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If a Lagrangian of gauge theory of internal symmetries is not gauge-invariant, the energy-momentum fails

to be conserved in general.

1. Introduction

We follow the geometric formulation of classical field theory where fields are represented by
sections of a fibre bundle Y → X , coordinated by (xλ, yi) (see [7, 12, 16] for a survey). Then gauge

transformations are defined as automorphisms of Y → X . A gauge transformation is called internal
if it is a vertical automorphism of Y → X , i.e., is projected onto the identity morphism of the base

X . To study the invariance conditions and conservation laws, it suffices to consider one-parameter
groups of gauge transformations. Their infinitesimal generators are projectable vector fields

u = uλ(xµ)∂λ + u
i(xµ, yj)∂i (1.1)

on a fibre bundle Y → X . In particular, generators of internal gauge transformations are vertical

vector fields

u = ui(xµ, yj)∂i. (1.2)

We are concerned with a first order Lagrangian field theory. Its configuration space is the first
order jet manifold J1Y of Y → X , coordinated by (xλ, yi, yiλ). A first order Lagrangian is defined

as a density

L = L(xλ, yi, yiλ)ω, ω = dx1 ∧ · · · ∧ dxn, n = dimX, (1.3)

on J1Y . A Lagrangian L is invariant under a one-parameter group of gauge transformations gener-
ated by a vector field u (1.1) iff its Lie derivative

LJ1uL = J1u�dL+ d(J1u�L) (1.4)

along the jet prolongation J1u of u vanishes. In this case, the first variational formula of the calculus
of variations leads on-shell to the weak conservation law

dλT
λ
u ≈ 0 (1.5)

of the current

Tu = T
λ
uωλ, ωλ = ∂λ�ω,

Tλu = (uµyiµ − ui)∂λi L− uλL, (1.6)
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along u. In particular, the current Tu (1.6) along a vertical vector field u (1.2) reads

Tλu = −ui∂λi L. (1.7)

It is called the Noether current.

It is readily observed that

Tu+u′ = Tu + Tu′ . (1.8)

Note that any projectable vector field u (1.1), projected onto the vector field τ = uλ∂λ on X , can
be written as the sum

u = τ̃ + (u− τ̃) (1.9)

of some lift τ̃ = uλ∂λ + τ̃
i∂i of τ onto Y and the vertical vector field u − τ̃ on Y . The current

Tτ̃ (1.6) along a lift τ̃ onto Y of a vector field τ = τλ∂λ on X is said to be the energy-momentum

current [4, 7, 9, 13]. Then the decompositions (1.8) and (1.9) show that any current Tu (1.6)
along a projectable vector field u on a fibre bundle Y → X can be represented by a sum of an
energy-momentum current and a Noether one.

Different lifts τ̃ and τ̃ ′ onto Y of a vector field τ onX lead to distinct energy-momentum currents

Tτ̃ and Tτ̃′ , whose difference Tτ̃ −Tτ̃′ is the Noether current along the vertical vector field τ̃ − τ̃ ′ on
Y . The problem is that, in general, there is no canonical lift onto Y of vector fields on X , and one

can not take the Noether part away from an energy-momentum current. Therefore, if a Lagrangian
is not invariant under vertical gauge transformations, there is an obstruction for energy-momentum
currents to be conserved [15].

Note that there exists the category of so called natural fibre bundles T → X which admit

the canonical lift τ̃ of any vector field τ on X [11]. This lift is the infinitesimal generator of a
one-parameter group of general covariant transformations of T . For instance, any tensor bundle

T = (
m
⊗TX)⊗ (

k
⊗T ∗X) (1.10)

over X is of this type. The canonical lift onto T (1.10) of a vector field τ on X is

τ̃ = τµ∂µ + [∂ντ
α1ẋνα2···αmβ1···βk + . . .− ∂β1τ ν ẋα1···αmνβ2···βk − . . .]

∂

∂ẋα1···αmβ1···βk
. (1.11)

For instance, gravitation theory is a gauge field theory on natural bundles. Its Lagrangians are
invariant under general covariant transformations. The corresponding conserved energy-momentum

current on-shell takes the form

Tλ
τ̃
≈ dµUµλ, (1.12)

where Uµλ = −Uλµ is the generalized Komar superpotential [1, 6, 7, 14]. Other energy-momentum
currents differ from T

τ̃
(1.12) in Noether currents, but they fail to be conserved because almost all

gravitation Lagrangians are not invariant under vertical (non-holonomic) gauge transformations.

Here, we focus on energy-momentum conservation laws in gauge theory of principal connections
on a principal bundle P → X with a structure Lie group G. These connections are sections of the

fibre bundle

C = J1P/G→ X, (1.13)

and are identified to gauge potentials [7, 12, 16]. The well-known result claims that, if L is a
gauge-invariant Lagrangian on J1C in the presence of a background metric g, we have the familiar

covariant conservation law

∇λ(tλµ
√
| g |) ≈ 0 (1.14)

144



of the metric energy-momentum tensor

tµβ

√
| g | = 2gµα∂αβL, (1.15)

where ∇ is the covariant derivative with respect to the Levi–Civita connection of the background
metric g [9]. Moreover, other energy-momentum conservation laws differ from (1.14) in superpo-

tentials terms dµdλU
µλ. Here, we show that the conservation law (1.14) locally holds without fail.

However, no energy-momentum current is conserved if a principal bundle P is not trivial and a

Lagrangian of gauge theory on P is not gauge-invariant.
Two examples of non-invariant Lagrangians are examined. The first one is the Chern–Simons

Lagrangian whose Euler–Lagrange operator is gauge-invariant. In this case, we have a conserved
quantity, but it differs from an energy-momentum current. Another example is the Yang–Mills

Lagrangian in the presence of a background field, e.g., a Higgs field.

2. Lagrangian conservation laws

The first variational formula provides the following universal procedure for the study of Lagran-

gian conservation laws in classical field theory.

Remark 2.1. Let J2Y be the second order jet manifold coordinated by (xλ, yi, yiλ, y
i
λµ). Recall the following

standard notation: of the contact form θi = dyi − yiλdxλ, the horizontal projection

h0(dx
λ) = dxλ, h0(dy

i) = yiλdx
λ h0(dy

i
µ) = y

i
λµdx

λ,

the total derivative

dλ = ∂λ + y
i
λ∂i + y

i
λµ∂

µ
i ,

and the horizontal differential dH = dxλ ∧ dλ such that dH ◦ h0 = h0 ◦ d.

Let u be a projectable vector field on a fibre bundle Y → X and

J1u = u+ (dλu
i − yiµ∂λuµ)∂λi (2.1)

its jet prolongation onto J1Y . The Lie derivative (1.4) of a Lagrangian L along J1u reads

LJ1uL = [∂λu
λL+ (uλ∂λ + u

i∂i + (dλu
i − yiµ∂λuµ)∂λi )L]ω. (2.2)

The first variational formula states its canonical decomposition over J2Y :

LJ1uL = uV �EL + dHh0(u�HL) = (2.3)

(ui − yiµuµ)(∂i − dλ∂λi )Lω − dλ[(uµyiµ − ui)∂λi L− uλL]ω,

where uV = (u�θi)∂i,
EL = (∂iL− dλ∂λi L)θi ∧ ω, (2.4)

is the Euler–Lagrange operator, and

HL = L+ ∂λi Lθi ∧ ωλ = ∂λi Ldyi ∧ ωλ + (L− yiλ∂λi L)ω (2.5)

is the Poincaré–Cartan form.

The kernel of the Euler-Lagrange operator EL (2.4) is given by the coordinate relations

δiL = (∂i − dλ∂λi )L = 0, (2.6)
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and defines the Euler–Lagrange equations. Their classical solution is a section s of the fibre bundle

X → Y whose second order jet prolongation J2s lives in (2.6).

Remark 2.2. Note that different Lagrangians L and L′ lead to the same Euler–Lagrange operator if their
difference L0 = L−L′ is a variationally trivial Lagrangian whose Euler–Lagrange operator vanishes. Such a
Lagrangian takes the form

L0 = h0(ε) (2.7)

where ε is a closed n-form on Y [8, 16]. We have locally ε = dσ and

L0 = h0(dσ) = dH(h0(σ)).

On the shell (2.6), the first variational formula (2.3) leads to the weak identity

∂λu
λL + [uλ∂λ + u

i∂i + (dλu
i − yiµ∂λuµ)∂λi ]L ≈ −dλ[(̧uµyiµ − ui)∂λi L− uλL]. (2.8)

If the Lie derivative LJ1uL (2.2) vanishes, we obtain the weak conservation law 0 ≈ −dHTu (1.5) of

the current Tu (1.6). It takes the coordinate form

0 ≈ −dλ[(uµyiµ − ui)∂λi L− uλL]. (2.9)

Remark 2.3. It should be emphasized that, from the first variational formula, the symmetry current (1.6)

is defined modulo the terms dµ(c
µλ
i (yiνu

ν − ui)), where cµλi are arbitrary skew-symmetric functions on Y .

Here we leave aside these boundary terms which are independent of a Lagrangian.

The weak conservation law (2.9) leads to the differential conservation law

∂λ(T
λ ◦ s) = 0

on a solution s of the Euler–Lagrange equations. This differential conservation law implies the
integral law ∫

∂N

s∗T = 0, (2.10)

where N is a compact n-dimensional submanifold of X and ∂N denotes its boundary.

Remark 2.4. It may happen that a current T (1.6) takes the form

T =W + dHU = (Wλ + dµU
µλ)ωλ, (2.11)

where the term W vanishes on-shell (W ≈ 0) and

U = Uµλωµλ, ωµλ = ∂µ�ωλ, (2.12)

is a horizontal (n − 2)-form on J1Y . Then one says that T reduces to a superpotential U (2.12) [3, 7, 13].
In this case, the integral conservation law (2.10) becomes tautological. At the same time, the superpotential
form (2.11) of T implies the following integral relation∫

Nn−1

s∗T =

∫
∂Nn−1

s∗U, (2.13)

where Nn−1 is a compact oriented (n − 1)-dimensional submanifold of X with the boundary ∂Nn−1. One

can think of this relation as being a part of the Euler–Lagrange equations written in an integral form.
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Remark 2.5. Let us consider conservation laws in the case of gauge transformations preserving the Euler-
Lagrange operator EL, but not necessarily a Lagrangian L. Let u be a generator of these transformations.
Then we have

LJ2uEL = 0,

where J2u is the second order jet prolongation of the vector field u. There is the relation

LJ2uEL = ELJ1uL

[5, 7], and we obtain ELJ1uL = 0. It follows that the Lie derivative LJ1uL is a variationally trivial Lagrangian.
Hence, it takes the form h0(ε) (2.7). Then the weak identity (2.8) comes to the weak equality

h0(ε) ≈ −dHTu. (2.14)

A glance at this expression shows that
h0(e) =W + dHφ, (2.15)

where W ≈ 0. Then the equality (2.14) leads to the weak conservation law

0 ≈ dH(φ+Tu), (2.16)

but the conserved quantity φ+Tu is not globally defined, unless ε is an exact form. For instance, let Y → X
be an affine bundle. In this case, ε = ε + dσ where ε is an n-form on X [8]. Since the weak equality ε ≈ 0

implies the strong one ε = 0, we obtain from the expression (2.15) that ε is also an exact form. Thus, the

conserved quantity in the conservation law (2.16) is well defined.

Remark 2.6. Background fields do not live in the dynamic shell (2.6) and, therefore, break Lagrangian
conservation laws as follows. Let us consider the product

Ytot = Y ×
X
Y ′ (2.17)

of a fibre bundle Y , coordinated by (xλ, yi), whose sections are dynamic fields and a fibre bundle Y ′, coor-
dinated by (xλ, yA), whose sections are background fields which take the background values

yB = φB(x), yBλ = ∂λφ
B(x). (2.18)

A Lagrangian L is defined on the total configuration space J1Ytot. Let u be a projectable vector field on
Ytot which also projects onto Y ′ because gauge transformations of background fields do not depend on the
dynamic ones. This vector field takes the coordinate form

u = uλ(x)∂λ + u
A(xµ, yB)∂A + ui(xµ, yB , yj)∂i. (2.19)

Substitution of (2.19) in (2.3) leads to the first variational formula in the presence of background fields

∂λu
λL+ [uλ∂λ + u

A∂A + ui∂i + (dλu
A − yAµ ∂λuµ)∂λA + (2.20)

(dλu
i − yiµ∂λuµ)∂λi ]L = (uA − yAλ uλ)∂AL+ ∂λALdλ(uA − yAµ uµ) +

(ui − yiλuλ)δiL− dλ[(uµyiµ − ui)∂λi L − uλL].

Then the following identity

∂λu
λL+ [uλ∂λ + u

A∂A + ui∂i + (dλu
A − yAµ ∂λuµ)∂λA +

(dλu
i − yiµ∂λuµ)∂λi ]L ≈ (uA − yAλ uλ)∂AL+ ∂λALdλ(uA − yAµ uµ) −

dλ[(u
µyiµ − ui)∂λi L − uλL]

holds on the shell (2.6). A total Lagrangian L usually is constructed to be invariant under gauge transfor-
mations of the product (2.17). In this case, we obtain the weak identity

(uA − yAµ uµ)∂AL+ ∂λALdλ(uA − yAµ uµ) ≈ dλ[(uµyiµ − ui)∂λi L − uλL]. (2.21)

147



in the presence of background fields on the shell (2.18). Given a background field φ (2.18), there always exists
a vector field on a fibre bundle Y → X such that the left-hand side of the equality (2.21) vanishes. This is
the horizontal lift

τ̃ = τλ(∂λ +ΓAα∂A)

onto Y ′ of a vector field τ on X by means of a connection Γ on Y ′ → X whose integral section is φ, i.e.,

∂λφ
A = ΓAλ ◦ φ. However, the Lie derivative of a Lagrangian L along this vector field need not vanish.

3. Noether conservation laws in gauge theory

Let πP : P → X be a principal bundle with a structure Lie group G which acts on P on the
right

Rg : p �→ pg, p ∈ P, g ∈ G. (3.1)

A principal bundle P is equipped with a bundle atlas ΨP = {(Uα, ψPα} whose trivialization mor-
phisms ψPα obey the equivariance condition

ψPα (pg) = ψ
P
α (p)g, ∀g ∈ G, ∀p ∈ π−1P (Uα). (3.2)

A gauge transformation in gauge theory on a principal bundle P → X is defined as an automor-
phism ΦP of P → X which is equivariant under the canonical action (3.1), i.e., Rg◦ΦP = ΦP ◦Rg for
all g ∈ G. The infinitesimal generator of a one-parameter group of these gauge transformations is a

G-invariant vector field ξ on P . It is naturally identified to a section of the quotient TGP = TP/G
of the tangent bundle TP → P by the canonical action RG (3.1). Due to the equivariance condition

(3.2), any bundle atlas ΨP of P yields the associated bundle atlase {Uα, TψPα/G)} of TGP . Given a
basis {ep} for the right Lie algebra gr of the group G, let {∂λ, ep} be the corresponding local fibre

bases for the vector bundles TGP . Then a section ξ of TGP → X reads

ξ = ξλ∂λ + ξ
pep. (3.3)

The infinitesimal generator of a one-parameter group of vertical gauge transformations is a G-
invariant vertical vector field on P identified to a section ξ = ξpep of the quotient

VGP = V P/G ⊂ TGP (3.4)

of the vertical tangent bundle V P of P by the canonical action RG (3.1).

The Lie bracket of two sections ξ and η of the vector bundle TGP → X reads

[ξ, η] = (ξµ∂µη
λ − ηµ∂µξλ)∂λ + (ξλ∂λη

r − ηλ∂λξr + crpqξpηq)er, (3.5)

where crpq are the structure constants of the Lie algebra gr. Putting ξλ = 0 and ηµ = 0, we obtain
the Lie bracket

[ξ, η] = crpqξ
pηqer (3.6)

of sections of the vector bundle VGP → X . A glance at the expression (3.6) shows that the
typical fibre of VGP → X is the Lie algebra gr. The structure group G acts on gr by the adjoint

representation.
A principal connection on a principal bundle P → X is defined as a global section A of the affine

jet bundle J1P → P which is equivariant under the right action (3.1), i.e.,

J1Rg ◦ A = A ◦Rg, ∀g ∈ G. (3.7)
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Due to this equivariance condition, there is one-to-one correspondence between the principal con-

nections on a principal bundle P → X and the global sections A of the quotient C (1.13) of the
first order jet manifold J1P of a principal bundle P → X by the jet prolongation of the canonical

action RG (3.1). The quotient C (1.13) is an affine bundle over X . Given a bundle atlas ΨP of P ,
it is provided with bundle coordinates (xλ, aqλ) such that Aqλ = a

q
λ ◦A are coefficients of the familiar

local connection form Aqλdx
λ ⊗ eq on X , i.e., aqλ are coordinates of gauge potentials. Therefore C

(1.13) is called the connection bundle. Gauge transformations of P generated by the vector field
(3.3) induce gauge transformations of C whose generator is

ξC = ξλ∂λ + (∂µξ
r + crpqa

p
µξ
q − arλ∂µξλ)∂µr . (3.8)

The configuration space of gauge theory is the first order jet manifold J1C of C coordinated by
(xλ, aqλ, a

q
λµ). It admits the canonical splitting over C which takes the coordinate form

arλµ =
1

2
(F rλµ + Srλµ) =

1

2
(arλµ + a

r
µλ − crpqa

p
λa
q
µ) +

1

2
(arλµ − arµλ + crpqa

p
λa
q
µ). (3.9)

Let L be a Lagrangian on J1C. One usually requires of L to be invariant under vertical gauge

transformations. It means that the Lie derivative LJ1ξCY L of L along the jet prolongation (2.1) of
any vertical vector field

ξC = (∂λξ
r + crqpa

q
λξ
p)∂λr (3.10)

on C vanishes. Coefficients ξq of this vector field play the role of gauge parameters. Then we
come to the well-known Noether conservation law. The key point is that, since the vector fields

(3.10) depends on derivatives of gauge parameters, the Noether current in gauge theory reduces to
a superpotential as follows.

The first variational formula (2.3) leads to the strong equality

0 = (∂µξ
r + crqpa

q
µξ
p)δµrL+ dλ[(∂µξ

r + crqpa
q
µξ
p)∂λµr L]. (3.11)

Due to the arbitrariness of gauge parameters ξp, this equality falls into the system of equalities

crpq(a
p
µ∂
µ
r L + apλµ∂

λµ
r L) = 0, (3.12a)

∂µq L + crpqa
p
λ∂
µλ
r L = 0, (3.12b)

∂µλp L+ ∂λµp L = 0. (3.12c)

One can think of them as being the equations for a gauge-invariant Lagrangian. As is well known,

there is a unique solution of these equations in the class of quadratic Lagrangians. It is the con-
ventional Yang-Mills Lagrangian LYM of gauge potentials on the configuration space J1C. In the
presence of a background metric g on the base X , it reads

LYM =
1

4ε2
aGpqg

λµgβνF pλβF qµν
√
| g |ω, g = det(gµν), (3.13)

where F rλµ are components of the canonical splitting (3.9) and aG is a G-invariant bilinear form on

the Lie algebra gr.

On-shell, the strong equality (3.11) becomes the weak Noether conservation law

0 ≈ dλ[(∂µξr + crqpaqµξp)∂λµr L] (3.14)

of the Noether current

Tλξ = −(∂µξr + crqpaqµξp)∂λµr L. (3.15)
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In accordance with the strong equalities (3.12b) and (3.12c), the Noether current (3.15) is brought

into the superpotential form

Tλξ = ξ
rδλrL + dµU

µλ, Uµλ = ξp∂λµp L.

The corresponding integral relation (2.13) reads∫
Nn−1

s∗Tλωλ =

∫
∂Nn−1

s∗(ξp∂µλp )ωµλ, (3.16)

where Nn−1 is a compact oriented (n−1)-dimensional submanifold of X with the boundary ∂Nn−1.
One can think of (3.16) as being the integral relation between the Noether current (3.15) and the
gauge field, generated by this current. In electromagnetic theory seen as a U(1) gauge theory, the

similar relation between an electric current and the electromagnetic field generated by this current
is well known. However, it is free from gauge parameters due to the peculiarity of Abelian gauge

models.

4. Energy-momentum conservation laws in gauge theory

Let us turn now to energy-momentum conservation laws in gauge theory.
Let B be a principal connection on a principal bundle P → X . Given a vector field τ on X ,

there exists its lift
τ̃B = τλ∂λ + [∂µ(τ

λBrλ) + c
r
qpa

q
µ(τ

λBpλ)− arλ∂µτλ]∂µr . (4.1)

onto the connection bundle C → X (1.13) [5, 7, 12, 13]. Comparing the expressions (3.8) and

(4.1), one easily observes that the lift τ̃B is a generator of gauge transformations of C with gauge
parameters ξλ = τλ, ξr = τλBrλ.

Let us discover the energy-momentum current along the lift (4.1). We assume that a Lagrangian
L of gauge theory also depends on a background metric on X . This metric is described by a section

of the tensor bundle
2
∨TX provided with the holonomic coordinates (xλ, σµν). Following Remark

2.6, we define L on the total configuration space

J1Y = J1(C×
X

2
∨TX). (4.2)

Given a vector field τ on X , there exists its canonical lift

τ̃ = τλ∂λ + (∂ντ
ασνβ + ∂ντ

βσνα)∂αβ (4.3)

(1.11) onto the tensor bundle
2
∨TX . It is a generator of general covariant transformations of

2
∨TX .

Combining (4.1) and (4.3), we obtain the lift

τ̃Y = τ̃1 + τ̃2 = [τλ∂λ + (∂ντ
ασνβ + ∂ντ

βσνα)∂αβ − arλ∂µτλ∂µr ] + (4.4)

[∂µ(τ
λBrλ) + c

r
qpa

q
µ(τ

λBpλ)]∂
µ
r

of a vector field τ on X onto the product Y . Note that the decomposition (4.4) of the lift τ̃Y is

local. One can think of the summands τ̃1 and τ̃2 as being local generators of general covariant
transformations (cf. (1.11)) and vertical gauge transformations (cf. (3.10)) of the product Y ,

respectively.
Let a Lagrangian L on the total configuration space (4.2) be invariant under general covariant

transformations and vertical gauge transformations. Hence, its Lie derivative along the vector field
τ̃Y (4.4) equals zero. Then using the formula (2.21) on the shell

σµν = gµν(x), δµrL = 0,
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we obtain the weak identity

0 ≈ (∂ντ
αgνβ + ∂ντ

βgνα − ∂λgαβτλ)∂αβL − dλTλB , (4.5)

where
TλB = [∂λνr L(τµarµν + ∂ντµarµ)− τλL] + [−∂λνr L(∂ν(τµBrµ) + crqpaqν(τµBpµ)] (4.6)

is the energy-momentum current along the vector field (4.1). The weak identity (4.5) takes the form

0 ≈ ∂λτµtλµ
√
| g | − τµ{µβλ}tλβ

√
| g | − dλTλB , (4.7)

where tλµ is the metric energy-momentum tensor (1.15) and {µβλ} are the Christoffel symbols of g.

Accordingly, the current TλB (4.6) is brought into the form

TλB = τµtλµ

√
| g |+ τα(Brα − arα)δλrL+ dµ(τ

α(Brα − arα)∂λµr L). (4.8)

Substituting TλB (4.8) into the weak identity (4.7), we obtain the covariant conservation law (1.14)

independent of the choice of the connection B in the lift (4.1).

5. The case of broken gauge invariance

On a local coordinate chart, the conservation law (1.14) issues directly from the local decompo-

sition (4.4). Namely, the current TB is decomposed locally into the sum Tτ̃1 + Tτ̃2 of the energy-
momentum current T

τ̃1
along the the projectible vector field τ̃1 and the Noether current T

τ̃2
along

the vertical vector field τ̃2. Since the Noether current Tτ̃2 is reduced to a superpotential, it does not
contribute to the energy-momentum conservation law (1.14) if a Lagrangian L is invariant under

vertical gauge transformations. However, if L is not gauge-invariant, the conservation law (1.14)
takes the local form

LJ1 τ̃2L = τµ∇λ(tλµ
√
| g |) (5.1)

on each coordinate chart. Of course, one can choose B = 0 and restart the conservation law
(1.14) on a given coordinate chart without fail. However, if P is a non-trivial principal bundle, no

principal connection on P vanishes everywhere. In this case, no energy-momentum of gauge fields
is conserved.

Turn now to the above mentioned example of the Chern–Simons Lagrangian [2, 7].
Let P → X3 be a principal bundle over a 3-dimensional manifold X whose structure group G is

a semisimple Lie group. The Chern–Simons Lagrangian on the configuration space J1C of principal
connections on P reads

LCS =
1

2k
aGmnε

αλµamα (Fnλµ −
1

3
cnpqa

p
λa
q
µ)ω, (5.2)

where εαλµ is the skew-symmetric Levi–Civita tensor and k is a coupling constant. In comparison

with the Yang–Mills Lagrangian (3.13), the Chern–Simons Lagrangian (5.2) is independent of any
metric on X and is not gauge-invariant. At the same time, the Euler–Lagrange operator

ELCS =
1

k
aGmnε

αλµFnλµθmα ∧ ω. (5.3)

is gauge-invariant. Therefore, let us follow Remark 2.5 in order to study Lagrangian conservation
laws in the Chern–Simons model.

Given a generator ξC (3.10) of vertical gauge transformations, we obtain

LJ1ξCLCS =
1

k
aGmnε

αλµ∂αξ
manλµω. (5.4)
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Since C → X is an affine bundle, the Lie derivative (5.4) is brought into the form

LJ1ξCLCS = dHφ,

where

φ =
1

k
aGmnε

αλµ∂αξ
manµωλ

is a horizontal 2-form on C → X . Then we obtain the weak conservation law (2.16) where

Tλ = −1

k
aGmnε

αλµξC
n
µa
m
α

is the Nöther current. Moreover, this conservation law takes the superpotential form

0 ≈ dλ(ξλLCS + dµUµλ), Uµλ =
2

k
aGmnε

αµλξnamα .

Turn now to the energy-momentum conservation law in the Chern–Simons model. Let τ be a
vector field on the base X and τ̃B (4.1) its lift onto the connection bundle C by means of a principal

connection B. We obtain

LJ1τ̃BLCS =
1

k
aGmnε

αλµ∂α(τ
νBmν )a

n
λµω.

Then the corresponding conservation law (2.16) takes the form

0 ≈ −dλ[TλB +
1

k
aGmnε

αλµ∂α(τ
νBmν )a

n
µ],

where TB is the energy-momentum current (4.6) along the vector field τ̃B. It follows that the

energy-momentum current of the Chern–Simons model is not conserved because the Lagrangian
(5.2) is not gauge-invariant, but there exists another conserved quantity.

Another example of non-invariant Lagrangians is a Lagrangian of gauge fields in the presence of
a background field (see Remark 2.6). Let us focus on the physically relevant case of gauge theory

with spontaneous symmetry breaking. It is gauge theory on a principal bundle P → X whose
structure group G is reduced to its closed subgroup H , i.e., there exists a principal subbundle
P σ of P with the structure group H . Moreover, by the well-known theorem [7, 10], there is one-

to-one correspondence between the H-principal subbundles P σ of P and the global sections σ of
the quotient bundle P/H → X . These sections are called Higgs fields. The total Lagrangian L

of gauge potentials and Higgs fields on the configuration space J1(C × P/H) is gauge invariant.
Therefore, we can appeal to Remark 2.6 in order to obtain the energy-momentum conservation law

of gauge potentials in the presence of a background Higgs field σ. The key point is that, due to the
equivariance condition (3.7), any principal connection on the reduced bundle P σ → X gives rise to

a principal connection Aσ on P → X whose integral section is the Higgs field σ. Let us consider
the lift

τ̃ = τ + u1 + u2 (5.5)

onto C ×P/H of a vector field τ on X such that: τ +u1 is the lift τ̃Aσ (4.1) of τ onto C, and τ +u2
is the horizontal lift of τ onto P/H by means of the connection Aσ. Since the Lagrangian L is
gauge-invariant, its Lie derivative along the vector field τ̃ (5.5) vanishes. Therefore, we come to the

weak identity (2.21) whose left-hand side also vanishes, and we obtain again the energy-momentum
conservation law (1.14).
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