chosen as to make H(x) a scalar under proper Lorentz transformations, in the local limit.

The CPT theorem is valid for any form of noncommutativity, including the case θ0i 6= 0.

6. Conclusions

In the framework of noncommutative gauge theories, we present a no-go theorem according to
which the closure condition of the gauge algebra implies that: 1) the local NC u(n) algebra only
admits the irreducible n×n matrix-representation. Hence the gauge fields are in n×n matrix form,
while the matter fields can only be in fundamental, adjoint or singlet states; 2) for any gauge group
consisting of several simple-group factors, the matter fields can transform nontrivially under at most
two NC group factors. In other words, the matter fields cannot carry more than two NC gauge group
charges. This no-go theorem imposes strong restrictions on the NC version of the Standard Model
and in resolving the standing problem of charge quantization in noncommutative QED.

Elaborating on the phenomenological implications of noncommutativity we have calculated the
noncommutative corrections to the spectrum of the H-atom and obtained a bound on θ from the
data on the Lamb shift.

We have found that the CPT theorem is generally valid in NC FT, irrespective of the form of
the noncommutativity parameter θµν involved, although Lorentz invariance is violated. The spin-
statistics theorem holds in the case of field theories with space-space noncommutativity, which can
be obtained as a low-energy limit from the string theory.

A violation of the spin-statistics relation in the case of NC time can not be justified, given the
pathological character of such theories. The case of light-like noncommutativity (compatible with
unitarity) deserves, however, more attention.

In conclusion, it is of importance to study further the light-like case, as to determine whether
it can indeed be obtained as a low-energy limit of string theory. Questions concerning a possible
breaking of the spin-statistics relation are of outmost importance, since such a violation, no matter
how small, would have a crucial impact on the structure and the stability of matter in the Universe.
The issue, on the other hand, is of fundamental interest by itself, since up to now no theoretical
argument or motivation for such a breaking has been presented.
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Phys. B 567 (2000) 360, hep-th/9812180.

[5] S. Minwalla, M. Van Raamsdonk and N. Seiberg, JHEP 9906 (2000) 020, hep-th/9912072.

[6] M.M. Sheikh-Jabbari, JHEP 9906 (1999) 015, Report No. hep-th/9903107.

[7] M. Hayakawa, Phys. Lett. B 478 (2000) 394, hep-th/9912094.
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