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A simple procedure to enumerate all Toda systems associated with complex classical Lie groups is given.

1 Introduction

By a Toda system we mean a system of nonlinear partial differential equations for functions of two
real variables or one complex variable having a special form. A concrete Toda system is specified by
the choice of a Lie group and by the choice of a Z-gradation of the corresponding Lie algebra, see,
for example, [1, 2]. Any Toda system is exactly or completely integrable, and this is actually enough
to justify the necessity to investigate them. As a matter of fact, they arise in many mathematical
and physical problems having as fundamental as application significance.

In this talk we discuss the classification of non-abelian Toda systems associated with classical
Lie groups. Such a classification was performed earlier with the help of the root decomposition of
the corresponding Lie algebras in papers [3, 4]. Here we use the approach which is not based on
root techniques and appeals only to general properties of simple Lie algebras.

2 Toda systems

Let M be either the real manifold R2 or the complex manifold C. Denote the standard coordinates
on R2 by z− and z+. In the case of the manifold C we denote by z− the standard complex coordinate
z and by z+ its complex conjugate z̄1 .

Recall that a Lie algebra g is said to be Z-graded if there is given a representation

g =
⊕

m∈Z

gm,

where

[gm, gn] ⊂ gm+n

for all m,n ∈ Z. The subspace g0 is a subalgebra of g.

Consider a real or complex matrix Lie group2 G whose Lie algebra g is endowed with a Z-
gradation. Let for some positive integer l the subspaces g−m and g+m for 0 < m < l be trivial.

1Actually one can assume that M is an arbitrary two-dimensional real manifold or one-dimensional complex
manifold. Here z− and z+ are some local coordinates.

2The case of a general, not necessarily matrix, Lie group is considered in the paper [5], and in the book [2].
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Denote by G0 the connected Lie subgroup of G corresponding to the subalgebra g0. The Toda
equations are the matrix equation for a mapping γ from M to G0 which have the following form

∂+(γ−1∂−γ) = [c−, γ
−1c+γ].

Here c− and c+ are some fixed mappings from M to g−l and g+l respectively, satisfying the conditions

∂+c− = 0, ∂−c+ = 0.

When the Lie group G0 is abelian the corresponding Toda system is said to be abelian, otherwise
we deal with a nonabelian Toda system.

There exist the so-called higher grading [6, 7, 8, 9] and multi-dimensional [10, 11] generalisations
of the Toda systems.

3 Z-gradations

It is clear that to classify Toda systems one has to classify Z-gradations of Lie algebras. Let
us restrict ourselves to the case of Lie algebras corresponding to classical Lie groups. These are
complex special linear, orthogonal and symplectic groups. All these groups and the corresponding
Lie algebras are simple. This fact allows one to describe all Z-gradations. Here the following facts
are used.

Let us have some Z-gradation of a Lie algebra g. Define a linear operator D acting on an element
x =

∑
m∈Z xm as

Dx =
∑

m∈Z

mxm.

The Jacobi identity implies that the operator D satisfies the relation

D([x, y]) = [Dx, y] + [x,Dy].

Hence, D is a derivation of g. For any element of x ∈ g the linear operator ad(x) defined by

ad(x)y = [x, y]

is a derivation of g. Such a derivation is said to be internal. It is important for our consideration that
any derivation of a semisimple Lie algebra is internal. Therefore, in the case when g is semisimple,
for any Z-gradation there exists an element q of g such that

Dx = ad(q)x = [q, x].

The operator ad(q), or the element q itself, is called the grading operator, corresponding to the
Z-gradation under consideration. If the grading operator exists then the subspaces gm can be
described as

gm = {x ∈ g | [q, x] = mx}.

Note now that if q is the grading operator generating some Z-gradation, then the operator ad(q)
is diagonalisable. Let us recall the following fact from the theory of semisimple Lie algebras.

Let g be a complex semisimple Lie algebra, and ϕ be its linear representation. If for some x ∈ g
the operator ad(x) is diagonalisable, then the linear operator ϕ(x) is also diagonalisable.

In the case of classical Lie algebras we always have a special representation, it is the defining
representation. The above facts say in this case that any Z-gradation is generated by the corre-
sponding grading operator, and that this operator, up to an automorphism of the Lie algebra under
consideration, is a diagonal matrix.

Now, let us proceed to the description of concrete Z-gradations and corresponding Toda systems.
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4 Special linear groups

We start with the Lie groups SLn(C) and the corresponding Lie algebras sln(C).
The grading operator q corresponding to a Z-gradation of sln(C) is a diagonalisable matrix.

Hence, up to an internal automorphism any grading operator q has the block matrix form

q =








ρ1Ik1 0 · · · 0
0 ρ2Ik2 · · · 0
...

...
. . .

...
0 0 · · · ρpIkp







, (1)

where Ik is the k×k identity matrix, and we assume that Re ρ1 ≥ Re ρ2 ≥ . . . ≥ Re ρp. The grading
operator q of the above form belongs to the Lie algebra sln(C) if

∑p
a=1 ka = n and

p∑

a=1

ρaka = 0. (2)

Represent a general element x of sln(C) in the block matrix form

x =






x11 · · · x1p
...

. . .
...

xp1 · · · xpp




 , (3)

where xab is a ka × kb matrix. It is clear that

[q, x]ab = (ρa − ρb)xab.

Hence, since q generates a Z-gradation we should have ma = ρa − ρa+1 ∈ Z. It follows that all
numbers ρa have the same imaginary part, and in reality the equality (2) implies that they are real
and we will assume that ρ1 > ρ2 > . . . > ρp. The numbers ρa can be expressed via the integers ka
and ma:

ρa =
1

n

(

−
a−1∑

b=1

mb

b∑

c=1

kc +

p−1∑

b=a

mb

p∑

c=b+1

kc

)

. (4)

Thus a Z-gradation of the Lie algebra sln(C) is uniquely specified by the choice of p integers ka such
that

∑p
a=1 ka = n and by the choice of p− 1 positive integers ma. The grading operator q has the

form (1), where the numbers ρa are given by the relation (4).
The grading structure of the Lie algebras sln(C) can be depicted by the following scheme























0 m1 m1 +m2 · · ·
p−1∑

a=1

ma

−m1 0 m2 · · ·
p−1∑

a=2

ma

−(m1 +m2) −m2 0 · · ·
p−1∑

a=3

ma

...
...

...
. . .

...

−
p−1∑

a=1

ma −
p−1∑

a=2

ma −
p−1∑

a=3

ma · · · 0























.
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Here the numbers in the boxes correspond to the grading indices of the corresponding blocks in
the block matrix representation (3) of a general element of sln(C). Note, in particular, that the
subalgebra g0 is formed by all block diagonal matrices. The group G0 is also formed by block
diagonal matrices and is isomorphic to GLk1(C)× · · · ×GLkp(C).

Consider now Toda systems associated with the Lie group SLn(C). Actually, it is more conve-
nient to deal with the Lie group GLn(C). Any grading operator for the Lie algebra sln(C) can be
considered as a grading operator for the Lie algebra gln(C).

It can be easily understood that to exhaust all Toda systems it suffices to consider only gradations
with all numbers ma equal to 1 [4]. In this case the mappings c− and c+ should take values in the
subspaces g−1 and g+1 respectively. The general forms of such elements are

c− =










0 0 · · · 0 0
C−1 0 · · · 0 0

...
...

. . .
...

...
0 0 · · · 0 0
0 0 · · · C−(p−1) 0









, c+ =










0 C+1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 C+(p−1)

0 0 · · · 0 0









, (5)

where for each a = 1, . . . , p − 1 the mapping C−a takes values in the space of ka+1 × ka complex
matrices, and the mapping C+a takes values in the space of ka × ka+1 complex matrices. Besides,
these mappings must satisfy the relations

∂+C−a = 0, ∂−C+a = 0.

Parametrise the mapping γ as

γ =








Γ1 0 · · · 0
0 Γ2 · · · 0
...

...
. . .

...
0 0 · · · Γp







, (6)

where the mappings Γa take values in the Lie groups GL ka(C). In this parametrisation Toda
equations take the form

∂+

(
Γ−1

1 ∂−Γ1

)
= − Γ−1

1 C+1 Γ2C−1,

∂+

(
Γ−1
a ∂−Γa

)
= − Γ−1

a C+a Γa+1C−a + C−(a−1) Γ
−1
a−1C+(a−1) Γa, 1 < a < p,

∂+

(
Γ−1
p ∂−Γp

)
= C−(p−1) Γ

−1
p−1C+(p−1) Γp.

The simplest case is when one chooses ka = k and C−a = C+a = Ik:

∂+

(
Γ−1

1 ∂−Γ1

)
= − Γ−1

1 Γ2,

∂+

(
Γ−1
a ∂−Γa

)
= − Γ−1

a Γa+1 + Γ−1
a−1 Γa, 1 < a < p,

∂+

(
Γ−1
p ∂−Γp

)
= Γ−1

p−1 Γp.

5 Orthogonal Lie groups

It is convenient for our purposes to define the complex orthogonal group On(C) as the Lie subgroup
of GLn(C) formed by the elements a ∈ GLn(C) satisfying the condition

atJna = Jn, (7)
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where Jn is the skew-diagonal n × n unit matrix. The Lie algebra on(C) of the Lie group On(C)
consists of n× n complex matrices x satisfying the condition

xtJn + Jnx = 0. (8)

For a k1 × k2 matrix a we will denote

aT = Jk2a
tJk1 .

Actually, aT is the transpose of a with respect to the skew diagonal. The conditions (7) and (8)
can be written now as aT = a−1 and xT = −x, respectively.

The Lie algebras on(C) are simple and it is clear that any Z-gradation of on(C) is generated
by the corresponding grading operator, which has the form (1) and belongs to on(C). Hence, a
Z-gradation of the Lie algebra on(C) is uniquely specified by the choice of p integers ka such that∑p

a=1 ka = n, ka = kp−a+1, and by the choice of p− 1 positive integers ma such that ma = mp−a.
Consider now the Toda equations associated with the Lie groups On(C). The general form of

the mappings c− and c+ is again given by (5), but here the mappings C±a should obey the relations

CT−a = −C−(p−a), CT+a = −C+(p−a). (9)

The Lie group G0 in the case p = 2s−1 is isomorphic to GLk1(C)×· · ·×GLks−1(C)×SOks(C) while
in the case p = 2s it is isomorphic to GLk1(C)×· · ·×GLks(C). We can use the same parametrisation
(6) for γ as for the case of the Lie group GLn(C). Here one has

Γ Ta = Γ−1
p−a+1. (10)

The Toda equations have the same form as for the case of the Lie groups GLn(C). One only has
to take into account the relations (9) and (10). In the case of p = 2s − 1 we have s independent
mappings Γa and the equations for them are

∂+

(
Γ−1

1 ∂−Γ1

)
= − Γ−1

1 C+1 Γ2C−1,

∂+

(
Γ−1
a ∂−Γa

)
= − Γ−1

a C+a Γa+1C−a + C−(a−1) Γ
−1
a−1C+(a−1) Γa, 1 < a < s,

∂+

(
Γ−1
s ∂−Γs

)
= − Γ Ts C

T
+(s−1) Γ

−1T
s−1 CT−(s−1) + C−(s−1) Γ

−1
s−1C+(s−1) Γs.

Stress on that in this case Γ Ts = Γ−1
s . In the case p = 2s we have the equations

∂+

(
Γ−1

1 ∂−Γ1

)
= − Γ−1

1 C+1 Γ2C−1,

∂+

(
Γ−1
a ∂−Γa

)
= − Γ−1

a C+a Γa+1C−a + C−(a−1) Γ
−1
a−1C+(a−1) Γa, 1 < a < s,

∂+

(
Γ−1
s ∂−Γs

)
= − Γ−1

s C+s Γ
−1T
s C−s + C−(s−1) Γ

−1
s−1C+(s−1) Γs,

where the mappings C±s satisfy the relations

CT−s = −C−s, CT+s = −C+s. (11)

6 Symplectic Lie groups

Define the Lie group Sp2n(C) as the Lie subgroup of the Lie group GL2n(C) formed by the elements
a ∈ GL2n(C) which satisfy the condition

atK2na = K2n,
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where

K2n =

(
0 Jn

−Jn 0

)

.

Then the Lie algebra sp2n(C) of Sp2n(C) is formed by all 2n× 2n complex matrices x satisfying the
condition

xtK2n +K2nx = 0.

The Lie algebras sp2n(C) are simple and any Z-gradation of sp2n(C) is generated by the grading
operator, which has the form (1) and belongs to sp2n(C). One can get convinced that a Z-gradation
of the Lie algebra sp2n(C) is uniquely specified by the same data as for a Z-gradation of the Lie
algebra o2n(C).

Consider now the corresponding Toda equations. The mappings c− and c+ have the forms (5)
with the mappings C±a satisfying the relations

CT−a = −C−(p−a), CT+a = −C+(p−a), a 6= s− 1, s,

Jks−1 C
t
−(s−1)Kks = −C−s, Kks C

t
+(s−1) Jks−1 = −C+s

when p = 2s− 1, and

CT−a = −C−(p−a), CT+a = −C+(p−a), a 6= s,

CT−s = C−s, CT+s = C+s,

when p = 2s.
The Lie group G0 in the case of p = 2s − 1 is isomorphic to GLk1(C) × · · · × GLks−1(C) ×

Spks(C), while in the case of p = 2s it is isomorphic to GLk1(C) × · · · × GLks(C). We can use the
parametrisation (6) for the mapping γ. Here, in the case of p = 2s− 1, one has

Γ Ta = Γ−1
p−a+1, a 6= s+ 1, Γ ts Kks Γs = Kks ,

whereas in the case of p = 2s
Γ Ta = Γ−1

p−a+1

for any a. The independent Toda equations in the case of p = 2s− 1 have the form

∂+

(
Γ−1

1 ∂−Γ1

)
= − Γ−1

1 C+1 Γ2C−1,

∂+

(
Γ−1
a ∂−Γa

)
= − Γ−1

a C+a Γa+1C−a + C−(a−1)Γ
−1
a−1C+(a−1) Γa, 1 < a < s,

∂+

(
Γ−1
s ∂−Γs

)
= Γ−1

s Kks C
t
+(s−1) Γ

−1t
s−1 C

t
−(s−1)Kks + C−(s−1) Γ

−1
s−1C+(s−1) Γs.

In the case of p = 2s one has the same equations as for the Lie groups O2n(C), but with the
mappings C±s satisfying instead of (11) the relations

CT−s = C−s, CT+s = C+s.

7 Simplest example

A first non-abelian Toda system which was integrated explicitly was a system associated with the
Lie group O5(C). We start this section with the description of this system along lines used in early
papers [12, 13, 14]. The Lie algebra o5(C) of the Lie group O5(C) is of type B2. Let h1, h2 be
Cartan generators, and x±1, x±2 be the Chevalley generators corresponding to the simple roots
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α1, α2. Consider the Z-gradation generated by the grading operator q = 2h1 + h2. The grading
subspaces have the forms

g−1 = C g−α1 ⊕ C g−α1−α2 ⊕ C g−2α1−α2

g0 = C g−α2 ⊕ h⊕ C gα2

g+1 = C gα1 ⊕ C gα1+α2 ⊕ C g2α1+2α1 .

Choose the fixed mappings c− and c+ as

c+ = [x+1, x+2], c− = [x−2, x−1],

and parametrise the mapping γ as

γ = exp(a+x+2) exp(a−x−2) exp(a1h1 + a2h2)

Then the Toda equations take the form

∂+∂−a1 = − 2e−a1(1 + a−a+), (12)

∂+(∂−a1 − ∂−a2 − a−∂−a+) = − e−a2(1 + 2a−a+), (13)

∂+(ea1−2a2∂−a+) = 2e−2a2a+, (14)

∂+[e−a1+2a2(∂−a− − a
2
−∂−a+)] = 2e−2a1+2a2a−(1 + a−a+). (15)

Now, let us show how the system described above enters into our classification of non-abelian
Toda systems. First of all notice that the Lie group O5(C) is locally isomorphic to the Lie group
Sp4(C). Moreover, the formulation of the system was based only on local properties of the Lie
group O5(C). Therefore, we will come to the same system starting from the Lie group Sp4(C). This
also allows one to include the system under consideration in a series of non-abelian Toda systems
associated with the Lie groups Sp2n(C) which have an extremely simple form.

Endow the Lie algebra sp2n(C) with a Z-gradation generated by the grading operator

q =
1

2

(
In 0
0 −In

)

.

The parametrisation of the mapping γ corresponding with this Z-gradation has the form

γ =

(
Γ 0
0 (Γ T )−1

)

.

Choose the mappings c− and c+ as

c− =

(
0 0
In 0

)

, c+ =

(
0 In
0 0

)

.

The Toda equations have in our case the form

∂+(Γ−1∂−Γ ) = −(Γ TΓ )−1. (16)

In the case of n = 2, if one parametrises Γ as

Γ =

(
ea1(1 + a−a+) e−a1+a2a+

ea1a− e−a1+a2

)

,
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then the Toda equations (16) take the form (12)–(15). Certainly, the equation (16) is more attractive
than the equations (12)–(15).

In the case of n = 1 the mapping Γ is just a function, and we have the equation

∂+(Γ−1∂−Γ ) = −Γ−2.

Introducing a function F via the relation

Γ = eF

one comes to the famous Liouville equation

∂+∂−F = − e−2F .

Therefore, it is quite natural for general n to call the equation

∂+(Γ−1∂−Γ ) = −(Γ TΓ )−1

the non-abelian Liouville equation.

8 Conclusions

We have shown that the classification of the non-abelian Toda systems associated with complex
classical Lie groups can be performed using only some general properties of the semisimple Lie
algebras. The arising block matrix structure appears to be very convenient. For example, it allows
one to find explicit forms for W -algebras corresponding to non-abelian Toda systems [15, 16, 17].

The work of A.V.R. was supported in part by the Russian Foundation for Basic Research under
grant #01–01–00201 and the INTAS under grant #00–00561.
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