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Usually a Riemannian geometry is considered to be the most general geometry, which could be used as a space-
time geometry. In fact, any Riemannian geometry is a result of some deformation of the Euclidean geometry.
Class of these Riemannian deformations is restricted by a series of unfounded constraints. Eliminating these
constraints, one obtains a more wide class of possible space-time geometries (T-geometries). Any T-geometry
is described by the world function completely. T-geometry is a powerful tool for the microcosm investigations
due to three its characteristic features: (1) Any geometric object is defined in all T-geometries at once,
because its definition does not depend on the form of world function. (2) Language of T-geometry does
not use external means of description such as coordinates and curves; it uses only primordially geometrical
concepts: subspaces and world function. (3) There is no necessity to construct the complete axiomatics
of T-geometry, because it uses deformed Euclidean axiomatics, and one can investigate only interesting
geometric relations. Capacities of T-geometries for the microcosm description are discussed in the paper.
When the world function is symmetric and T-geometry is nondegenerate, the particle mass is geometrized,
and nonrelativistic quantum effects are described as geometric ones, i.e. without a reference to principles of
quantum theory. When world function is asymmetric, the future is not geometrically equivalent to the past,
and capacities of T-geometry increase multiply. Antisymmetric component of the world function generates
some metric fields, whose influence on geometry properties is especially strong in the microcosm.

Key words: space-time geometry, nondegenerate geometry, geometrization of mass, quantum
effects geometrization, world function, future-past geometric nonequivalence.

1 Introduction

In the case, when the existing theory cannot explain observed physical phenomena, a choice of an
appropriate space-time geometry is the most effective and simplest method of solution of arising
problems. The most reliable and doubtless conceptions of contemporary theoretical physics: the
special relativity theory and the general relativity theory were created by means of a change of the
space-time geometry. It is a common practice to consider the Riemannian conception of geometry to
be the most general conception of geometry. It is common practice to think that further development
of usual geometry is impossible. To increase the geometry capacities, some authors tries to provide
geometry by such unusual properties as stochasticity and noncommutativity.

In reality the Riemannian conception of geometry is not the most general conception of geometry.

List of geometries, generated by the Riemannian conception of geometry, is restricted by a series

of unfounded constraints. Imposition of these constraints was generated by a series of historical

reasons and cannot be justified. For instance, there is no necessity for introducing stochasticity in

geometry. It is sufficient to eliminate some constraints, imposed on the Riemannian geometry. After

154



elimination of these constraints the motion of particles in such a space-time geometry becomes to

be stochastic automatically [1], although the geometry in itself remains to be deterministic.

To understand this, let us consider the problem, what is the geometry, in general, and the

Riemannian geometry, in particular. Well known mathematician Felix Klein [2] supposed that

only such a construction on the point set is a geometry, where all points of the set have the

same properties. For instance, Felix Klein insisted that Euclidean geometry and Lobachevsky

geometry are geometries, whereas the Riemannian geometries are not geometries at all. As a rule

the Riemannian geometries are not uniform, and their points have different properties. According

to the Felix Klein opinion, they should be called as “Riemannian topographies” or as “Riemannian

geographies”.

It is hardly relevant now to discuss the question what is the correct name for the Riemannian

geometry, but it is very important to understand, why Felix Klein insisted on different names for

the Euclidean geometry and for the Riemannian one. The fact is that one can formulate axiomatics

(system of axioms), determining the Euclidean geometry as a self-sufficient construction, which

does not need auxiliary means for its construction. There is no axiomatics for the Riemannian

geometry. First, it is very difficult (technically complicated) to construct axiomatics for each of

possible Riemannian geometries. Second, there is no necessity in such axiomatics. In applications

of the Riemannian geometry to the space-time model only relations between the physical objects

(world lines of particles, vectors, etc.) are important. The geometry in itself is less interesting.

All relations of the Riemannian geometry are obtained as a result of modification (deformation) of

corresponding Euclidean relations.

Practically, this deformation is realized by a replacement of infinitesimal Euclidean interval

ds2
E = ηikdx

idxk, ηik =const by the infinitesimal interval ds2
R = gikdx

idxk, where gik is a function

of the point x. Such a replacement is a change of distances between the points of the space-time, what

is a space-time deformation by definition. Thus, the Riemannian geometry is not a self-sufficient

construction (it has not its own axiomatics). The Riemannian geometry is a deformed Euclidean

geometry. The Riemannian deformation of the space-time, converting Euclidean geometry to the

Riemannian one, form a class of deformations, restricted by a series of constraints.

In general, any deformation is described by a change of distances ρ between all pairs of space

points. In the case of the space-time this distance may be real (timelike), or imaginary (spacelike).

It is more reasonable to use the quantity Σ(P,Q) = 1
2ρ

2 (P,Q), known as world function [3]. Here

ρ (P,Q) is the distance between the points P and Q. The world function is real always, and it is

very convenient at description of geometry. The world function contains complete information on

geometry. This property is the most remarkable property of the world function. In application to

the Euclidean geometry, as a special case of Riemannian geometry, this property is formulated in

the form of a theorem [4, 5, 6], which states that, if and only if the world function satisfies some

Euclideaness conditions, formulated in terms of the world function, the corresponding geometry is

Euclidean. These conditions will be written down, as soon as corresponding mathematical technique

is developed. Now it is important only that the Euclideaness conditions contain references only to

the world function and finite subspaces of the whole space. The dimension of the space, and all

other parameters of the Euclidean geometry are determined by the form of the world function.

In the case of Euclidean geometry all information on geometry is contained in the world function.

This property remains to be valid also, if the world function does not satisfy the Euclideaness

conditions and the geometry is not Euclidean. Then any choice of the world function Σ corresponds

to some geometry GΣ. This circumstance can be interpreted in the sense, that the world function Σ

describes deformation of the Euclidean space, and any deformation Σ corresponds to some geometry

GΣ, which can be interpreted as a result of the Euclidean geometry deformation.
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From this viewpoint the Riemannian geometry is a result of the Euclidean geometry deformation,

when the world function between the points x and x′ is determined by the relation

Σ
(
x, x′

)
=

1

2






∫

Lg

√
gikdxidxk






2

, (1.1)

where integration is produced along the shortest curve (geodesic) Lg between the points x and x′.

The relation (1.1) describes the Riemannian deformation of the Euclidean space. This deforma-

tion is determined by the dimension n of the space and by the metric tensor gik, which is a set of

n(n + 1)/2 functions of one space point x. Information contained in these n(n + 1)/2 functions is

much less, than information included in one function Σ of two space points x and x′. In other words,

the Riemannian deformation is a deformation of a very special form. This raises the question. What

are foundations for consideration of the Riemannian deformation as the most general admissible de-

formation of the space-time? Why the Riemannian geometry is the most general possible geometry

of the space-time?

There are no reasonable foundations for pretention of the Riemannian geometry to the role of

the most general space-time geometry. Consideration of the Riemannian geometry as the unique

possible space-time geometry is a delusion which should be rejected. The question what is the

reason of this delusion is important and interesting. We shall not discuss it, restricting ourselves by

the remark that this delusion is an associative delusion [7]. In other words, it is a delusion of the

same sort, which stimulated the scientific community to believe the Ptolemaic doctrine for a long

time. In other time (in the middle of XIX century) a delusion of the same sort stimulated rejection

of the idea of non-Euclidean geometry.

As soon as we assume that there are non-Riemannian deformations of the Euclidean geometry,

generating more general geometries, than Riemannian ones (we shall refer to them as T-geometries),

the simple and evident idea arises, that many properties of particles in the microcosm can be ex-

plained as specific properties of the microcosm geometry. In this connection it is relevant to mention

that the special relativity theory has solved problems of motion with large velocities by means of

simple change of the space-time geometry. The general relativity has solved problems of relativistic

gravitation, changing the Minkowski geometry by the most general Riemannian geometry, connect-

ing the form of geometry with the matter distribution in the space-time.

Description of nonrelativistic quantum effects can be obtained also by means a simple change of

the space-time geometry [1]. The arising space-time geometry depends explicitly on the quantum

constant. The particle motion in such a geometry appears to be stochastic (quantum mechan-

ics principles are not mentioned at such a description of quantum effects). Such an explanation

of quantum effects differs from the conventional quantum-mechanical explanation by absence of

any additional suppositions. One considers simply all possible geometries, generated by arbitrary

deformations (but not only Riemannian ones) of Euclidean geometry. One chooses among these

geometries the geometry which corresponds to the best advantage to the experimental data.

As far as the world function as a function of two space points contains much more information,

than the metric tensor components, the capacities of explanation of different effects, reserved in

application of T-geometries as space-time geometries, appear to be much more, than other capacities

of explanation, used now in the elementary particle theory and in the quantum field theory. One does

not need to make additional suppositions on properties of physical phenomena in the microcosm.

It is sufficient to consider all possible T-geometries and to choose this one, which agrees with

experimental data. Of course, the problem of choosing the appropriate geometry is not a simple

156



problem, because for its solution one needs to study very large massive of data. But it is important

that there is no necessity to invent anything. It is sufficient to investigate the existing data.

From viewpoint of common sense and logic the strategy of the microcosm investigation, based on

the dominating role of geometry seems to be most encouraging. Besides, this strategy appeared to

be successful at construction of special relativity, general relativity and explanation of nonrelativistic

quantum effects.

Idea of the geometry description in terms of only distance is a very old idea. There were attempts

to carry out this program, using so called distance geometry [8, 9], when some constraints, imposed

on the metric of metric space were removed. Unfortunately, T-geometry has not been constructed,

because external means of description (in particular, concept of a curve) were used. In previous

papers [4, 5, 6] one considered the symmetric T-geometry, i.e. T-geometry with symmetric world

function Σ(P,Q) = Σ(Q,P ). Such a restriction on the world function Σ(Q,P ) seems to be usual

and conventional. In the present paper one considers non-symmetric T-geometry, when the world

function is asymmetric. Asymmetric world function is associated with the situation, when the future

and the past are not equivalent geometrically. One cannot test experimentally, whether the future

and the past are equivalent geometrically, because one can measure the time only from the past

to the future. We do not insist that the future and the past are not equivalent geometrically. But

investigation of geometrical description reserves, hidden in such an asymmetry, seems to be useful.

The main constraints on the Riemannian deformations are as follows: (1) fixed dimension, (2)

continuity, (3) impossibility of deformation of one-dimensional curve into a surface, or into a point.

These specific constraints are conditioned by application of a coordinate system at the description

of Euclidean and Riemannian geometries. Indeed, any coordinate system has fixed number of coor-

dinates (dimension). Coordinates change continuously, and this property is attributed to geometry,

because coordinates label the space points. Finally, transformations of coordinates transform one-

dimensional curve to one-dimensional curve, and this property of coordinate system is attributed

to geometry in itself.

There are methods of separation of geometric properties from the properties of the coordinate

system. One considers description of geometry in all possible coordinate systems. The properties

common for all these descriptions are properties of the considered geometry. But there are no

coordinate transformations from n coordinates to m coordinates (m 6= n). There are no coordinate

transformations, which transform one-dimensional curve to n-dimensional surface (n 6= 1), and it is

a common practice to attribute these properties of the coordinate systems to geometry in itself.

Thus, constraints on the means of description are attributed to the geometry in itself. To remove

these constraints, generated by the means of description, one should remove all external means of

descriptions and use the language, which uses only concepts which are attributes of the geometry

in itself. It means that the geometry is to be described in terms of subspaces and world functions

between points of these subspaces.

Practically a use of only finite subspaces of the whole space appears to be sufficient. As a result

the description of geometry is carried out in terms of finite number of points and world function

between pairs of them. Such a description, which does not contain any external means of description,

will be referred to as σ-immanent description. The σ-immanent description is convenient in the sense

that it admits one to deal with geometry directly. One does not need to consider coordinate systems

and group of their transformations. Sometimes we shall use the coordinate description to connect

σ-immanent description with conventional description of geometry. But construction of T-geometry

is produced in the σ-immanent form.

In the second section the main statements of T-geometry are formulated. Concepts of a multi-

vector, scalar Σ-product and collinearity are introduced in the third sectioon. The fourth section
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is devoted to investigation of the tube properties. In the fifth section one investigates a connection

between the particle motion stochasticity and the T-geometry dondegeneracy. The particle dy-

namics in the nondegenerate space-time geometry is investigated in the sixth section. Asymmetric

T-geometry on a manifold is investigated in the seventh section. The eighth section is devoted to

of the world function properties in vicinity of coincidence of its arguments. Properties different

sorts of curvature tensors are investigated in the nineth section. The tenth section is devoted to

investigation of gradient lines. Examples of the first order tubes are considered in the eleventh

section.

2 T-geometry and Σ-space. Coordinate-free description

Let us yield necessary definitions.

Definition 2.1 T-geometry is the set of all statements about properties of all geometric objects.

The T-geometry is constructed on the point set Ω by giving the world function Σ. The Σ-space

V = {Σ,Ω} is obtained from the metric space after removal of the constraints, imposed on the

metric ρ, and introduction of the world function Σ

Σ (P,Q) =
1

2
ρ2 (P,Q) , P,Q ∈ Ω (2.2)

instead of the metric ρ:

Definition 2.2 Σ-space V = {Σ,Ω} is nonempty set Ω of points P with given on Ω×Ω real function

Σ

Σ : Ω× Ω→ R, Σ(P, P ) = 0, ∀P ∈ Ω. (2.3)

The function Σ is known as the world function [3], or Σ-function. The metric ρmay be introduced

in Σ-space by means of the relation (2.2). If Σ is positive, the metric ρ is also positive, but if Σ is

negative, the metric is imaginary.

Definition 2.3 Nonempty point set Ω′ ⊂ Ω of Σ-space V = {Σ,Ω} with the world function Σ′ =

Σ|Ω′×Ω′ , which is a contraction Σ on Ω′ × Ω′, is called Σ-subspace V ′ = {Σ′,Ω′} of Σ-space V =

{Σ,Ω}.

Further the world function Σ′ = Σ|Ω′×Ω′ , which is a contraction of Σ will be denoted as Σ. Any

Σ-subspace of Σ-space is a Σ-space. In T-geometry a geometric object O is described by means of

skeleton-envelope method. It means that any geometric object O is defined as follows.

Definition 2.4 Geometric object O is some Σ-subspace of Σ-space, which can be represented as a

set of combinations of elementary geometric objects (EGO).

Definition 2.5 Elementary geometric object E ⊂ Ω is a set of zeros of the envelope function

fPn : Ω→ R, Pn ≡ {P0, P1, ...Pn} ∈ Ωn+1 (2.4)

i.e.

E = Ef (Pn) = {R|fPn (R) = 0} . (2.5)

The finite set Pn ⊂ Ω of parameters of the envelope function fPn is the skeleton of elementary

geometric object (EGO). The set E ⊂ Ω of points forming EGO is called the envelope of its skeleton

Pn. The envelope function fPn is an algebraic function of s arguments w = {w1, w2, ...ws}, s = (n+

2)(n+ 1). Each of arguments wk = Σ (Qk, Lk) is a Σ-function of two arguments Qk, Lk ∈ {R,Pn}.
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For continuous T-geometry the envelope E is usually a continual set of points. The envelope

function fPn , determining EGO, is a function of the running point R ∈ Ω and of parameters

Pn ∈ Ωn+1. Thus, any elementary geometric object is determined by its skeleton Pn and by the

form of the envelope function fPn .

Let us investigate T-geometry on the Σ-space V = {Σ,Ω}. For some special choice ΣE of Σ-

function, the Σ-space V turns to a Σ-subspace V ′E = {ΣE,Ω} of a n-dimensional proper Euclidean

space VE = {ΣE,ΩE}, Ω ⊂ ΩE. (It will be shown). Then all relations between geometric objects

in V ′E are relations of proper Euclidean geometry. Replacement of ΣE by Σ means a deformation of

V ′E, because world function Σ describes distances between two points, and change of these distances

is a deformation of the space. We shall use concept of deformation in a wide meaning, including

in this term any increase and any reduction of number of points in the set Ω. Then any transition

from {ΣE,ΩE} to {Σ,Ω} is a deformation of {ΣE,ΩE}.

Let us write Euclidean relations between geometric objects in V ′E in the σ-immanent form (i.e.

in the form, which contains references only to geometrical objects and Σ-function). Replacing the

world function ΣE by Σ in these relations, one obtains the relations between the geometric objects

in the Σ-space V = {Σ,Ω}.

Geometry of the proper Euclidean space is known very well, and one uses deformation, described

by world function, to establish T-geometry of arbitrary Σ-space. Considering deformations of Eu-

clidean space, one goes around the problem of axiomatics in the Σ-space V = {Σ,Ω}. One uses

only Euclidean axiomatics. T-geometry of arbitrary Σ-space is obtained as a result of ”deformation

of proper Euclidean geometry”. This point is very important, because axiomatics of arbitrary T-

geometry is very complicated. It is relatively simple only for highly symmetric spaces. Investigation

of arbitrary deformations is much simpler, than investigations of arbitrary axiomatics. Formally, a

work with deformations of Σ-spaces is manipulations with the world function. These manipulations

may be carried out without mention of space deformations.

Description of EGOs by means (2.4) is carried out in the deform-invariant form (invariant

with respect to Σ-space deformations). The envelope function fPn as a function of arguments

wk = Σ (Qk, Lk) , Qk, Lk ∈ {R,Pn} does not depend on the form of the world function Σ. Thus,

definition of the envelope function is invariant with respect to deformations (deform-invariant), and

the envelope function determines any EGO in all Σ-spaces at once.

Let EE be EGO in the Euclidean geometry GE. Let EE be described by the skeleton Pn and

the envelope function fPn in the Euclidean Σ-space VE = {ΣE,Ω}. Then the EGO E in the T-

geometry G, described by the same skeleton Pn and the same envelope function fPn in the Σ-space

V = {Σ,Ω}, is an analog in G of the Euclidean EGO EE. T-geometry G may be considered to be a

result of deformation of the Euclidean geometry GE, when distances
√

Σ (P,Q) + Σ (Q,P ) between

the pairs of points P and Q are changed. At such a deformation the Euclidean EGO EE transforms

to its analog E .

The Euclidean space has the most powerful group of motion, and the same envelope EE may

be generated by the envelope function fPn with different values Pn(1), P
n
(2), ... of the skeleton Pn, or

even by another envelope function f(1)Qm . It means that the Euclidean EGO EE may have several

analogs E(1), E(2), ... in the geometry G. In other words, deformation of the Euclidean space may

split EGOs, (but not only deform them). Note that the splitting may be interpreted as a kind of

deformation.

Concept of curve is defined as the continuous mapping

L : [0, 1]→ Ω, [0, 1] ⊂ R, (2.6)
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It is a common practice to consider the curve L ([0, 1]) ⊂ Ω to be an important geometrical object

of geometry. From point of view of T-geometry the set of points L ([0, 1]) ⊂ Ω cannot be considered

to be EGO, because the mapping (2.6) is not deform-invariant. Indeed, let us consider a sphere

SP0P1 , passing through the point P1 and having its center at the point P0. It is described by the

envelope function

fP0P1 (R) =
√

Σ (P0, R) + Σ (R,P0)−
√

Σ (P1, R) + Σ (R,P1). (2.7)

In the two-dimensional proper Euclidean space the envelope function (2.7) describes a one-dimensional

circumference L1, whereas in the three-dimensional proper Euclidean space the envelope function

(2.7) describes a two-dimensional sphere S2. The point set L1 can be represented as the continuous

mapping (2.6), whereas the surface S2 cannot. Transition from two-dimensional Euclidean space to

three-dimensional Euclidean space is a space deformation. Thus, deformation of the Σ-space may

destroy the property of EGO of being a curve (2.6).

Application of objects, defined by the property (2.6) for investigation of T-geometries is inconve-

nient, because the T-geometry investigation is founded on deform-invariant methods. Formally, one

cannot choose appropriate envelope function for description of the set (2.6), because the envelope

function is deform-invariant, whereas the set (2.6) is not. Hence, (2.6) is incompatible with the

definition ?? of EGO.

The nonsymmetric T-geometry, considered in this paper can be investigated by the same meth-

ods, as the symmetric one. The world function Σ in the nonsymmetric T-geometry is presented in

the form

Σ (P,Q) = G (P,Q) +A (P,Q) , P,Q ∈ Ω, (2.8)

G (P,Q) = G (Q,P ) , A (P,Q) = −A (Q,P ) , (2.9)

G (P,Q) =
1

2
(Σ (P,Q) + Σ (Q,P )) , A (P,Q) =

1

2
(Σ (P,Q)− Σ (Q,P )) , (2.10)

where G denotes the symmetric part of the world function Σ, whereas A denotes its antisymmetric

part.

Motives for consideration of nonsymmetric T-geometry are as follows. In the symmetric T-

geometry the distance from the point P to the point Q is the same as the distance from the point

Q to the point P . In the asymmetric T-geometry it is not so. Apparently, it is not important

for spacelike distances in the space-time, because it can be tested experimentally for spacelike

distances. In the case, when interval between points P and Q is timelike, one uses watch to measure

this interval. But the watch can measure the time interval only in one direction, and one cannot be

sure that the time interval is the same in opposite direction.

If the antisymmetric part A of the world function does not vanish, it means that the future and

the past are not equivalent geometrically. We do not insist that this fact takes place, but we admit

this. It is useful to construct a nonsymmetric T-geometry, to apply it to the space-time and to

obtain the corollaries of asymmetry which could be tested experimentally. The symmetrical part of

the world function generates the field of the metric tensor gik. In a like way the antisymmetric part

generates some vector force filed ai. Maybe, existence of this field can be tested experimentally. For

construction of nonsymmetric T-geometry one does not need to make any additional supposition.

It is sufficient to remove the constraint Σ (P,Q) = Σ (Q,P ) and to apply mathematical technique

developed for the symmetric T-geometry with necessary modifications.

Besides, there is a hope that nonsymmetric T-geometry will be useful in the elementary particle

theory, where the main object is a superstring. The first order tubes (main objects of T-geometry)
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are associated with world tubes of strings and branes. In the nonsymmetric T-geometry antisymmet-

ric variables appear. They are absent in the conventional symmetric T-geometry, but antisymmetric

variables are characteristic for the superstring theory.

Two important general remarks.

1. Nonsymmetric T-geometry, as well as the symmetric one, is considered on an arbitrary set Ω

of points P . It is formulated in the scope of the purely metric conception of geometry [6], which is

very simple, because it uses only very simple tools for the geometry description. The T-geometry

formulated in terms of the world function Σ and finite subsets Pn ≡ {P0, P1, ..., Pn} of the set Ω.

Mathematically it means, that the purely metric conception of geometry uses only mappings

mn : In → Ω, In ≡ {0, 1, ...n} ⊂ {0} ∪ N, (2.11)

whereas the topology-metric conception of geometry [10, 11, 12] uses much more complicated map-

pings (2.6), known as curves L. Both mappings (2.11) and (2.6) are methods of the geometry

description (and construction). But the method (2.11) is much simpler. It can be studied exhaus-

tively, whereas the set of mappings (2.6) cannot.

2. The nonsymmetric T-geometry will be mainly interpreted as a symmetric T-geometry de-

termined by the two-point scalar G (P,Q) with some additional metric structures, introduced to

the symmetric geometry by means of the additional two-point scalar A (P,Q). For instance, in the

symmetric space-time T-geometry the world line of a free particle is described by a geodesic. In

the nonsymmetric space-time T-geometry there are, in general, several different types of geodesics.

This fact may be interpreted in the sense, that a free particle has some internal degrees of freedom,

and it may be found in different states. In these different states the free particle interacts differently

with the force fields, generated by the two-point scalar A (P,Q). Several different types of geodesics

are results of this interaction.

Definition 2.6 Σ-space V = {Σ,Ω} is called isometrically embeddable in Σ-space V ′ = {Σ′,Ω′},
if there exists such a monomorphism f : Ω → Ω′, that Σ(P,Q) = Σ′(f(P ), f(Q)), ∀P, ∀Q ∈
Ω, f(P ), f(Q) ∈ Ω′,

Any Σ-subspace V ′ of Σ-space V = {Σ,Ω} is isometrically embeddable in it.

Definition 2.7 Two Σ-spaces V = {Σ,Ω} and V ′ = {Σ′,Ω′} are called to be isometric (equivalent),

if V is isometrically embeddable in V ′, and V ′ is isometrically embeddable in V .

Definition 2.8 The Σ-space M = {Σ,Ω} is called a finite Σ-space, if the set Ω contains a finite

number of points.

Definition 2.9 The Σ-subspace Mn(Pn) = {Σ,Pn} of the Σ-space V = {Σ,Ω}, consisting of n+ 1

points Pn = {P0, P1, ..., Pn} is called the nth order Σ-subspace .

The T-geometry is a set of all propositions on properties of Σ-subspaces of Σ-space V = {Σ,Ω}.
Presentation of T-geometry is produced in the language, containing only references to Σ-function

and constituents of Σ-space, i.e. to its Σ-subspaces.

Definition 2.10 A description is called σ-immanent, if it does not contain any references to objects

or concepts other, than finite subspaces of the Σ-space and its world function (metric).
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σ-immanence of description provides independence of the description on the method of de-

scription. In this sense the σ-immanence of a description in T-geometry reminds the concept of

covariance in Riemannian geometry. Covariance of some geometric relation in Riemannian geom-

etry means that the considered relation is valid in all coordinate systems and, hence, describes

only the properties of the Riemannian geometry in itself. Covariant description provides cutting-off

from the coordinate system properties, considering the relation in all coordinate systems at once.

The σ-immanence provides truncation from the methods of description by absence of a reference to

objects, which do not relate to geometry in itself (coordinate system, concept of curve, dimension).

The idea of constructing the T-geometry is very simple. Relations of proper Euclidean geometry

are written in the σ-immanent form and declared to be valid for any Σ-function. This results that

any relation of proper Euclidean geometry corresponds to some relation of T-geometry.

3 Multivectors as basic objects of T-geometry. Scalar Σ-product
and concept of collinearity

The basic elements of T-geometry are finite Σ-subspaces Mn(Pn), i.e. finite sets

Pn = {P0, P1, . . . , Pn} ⊂ Ω. (3.12)

The simplest finite subset is a nonzero vector
−→
P1 = P0P1 ≡

−−→
P0P1. The vector

−−→
P0P1 is an ordered

set of two points {P0, P1}. The scalar product (P0P1.Q0Q1) of two vectors P0P1 and Q0Q1

(P0P1.Q0Q1) = Σ (P0, Q1)− Σ (P1, Q1)− Σ (P0, Q0) + Σ (P1, Q0) (3.13)

is the main construction of T-geometry, and we substantiate this definition.

σ-immanent expression for scalar product (P0P1.Q0Q1) of two vectors P0P1 and Q0Q1 in the

proper Euclidean space has the form (3.13) (see, for instance, [6]).

In the Euclidean geometry the world function is symmetric, and the order of arguments in the

rhs of (3.13) is not essential. In the asymmetric T-geometry the order of arguments in the rhs of

(3.13) is essential. The order has been chosen in such a way that

(P0P1.Q0Q1)s ≡
1

2
((P0P1.Q0Q1) + (Q0Q1.P0P1))

= G (P0, Q1)−G (P1, Q1)−G (P0, Q0) +G (P1, Q0) , (3.14)

(P0P1.Q0Q1)a ≡
1

2
((P0P1.Q0Q1)− (Q0Q1.P0P1))

= A (P0, Q1)−A (P1, Q1)−A (P0, Q0) +A (P1, Q0) . (3.15)

It follows from (3.13) that

(P0P1.Q0Q1) = − (P1P0.Q0Q1) , (P0P1.Q0Q1) = − (P0P1.Q1Q0) . (3.16)

Thus, the scalar product (P0P1.Q0Q1) of two vectors P0P1 and Q0Q1 is antisymmetric with

respect to permutation P0 ↔ P1 of points determining the vector P0P1, as well as with respect to

permutation Q0 ↔ Q1.

Definition 3.1 The finite Σ-space Mn(Pn) = {Σ,Pn} is called oriented
−−−−−→
Mn(Pn), if the order of

its points Pn = {P0, P1, . . . Pn} is fixed.
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Definition 3.2 The n-th order multivector mn is the mapping

mn : In → Ω, In ≡ {0, 1, ..., n} . (3.17)

The set In has a natural ordering, which generates an ordering of images mn(k) ∈ Ω of points

k ∈ In. The ordered list of images of points in In has one-to-one connection with the multivector

and may be used as the multivector descriptor. Different versions of the point list will be used for

writing the nth order multivector descriptor:

−−−−−−→
P0P1...Pn ≡ P0P1...Pn ≡

−→
Pn.

Originals of points Pk in In are determined by the order of the point Pk in the list of descriptor.

Index of the point Pk has nothing to do with the original of Pk. Further we shall use descriptor
−−−−−−→
P0P1...Pn of the multivector instead of the multivector. In this sense the nth order multivector
−−−−−−→
P0P1...Pn in the Σ-space V = {Σ,Ω} may be defined as the ordered set {Pl}, l = 0, 1, . . . n of

n+ 1 points P0, P1, ..., Pn, belonging to the Σ-space V . Some points may be identical. The point P0

is the origin of the multivector
−−−−−−→
P0P1...Pn. Image mn (In) of the set In contains k points (k ≤ n+1).

The set of all nth order multivectors mn constitutes the set Ωn+1 =
n+1⊗

k=1

Ω, and any multivector

−→
Pn ∈ Ωn+1.

Definition 3.3 The scalar Σ-product (
−→
Pn.
−→
Qn) of two nth order multivectors

−→
Pn and

−→
Qn is the real

number

(
−→
Pn.
−→
Qn) = det ‖(P0Pi.Q0Qk)‖, i, k = 1, 2, ...n (3.18)

(P0Pi.Q0Qk) ≡ Σ(P0, Qk) + Σ(Pi, Q0)− Σ(P0, Q0)− Σ(Pi, Qk), (3.19)

P0, Pi, Q0, Qk ∈ Ω,
−→
Pn,
−→
Qn ∈ Ωn+1.

Operation of permutation of the multivector points can be effectively defined in the Σ-space.

Let us consider two nth order multivectors (n ≥ 1)

−→
Pn =

−−−−−−−−→
P0P1P2...Pn and

−−−−→
Pn(k↔l) =

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
P0P1...Pk−1PlPk+1...Pl−1PkPl+1...Pn.

The last one is a result of permutation of points Pk, Pl, (k < l). The scalar Σ-product (
−→
Pn.
−→
Qn) is

defined by the relation (3.18). One can show that

(
−→
Pn.
−→
Qn) = −(

−−−−→
Pn(k↔l).

−→
Qn) k 6= l, l, k = 0, 1, 2, ...n, ∀

−→
Qn ∈ Ωn+1. (3.20)

As far as the relation (3.20) is valid for permutation of any two points of the multivector
−→
Pn and

for any multivector
−→
Qn ∈ Ωn+1, one may write

−−−−→
Pn(i↔k) = −

−→
Pn, i, k = 0, 1, ...n, i 6= k, n ≥ 1. (3.21)

Thus, a change of the nth order multivector sign (n ≥ 1) (multiplication by the number a = −1)

may be always defined as an odd permutation of points.

Let us consider the relation

−→
PnT

−→
Rn : (

−→
Pn.
−→
Qn) = (

−→
Rn.
−→
Qn) ∧ (

−→
Qn.
−→
Pn) = (

−→
Qn.
−→
Rn), ∀

−→
Qn ∈ Ωn+1, (3.22)

between two nth order multivectors
−→
Pn ∈ Ωn+1 and

−→
Rn ∈ Ωn+1. The relation (3.22) is reflexive,

symmetric and transitive, and it may be considered as an equivalence relation.
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Definition 3.4 Two n-th order multivectors
−→
Pn ∈ Ωn+1 and

−→
Rn ∈ Ωn+1 are equivalent

−→
Pn =

−→
Rn,

if the relations (3.22) takes place.

Definition 3.5 If the nth order multivector
−→
N n satisfies the relations

(
−→
N n.
−→
Qn) = 0 ∧ (

−→
Qn.
−→
N ) = 0, ∀

−→
Qn ∈ Ωn+1, (3.23)

−→
N n is the null nth order multivector.

Definition 3.6 The length |
−→
Pn| of the multivector

−→
Pn is the number

|
−→
Pn| =





|
√

(
−→
Pn.
−→
Pn) |= |

√
Fn(Pn)|, (

−→
Pn.
−→
Pn) ≥ 0

i |
√

(
−→
Pn.
−→
Pn) |= i|

√
Fn(Pn)|, (

−→
Pn.
−→
Pn) < 0

−→
Pn ∈ Ωn+1, (3.24)

where the quantity Fn(Pn) is defined by the relations

Fn : Ωn+1 → R, Ωn+1 =
n+1⊗

k=1

Ω, n = 1, 2, . . . (3.25)

Fn

(−→
Pn
)

= det || (P0Pi.P0Pk) ||, P0, Pi, Pk ∈ Ω, i, k = 1, 2, ...n (3.26)

(P0Pi.P0Pk) ≡ Σ (Pi, P0) + Σ (P0, Pk)− Σ (Pi, Pk) , i, k = 1, 2, ...n. (3.27)

The function (3.25) is a symmetric function of all its arguments Pn = {P0, P1, ..., Pn}, i.e. it

is invariant with respect to permutation of any points Pi, Pk, i, k = 0, 1, ...n. It follows from

representation

Fn

(−→
Pn
)

= Fn (Pn) =
(−→
Pn.
−→
Pn
)

and the relation (3.21). It means that the squared length |
−→
Pn|2 = |M (Pn)|2 of any multivector

−→
Pn

does not depend on the order of points. The squared length of any finite subset Pn is unique.

In the case, when multivector
−→
Pn does not contain similar points, it coincides with the oriented

finite Σ-subspace
−−−−−→
Mn(Pn), and it is a constituent of Σ-space. In the case, when at least two points

of multivector coincide, the multivector length vanishes, and the multivector is considered to be a

null multivector. The null multivector
−→
Pn is not a finite Σ-subspace Mn(Pn), or an oriented finite

Σ-subspace
−−−−−→
Mn(Pn), but a use of null multivectors assists in creation of a more simple technique,

because the null multivectors
−→
Pn play a role of zeros. Essentially, the multivectors are basic objects

of T-geometry. As to continual geometric objects, which are analogs of planes, sphere, ellipsoid,

etc., they are constructed by means of skeleton-envelope method (see [6]) with multivectors, or finite

Σ-subspaces used as skeletons. As a consequence the T-geometry is presented σ-immanently, i.e.

without references to objects, external with respect to Σ-space.

The usual vector P0P1 ≡
−−→
P0P1 ≡

−→
P1 = {P0, P1} , P0, P1 ∈ Ω is a special case of multivector.

The squared length |P0P1|2 of the vector P0P1 is defined by the relation (3.13). This gives

|P1P0|
2 = |P0P1|

2 ≡ (P0P1.P0P1) = Σ (P0, P1) + Σ (P1, P0) = 2G (P0, P1) . (3.28)

It is rather unexpected that |P0P1|2 = 2G (P0, P1), but it is well that the vector P0P1 has only one

length, but not two
√

2Σ (P0, P1) and
√

2Σ (P1, P0), as one could expect.
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Definition 3.7 The squared length |M (Pn)|2 of the nth order Σ-subspace M (Pn) ⊂ Ω of the

Σ-space V = {Σ,Ω} is the real number.

|M (Pn)|2 = Fn (Pn) ,

where M (Pn) = {P0, P1, ..., Pn, } ⊂ Ω with all different Pi ∈ Ω, i = 0, 1, ...n,
−→
Pn ∈ Ωn+1, and the

quantity Fn(Pn) is defined by the relations (3.26) – (3.27).

The meaning of the written relations is as follows. In the special case, when the Σ-space is

Euclidean space, its Σ-function is symmetric. It coincides with Σ-function of Euclidean space. Any

two points P0, Pi determine the vector P0Pi. The relation (3.27) is a σ-immanent expression for the

scalar Σ-product (P0Pi.P0Pk) of two vectors. Then the relation (3.26) is the Gram’s determinant

for n vectors P0Pi, i = 1, 2, . . . n, and
√
Fn(Pn)/n! is the Euclidean volume of the (n+ 1)-hedron

with vertices at the points Pn.

Now we enable to formulate in terms of the world function the necessary and sufficient condition

of that the Σ-space is the n-dimensional Euclidean space

I.

Σ (P,Q) = Σ (Q,P ) , P,Q ∈ Ω. (3.29)

II.

∃Pn ⊂ Ω, Fn(Pn) 6= 0, Fn+1(Ωn+2) = 0. (3.30)

III.

Σ(P,Q) =
1

2

n∑

i,k=1

gik(Pn)[xi (P )− xi (Q)][xk (P )− xk (Q)], ∀P,Q ∈ Ω, (3.31)

where the quantities xi (P ), xi (Q) are defined by the relations

xi (P ) = (P0Pi.P0P) , xi (Q) = (P0Pi.P0Q) , i = 1, 2, ...n. (3.32)

The contravariant components gik(Pn), (i, k = 1, 2, . . . n) of metric tensor are defined by its covariant

components gik(Pn), (i, k = 1, 2, . . . n) by means of relations

n∑

k=1

gik(P
n)gkl(Pn) = δli, i, l = 1, 2, . . . n, (3.33)

where covariant components gik(Pn) are defined by relations

gik(P
n) = (P0Pi.P0Pk) , i, k = 1, 2, . . . n. (3.34)

IV. The relations

(P0Pi.P0P) = xi, xi ∈ R, i = 1, 2, . . . n, (3.35)

considered to be equations for determination of P ∈ Ω, have always one and only one solution.

Remark 1 The condition (3.30) is a corollary of the condition (3.31). It is formulated in the form

of a special condition, in order that a determination of dimension were separated from determination

of a coordinate system.
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The condition II determines the space dimension. The condition III describes σ-immanently the

scalar Σ-product properties of the proper Euclidean space. Setting n+ 1 points Pn, satisfying the

condition II, one determines n-dimensional basis of vectors in Euclidean space. Relations (3.34),

(3.33) determine covariant and contravariant components of the metric tensor, and the relations

(3.32) determine covariant coordinates of points P and Q at this basis. The relation (3.31) de-

termines the expression for Σ-function for two arbitrary points in terms of coordinates of these

points. Finally, the condition IV describes continuity of the set Ω and a possibility of the manifold

construction on it. Necessity of conditions I – IV for Euclideaness of Σ-space is evident. One can

prove their sufficiency [5]. The connection of conditions I – IV with the Euclideaness of the Σ-space

can be formulated in the form of a theorem.

Theorem 1 The Σ-space V = {Σ,Ω} is the n-dimensional Euclidean space, if and only if σ-

immanent conditions I – IV are fulfilled.

Remark 2 For the Σ-space were proper Euclidean, the eigenvalues of the matrix gik(Pn), i, k =

1, 2, . . . n must have the same sign, otherwise it is pseudo-Euclidean.

The theorem states that it is sufficient to know metric (world function) to construct the Euclidean

geometry. Concepts of topological space and curve, which are used usually in metric geometry for

increasing its informativity, appear to be excess in the sense that they are not needed for construction

of geometry. Proof of this theorem can be found in [5].

Definition 3.8 Two nth order multivectors
−→
Pn,
−→
Qn are neutrally collinear (n-collinear)

−→
Pn ‖(n)

−→
Qn, if

(
−→
Pn.
−→
Qn)(

−→
Qn.
−→
Pn) = |

−→
Pn|2 · |

−→
Qn|2 (3.36)

Definition 3.9 The nth order multivector
−→
Pn is f -collinear to nth order multivector

−→
Qn,(−→

Pn ‖(f)
−→
Qn
)

, if

(
−→
Pn.
−→
Qn)2 = |

−→
Pn|2 · |

−→
Qn|2. (3.37)

Definition 3.10 The nth order multivector
−→
Pn is p-collinear to nth order multivector

−→
Qn,(−→

Pn ‖(p)
−→
Qn
)

, if

(
−→
Qn.
−→
Pn)2 = |

−→
Pn|2 · |

−→
Qn|2. (3.38)

Here indices “f” and “p” are associated with the terms “future” and “past” respectively.

In the symmetric T-geometry there is only one type of collinearity, because the three mentioned

types of collinearity coincide in the symmetric T-geometry. The property of the neutral collinearity

is commutative, i.e. if
−→
Pn ‖(n)

−→
Qn, then

−→
Qn ‖(n)

−→
Pn. The property of p-collinearity and f -collinearity

are not commutative, in general. Instead, one has according to (3.37) and (3.38) that, if
−→
Pn ‖(p)

−→
Qn,

then
−→
Qn ‖(f)

−→
Pn.

Definition 3.11 The nth order multivector
−→
Pn is f -parallel to the nth order multivector

−→
Qn(−→

Pn ↑↑(f)
−→
Qn
)

, if

(
−→
Pn.
−→
Qn) = |

−→
Pn| · |

−→
Qn|. (3.39)

166



The nth order multivector
−→
Pn is f -antiparallel to the nth order multivector

−→
Qn

(−→
Pn ↑↓(f)

−→
Qn
)

, if

(
−→
Pn.
−→
Qn) = −|

−→
Pn| · |

−→
Qn|. (3.40)

Definition 3.12 The nth order multivector
−→
Pn is p-parallel to the nth order multivector

−→
Qn

(−→
Pn ↑↑(p)

−→
Qn
)

, if

(
−→
Qn.
−→
Pn) = |

−→
Pn| · |

−→
Qn|. (3.41)

The nth order multivector
−→
Pn is p-antiparallel to the nth order multivector

−→
Qn

(−→
Pn ↑↓(p)

−→
Qn
)

, if

(
−→
Qn.
−→
Pn) = −|

−→
Pn| · |

−→
Qn|. (3.42)

The f -parallelism and the p-parallelism are connected as follows. If
−→
Pn ↑↑(p)

−→
Qn, then

−→
Qn ↑↑(f)

−→
Pn and vice versa.

Vector P0P1 =
−→
P1 as well as the vector Q0Q1 =

−→
Q1 are the first order multivectors. If

P0P1 ↑↑(f) Q0Q1, then P1P0 ↑↓(f) Q0Q1 and P0P1 ↑↓(f) Q1Q0.

4 Tubes in Σ-space and their properties

The simplest geometrical object in T-geometry is the nth order tube T (Pn), which is determined by

its skeleton Pn. The tube is an analog of Euclidean n-dimensional plane, which is also determined

by n+ 1 points Pn, not belonging to a (n− 1)-dimensional plane.

Definition 4.1 nth order Σ-subspace M (Pn) = Pn of nonzero length |M (Pn)|2 = |Pn|2 =

Fn (Pn) 6= 0 determines the nth order tube T (Pn) by means of relation

T (Pn) ≡ TPn =
{
Pn+1|Fn+1

(
Pn+1

)
= 0
}
, Pi ∈ Ω, i = 0, 1 . . . n+ 1, (4.43)

where the function Fn is defined by the relations (3.25) – (3.27).

The shape of the tube T (Pn) does not depend on the order of points of the multivector
−→
Pn.

The basic points Pn, determining the tube TPn , belong to TPn .

The first order tube TP0P1 can be defined by means of concept of n-collinearity (3.36)

T
(
P1
)
≡ T(n)P0P1

= {R|F2 (P0, P1, R) = 0} ≡
{
R
∣
∣
∣
−−→
P0P1||(n)

−−→
P0R

}

≡
{
R
∣
∣
∣ |
−−→
P0P1|

2|
−−→
P0R|

2 −
(−−→
P0P1.

−−→
P0R

)(−−→
P0R.

−−→
P0P1

)
= 0

}
. (4.44)

As far as there are concepts of f -collinearity and of p-collinearity, one can define also the first order

f -tube and p-tube on the basis of these collinearities. The first order f -tube is defined by the

relation

T(f)P0P1
=
{
R
∣
∣
∣
−−→
P0P1||(f)

−−→
P0R

}
=

{

R

∣
∣
∣
∣ |
−−→
P0P1|

2|
−−→
P0R|

2 −
(−−→
P0P1.

−−→
P0R

)2
= 0

}

. (4.45)

The first order p-tube is defined as follows

T(p)P0P1
=
{
R
∣
∣
∣
−−→
P0P1||(p)

−−→
P0R

}
=

{

R

∣
∣
∣
∣ |
−−→
P0P1|

2|
−−→
P0R|

2 −
(−−→
P0R.

−−→
P0P1

)2
= 0

}

. (4.46)
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In the symmetric T-geometry all three tubes (4.44) – (4.46) coincide. In the nonsymmetric

T-geometry they are different, in general. The tubes (4.44), (4.45), (4.46) can be divided into

segments, each of them is determined by one of factors of expressions (4.44) – (4.46).

In all cases the factorization of the expressions

F(f) (P0, P1, R) =
∣
∣
∣
−−→
P0P1

∣
∣
∣
2 ∣∣
∣
−−→
P0R

∣
∣
∣
2
−
(−−→
P0P1.

−−→
P0R

)2

F(p) (P0, P1, R) =
∣
∣
∣
−−→
P0P1

∣
∣
∣
2 ∣∣
∣
−−→
P0R

∣
∣
∣
2
−
(−−→
P0R.

−−→
P0P1

)2
,

F(n) (P0, P1, R) =
∣
∣
∣
−−→
P0P1

∣
∣
∣
2 ∣∣
∣
−−→
P0R

∣
∣
∣
2
−
(−−→
P0P1.

−−→
P0R

)(−−→
P0R.

−−→
P0P1

)
(4.47)

has similar form

F(q) (P0, P1, R) = −F(q0)F(q1)F(q2)F(q3). (4.48)

Here index q runs values f, p, n, and factorization of expressions F(q) (P0, P1, R) , q = f, p, n has a

similar form

F(q0) = F(q0) (P0, P1, R) =
√
G0R +

√
G01 +

√
G1R − ηq (4.49)

F(q1) = F(q1) (P0, P1, R) =
√
G0R −

√
G01 +

√
G1R − αqηq

F(q2) = F(q2) (P0, P1, R) =
√
G0R +

√
G01 −

√
G1R − ηq (4.50)

F(q3) = F(q3) (P0, P1, R) =
√
G0R −

√
G01 −

√
G1R − αqηq,

where for brevity one uses designations

Gik = G (Pi, Pk) , Aik = A (Pi, Pk) , i, k = 0, 1

GiR = G (Pi, R) , AiR = A (Pi, R) , i = 0, 1

ηf = −ηp = A10 +A0R +AR1, ηn =
η2

f√
4G01G0R + η2

f + 2
√
G01G0R

(4.51)

αp = αf = 1, αn = −1.

In the symmetric T-geometry, when A (P,Q) = 0, ∀P,Q ∈ Ω, and η = 0, all expressions (4.50), for

F(ni), F(fi), F(pi), i = 0, 1, 2, 3 coincide.

Factorizations (4.48) – (4.50) determine division of the tubes into segments. As it follows from

(4.51) ηp = ηf = ηn = 0, provided R = P0, or R = P1. Then one can see that

P0, P1 ∈ T(q)[P0P1] =
{
R|F(q1) (P0, P1, R) = 0

}
=
{
R|
√
G0R −

√
G01 +

√
G1R − αqηq = 0

}
,

(4.52)

P0 ∈ T(q)P0]P1
=
{
R|F(q2) (P0, P1, R) = 0

}
=
{
R|
√
G0R +

√
G01 −

√
G1R − ηq = 0

}
, (4.53)

P1 ∈ T(q)P0[P1
=
{
R|F(q3) (P0, P1, R) = 0

}
=
{
R|
√
G0R −

√
G01 −

√
G1R − αqηq = 0

}
. (4.54)

The tube segment

T(q0)P0P1
=
{
R|F(q0) (P0, P1, R) = 0

}
(4.55)

determined (4.49), does not contain basic points P0, P1, in general. T(q0)P0P1
= ∅ for any timelike

tube TP0P1 . In the relations (4.52) – (4.55) index q runs values f, p, n. Values of ηq, αq are determined

by the relations (4.51).

168



The tube segments may be classified by the number of basic points P0, P1, belonging to the

segment. The segment T(q)[P0P1], containing two basic points will be referred to as the internal tube

segment. The segments T(q)P0[P1
and T(q)P0]P1

contain one basic point. They will be referred to as

external tube segments, or as tube rays, directed along the vectors P0P1 and P1P0 respectively.

The segment T(q0)P0P1
, which does not contain basic points, will be referred to as null segment. As

a rule it is empty.

In the geometry of Minkowski the timelike tube TP0P1 , determined by the timelike vector P0P1,

is the straight, passing through the points P0 and P1. T[P0P1] is the segment [P0, P1] of the straight

between the points P0 and P1. The tube rays TP0[P1
, TP0]P1

are rays of the straight [P1,∞) and

(−∞, P0]. The null segment T(0)P0P1
is empty.

5 Nondegenerate tubes in the space-time and their interpretation

Nondegeneracy of the first order tube TP0P1 means that the tube is not a one-dimensional curve,

although it is an analog of the Euclidean straight line. In the Minkowski space-time geometry

GM the timelike straight line describes the world line of a free particle. One should expect that the

nondegenerate first order tube TP0P1 describes also the free particle in the nondegenerate space-time

geometry GD.

Let us describe σ-immanently a particle of the mass m in GM. World line of the particle is a

broken line Tbr consisting of rectilinear internal segments T[PiPi+1], i = 0,±1,±2...

Tbr =
⋃

i

T[PiPi+1]. (5.56)

It is supposed that all segments T[PiPi+1] has the same length µ, and the quantity µ is proportional

to the particle mass m.

m = bµ, b = const, (5.57)

where b is some universal constant transforming the length of a segment to its mass. The particle

momentum pi on the segment T[PiPi+1] is defined by the relation

(pi.Q0Q1) = bc (PiPi+1.Q0Q1) , ∀Q0, Q1 ∈ R
4, (5.58)

where c is the speed of the light. It means that the momentum pi is proportional to the vector

PiPi+1, determining the segment T[PiPi+1]. This can be written symbolically in the form

pi = bcPiPi+1, |pi|
2 = b2c2µ2 = m2c2, i = 0,±1,±2... (5.59)

Segment T[PiPi+1] is defined by the equation (4.52). In the case of the Minkowski geometry GM, as

well as in the case of any symmetric T-geometry one obtains

T[PiPi+1] =
{
R|
√
G (Pi, Pi+1)−

√
G (Pi, R)−

√
G (R,Pi+1)

}
. (5.60)

Formulae (5.56) – (5.60) carry out a σ-immanent description of the world line of a particle.

It means that these relations (5.56) – (5.60) describe the particle world tube in any symmetric

T-geometry.

If the particle is free, one should add the parallelism condition PiPi+1 ↑↑ Pi+1Pi+2:

(PiPi+1.Pi+1Pi+2) = |PiPi+1| · |Pi+1Pi+2| , i = 0,±1,±2... (5.61)
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In GM relations (5.56) – (5.61) describe σ-immanently the world line of a free particle of mass

m. It is a timelike straight line, because in the Minkowski geometry there is only one timelike

vector Pi+1Pi+2 of length µ, which is parallel to the vector PiPi+1. Then, if the vector PiPi+1 is

fixed, the point Pi+2 is determined uniquely. It means, that if one segment, for instance T[P0P1], is

fixed, positions of all other segments T[PiPi+1], i = 0,±1,±2... and the whole broken tube Tbr are

determined uniquely. In other words, motion of the free particle in the Minkowski geometry GM is

deterministic.

Equations (5.56) – (5.61), written in the σ-immanent form, determine the free particle world

tube in the case of any symmetric T-geometry GD. Let us consider the case, when the space-time

geometry is symmetric and nondegenerate. Then there are many timelike vectors Pi+1Pi+2 of

length µ, which are parallel to the vector PiPi+1. At fixed vector PiPi+1, the point Pi+2 is not

determined uniquely. Then at fixed segment T[P0P1] the positions of all other segments T[PiPi+1],

i = 0,±1,±2... and the whole broken tube Tbr are not determined uniquely. It means that the

world tube of a free particle is stochastic.

Let us consider the case of geometry GD with the symmetric world function

GD : G = Σ = ΣM +D (ΣM) , D (ΣM) =






d if σ0 < ΣM
d
σ0

ΣM if 0 < ΣM < σ0

0 if ΣM < 0

, (5.62)

where ΣM is the world function in GM. The quantities σ0 and d = ~/ (2bc) are constants, (σ0 ≈
d ≈ 10−20cm2), where c is the speed of the light, ~ is the quantum constant, and the constant

b is defined by the relation (5.57). The function D is the distortion function, and the constant

d is an integral distortion. The distortion function is the quantity, responsible for nondegeneracy

of the space-time geometry GD. Geometry GD, described by the world function (5.62), is uniform

and isotropic. The tube segment T[P0P1] has the shape of a hallow tube. Radius R of the tube is

approximately R ≈
√

3d/2. More exactly the shape of the tube has been obtained in [13].

Vectors PiPi+1 and Pi+1Pi+2 are parallel in GD, But they are not parallel in GM. The angle ϑD

between PiPi+1 and Pi+1Pi+2 is equal to 0, because

coshϑD =
(PiPi+1.Pi+1Pi+2)

µ2
= 1. (5.63)

In GM the angle ϑM between PiPi+1 and Pi+1Pi+2 is determined by the relation

coshϑM =
(PiPi+1.Pi+1Pi+2)M

|PiPi+1|M · |Pi+1Pi+2|M
=

(PiPi+1.Pi+1Pi+2) + d

µ2 − 2d
, (5.64)

where index ”M” means that the corresponding quantity is calculated in GM. Taking into account

(5.63) and supposing that
√
d� µ, one obtains from (5.64)

coshϑM = 1 +
3d

µ2
, ϑ2

M =
6d

µ2
. (5.65)

The angle ϑM describes intensity of stochasticity of the particle motion. The diffusion displacement

λ of a particle determined this stochasticity is described by the quantity

λ = µ
〈
ϑ2

M

〉
≈

3~
bµc

=
3~
mc

.

This is rather close to the particle Compton wave length.
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One can see from (5.65), that this stochasticity is large for the particle of small mass m = bµ.

It is rather unexpected, because, dealing with general relativity, one thinks that influence of space-

time geometry on the particle motion does not depend on its mass. This dependence (5.65) on the

particle mass is a corollary of geometrization of the mass in the nondegenerate T-geometry. Indeed,

the geometrical mass µ of the particle can be determined from the shape of the world tube (5.56).

The geometrical mass µ is the distance between the adjacent points Pi and Pi+1, where the tube

radius vanishes. In GM this radius vanishes everywhere, and the mass cannot be determined from

the shape of the world tube (line).

Geometrization of the particle mass is very important phenomenon, which is essential for effective

description of physical phenomena of microcosm.

6 Particle dynamics in the nondegenerate space-time geometry

In the Minkowski space-time geometry GM the particle motion is deterministic, and one can describe

a single particle, writing dynamic equations for its world line. In GD it is impossible due to the world

line stochasticity. In GD one uses statistical method of the particle motion description, when one

describes motion of many identical particles. This method is described in details in papers [14, 15].

We consider here only characteristic features of this method, which are essential for understanding

of geometric origin of nonrelativistic quantum phenomena.

Let us consider in GM a deterministic dynamic system Sd, consisting of a deterministic particle.

The dynamic system Sd is described by the Lagrangian function L (t,x, ẋ), where x =
{
x1, x2, x3

}

are coordinates of the particle in some inertial coordinate system, and ẋ is its velocity. By definition

a pure statistical ensemble Ep [Sd] of dynamic systems Sd is such an ensemble, whose distribution

function Fp (t,x,p) may be represented in the form

Ep [Sd] : Fp (t,x,p) = ρ (t,x) δ (p−P (t,x)) , (6.66)

where ρ (t,x) and P (t,x) = {Pα (t,x)}, α = 1, 2, 3 are functions of only time t and x. In other words,

the pure ensemble Ep [Sd] is a dynamic system, considered in the configuration space of coordinates

x. It is a fluidlike continuous dynamic system, which can be described by the action [15]

Ep [Sd] : A[j, ϕ, ξ] =

∫
{L
(
x0,x, j/j0

)
j0 − b0j

i[∂iϕ+ gα(ξ)∂iξα]}d4x, (6.67)

where ji =
{
j0, j

}
, ϕ, ξ are dependent variables, which are considered to be functions of x ={

x0,x
}

= {t,x}. L
(
x0,x, j/j0

)
= L

(
x0,x,dx/dx0

)
is the Lagrangian function of Sd. b0 is an

arbitrary constant and gα(ξ), α = 1, 2, 3 are arbitrary functions of the argument ξ = {ξ1, ξ2, ξ3}.
These functions describe initial state of the statistical ensemble Ep [Sd]. The 4-current ji, describes

the fluid flow. The action (6.67) as well as dynamic equations, generated by this action, contain

derivatives jk∂k only in the direction of the vector ji. It means that the system of dynamic equations,

which are partial differential equations, form essentially a system of ordinary differential equations,

describing a single dynamic system Sd. Thus, Lagrangian function L describes both dynamic

systems Sd and Ep [Sd].

If the dynamic system Sd is subjected influence of some stochastic agent, it turns to stochastic

system Sst, and parameters of the statistical ensemble Ep [Sst] stops to be constant. They become to

be functions of the ensemble state ji and of derivatives ∂kj
i. The action for Ep [Sst] stops to depend

on only jk∂k. In this case dynamic equations contain derivatives in all directions, and the system

of dynamic equations cannot be reduced to a system of ordinary equations. Physically it means
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that there is no dynamic equation for the single system Sst, although they exist for the statistical

ensemble Ep [Sst].

Thus, if we want to describe a deterministic dynamic system and a stochastic system as different

partial cases of a dynamic system and to describe their dynamics by similar method, we should

describe dynamics of a pure statistical ensemble, but not dynamics of a single dynamic system. In

this sense the concept of dynamics of the pure statistical ensemble is more general and fundamental,

than concept of the single system dymanics. Such an idea is not new [16].

If the dynamic system Sd is a free particle, its Lagrangian function has the form

L (ẋ) = −mc2

√

1−
ẋ2

c2
, ẋ ≡

dx

dt
. (6.68)

The Lagrangian function depends on the only parameter m. In the case of space-time geometry GD

the mass m depends on the ensemble state ρ = j0. The mass m is modified as follows [1]

m2 → m2
q = m2 +

~2

4c2
(∇ ln ρ)2 , ρ = j0. (6.69)

Let us substitute (6.68), (6.69) in the action (6.67). One obtains in the nonrelativistic approximation

A[j, ϕ, ξ] =

∫
{−ρmc2 +

mj2

2ρ
−
~2ρ

8m
(∇ ln ρ)2 − b0j

i[∂iϕ+ gα(ξ)∂iξα]}d4x. (6.70)

Any ideal fluid can be described in terms of wave function [14]. Describing the action (6.70) in

terms of wave function and considering the special case, when the fluid flow is irrotational and the

wave function has only one component, one obtains instead of (6.70)

A[ψ,ψ∗] =

∫ {
ib0

2
(ψ∗∂0ψ − ∂0ψ

∗ · ψ)−
b20
2m
∇ψ∗ · ∇ψ −mc2ψ∗ψ

+
b20

8mψ∗ψ
(∇ (ψ∗ψ))2 −

~2

8mψ∗ψ
(∇ (ψ∗ψ))2

}

d4x. (6.71)

The last term in the action (6.71) describes influence of geometrical stochasticity. This term contains

the quantum constant ~. If one sets ~ = 0 in (6.71), the action becomes to describe statistical

ensemble of free deterministic particles. The action (6.71) generates nonlinear dynamic equation for

the wave function ψ. The dynamic equation becomes to be a linear differential equation, provided

one sets b0 = ~, because in this case two last terms in (6.71) compensate each other. Note that

the constant b0 is an arbitrary integration constant, which can take any value, in particular b0 = ~.
After this substitution the action (6.71) takes the form

A[ψ,ψ∗] =

∫ {
i~
2

(ψ∗∂0ψ − ∂0ψ
∗ · ψ)−

~2

2m
∇ψ∗ · ∇ψ −mc2ψ∗ψ

}

d4x. (6.72)

Now all terms in the action becomes to be quantum, because they contain the quantum constant.

One cannot obtain the action for the statistical ensemble of deterministic (classical) particles, setting

~ = 0, as it is possible to make in the action (6.71). One cannot suppress the geometrical (quantum)

stochasticity in (6.72), setting ~ = 0. In the action (6.72) quantum properties (the constant ~) are

attributed to those terms, which are purely dynamic in (6.71), and one cannot indicate the term,

responsible for quantum effects. This is the price which is paid for linearity of the dynamic equation.

Possibility of compensation of two last terms (dynamic and quantum) in the action (6.71) is

connected with the nonrelativistic character of the Hamiltonian function for a classical particle,
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which has the form Hnr = mc2 +p2/ (2m) . For instance, if the Hamiltonian function Hnr is replaced

by the relativistic one Hr =
√
m2c4 + p2c2 identification b0 = ~ does not lead to the linear dynamic

equation for the wave function.

From geometric viewpoint, the linearity of the dynamic equation for the wave function is valid

only for nonrelativistic case. From this viewpoint it seems to be doubtful, that the linearity should

be used as a principle of the relativistic quantum theory, although from practical viewpoint the

linearity is a very useful property of dynamic equation.

Thus, removing unfounded constraints on geometry and using space-time geometry GD, one

can freely explain nonrelativistic quantum effects. There is no necessity to invent and to use

quantum principles. Quantum effects appear to be corollary of quantum (or geometric) stochasticity,

generated by nondegenerate character of the space-time geometry.

Properties of the world function (5.62) at the coinciding points (0 < ΣM < σ0) are of no impor-

tance for stochastic behavior of particles, because it depends only on integral distortion d. From

this viewpoint application of methods of differential geometry to investigation of the world function

properties is useless, because differential geometry studies properties of the world function Σ (x, x′)

in the limit, when x → x′. But methods of differential geometry are useful for investigation of

antisymmetric component A (x, x′) of the nonsymmetric world function. We shall see that the anti-

symmetric component A (x, x′) generates fields in the space-time and generates as a rule additional

nondegeneracy of geometry. In other words, A (x, x′) generates not only interaction between par-

ticles, but also their additional stochasticity. In this sense the fields, generated by A (x, x′), are

quantum fields.

7 Asymmetric T-geometry on manifold

We have considered T-geometry in the coordinate-free form. But to discover a connection between

the T-geometry and usual differential geometry, one needs to introduce coordinates and to consider

the T-geometry on a manifold. It is important also from the viewpoint of the asymmetric T-geometry

application as a possible space-time geometry. The asymmetric T-geometry on the manifold may

be considered to be a conventional symmetric geometry (for instance, Riemannian) with additional

force fields ai (x), aikl (x), generated on the manifold by the antisymmetric component A of the

world function. Testing experimentally existence of these force fields, one can conclude whether the

antisymmetric component A exists and how large it is.

Let it be possible to attribute n + 1 real numbers x =
{
xi
}
, i = 0, 1, ...n to any point P in

such a way, that there be one-to-one correspondence between the point P and the set x of n + 1

coordinates
{
xi
}
, i = 0, 1, ...n. All points x form a set Mn+1. Then the world function Σ (P, P ′)

is a function Σ (x, x′)

Σ : Mn+1 ×Mn+1 → R, Σ (x, x) = 0, ∀x ∈Mn+1 (7.73)

of coordinates x, x′ ∈ Mn+1 ⊂ Rn+1 of points P, P ′ ∈ Ω. Two-point quantities (Σ-function and

their derivatives) are designed as a rule by capital characters. One-point quantities are designed by

small characters.

Let the function Σ (x, x′) be multiply differentiable. Then the set Mn+1 ⊂ Rn+1 may be called

the (n+ 1)-dimensional manifold. One can differentiate Σ (x, x′) with respect to xi and with respect

to x′i, forming two-point tensors. For instance,

Σ,k

(
x, x′

)
≡

∂

∂xk
Σ
(
x, x′

)
, Σ,k′

(
x, x′

)
≡

∂

∂x′k
Σ
(
x, x′

)
, Σ,kl′

(
x, x′

)
≡

∂2

∂xk∂x′l
Σ
(
x, x′

)
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are two-point tensors. Here comma before the index k means differentiation with respect to xk, if

the index k has not a prime, and differentiation with respect to x′k, if the index k has a prime. The

first argument of the two-point quantity is denoted by unprimed variable, whereas the second one

is denoted by primed one. Primed indices relate to the second argument of the two-point quantity,

whereas the unprimed ones relate to the first argument.

Σk ≡ Σ,k = Σ,k (x, x′) is a vector at the point x and a scalar at the point x′. Vice versa

Σk′ ≡ Σ,k′ = Σ,k′ (x, x
′) is a vector at the point x′ and a scalar at the point x. The quantity

Σ,kl′ = Σ,kl′ (x, x
′) is a vector at the point x and a vector at the point x′. Other derivatives are not

tensors. For instance, Σ,kl (x, x
′) ≡ Σ,lk (x, x′) ≡ ∂2

∂xk∂xl
Σ (x, x′) is a scalar at the point x′, but it is

not a tensor at the point x.

To construct tensors of higher rank by means of differentiation, let us introduce covariant deriva-

tives. Let Σ,kl′ ≡ Σkl′ ≡ Σl′k and det ||Σkl′ || 6= 0. The quantity Σkl′ will be referred to as covari-

ant fundamental metric tensor. One can introduce also contravariant fundamental metric tensor

Σik′ ≡ Σk′i, defining it by the relation

Σik′Σlk′ = δil Σi′kΣl′k = δi
′

l′ . (7.74)

Let us note that the quantity

Γ̃ikl
(
x, x′

)
≡ Σis′Σ,kls′ , Σ,kls′ ≡

∂3Σ

∂xk∂xl∂x′s
(7.75)

is a scalar at the point x′ and a Christoffel symbol at the point x. Vice versa, the quantity

Γ̃i
′

k′l′
(
x, x′

)
≡ Σsi′Σ,k′l′s, Σ,k′l′s ≡

∂3Σ

∂x′k∂x′l∂xs
(7.76)

is a scalar at the point x and a Christoffel symbol at the point x′.

In the same way one can introduce two other Christoffel symbols on the basis of the function G

Γikl
(
x, x′

)
≡ Gis

′
G,kls′ , G,kls′ ≡

∂3G

∂xk∂xl∂x′s
, Gis

′
G,ks′ = δik (7.77)

Γi
′

k′l′
(
x, x′

)
≡ Gsi

′
G,k′l′s, G,k′l′s ≡

∂3G

∂x′k∂x′l∂xs
. (7.78)

Using Christoffel symbols (7.75) - (7.78), one can introduce two covariant derivatives ∇̃x
′

i , ∇x
′

i

with respect to xi and two covariant derivatives ∇̃xi′ , ∇
x
i′ with respect to x′i. For instance, the

quantities

Σik ≡ ∇̃x
′

k ∇̃
x′

i Σ ≡ Σ,i||k = Σ,ik − Γ̃sik
(
x, x′

)
Σ,s = Σ,ik − Σls′Σ,iks′Σ,l (7.79)

Gik ≡ ∇x
′

k ∇
x′

i G ≡ G,i|k = G,ik − Γsik
(
x, x′

)
G,s = G,ik −G

ls′G,iks′G,l (7.80)

are scalars at the point x′ and second rank tensors at the point x. Here symbol ”||” before the index

denotes covariant derivative with the Christoffel symbol Γ̃sik, and the symbol ”|” before the index

denotes covariant derivative with the Christoffel symbol Γsik. In the same way one obtains

Σi′k′ ≡ ∇̃xk′∇̃
x
i′Σ ≡ Σ,i′||k′ = Σ,i′k′ − Γ̃s

′

i′k′Σ,s′ = Σ,i′k′ − Σl′sΣ,i′k′sΣ,l′ (7.81)

Gi′k′ ≡ ∇xk′∇
x
i′G ≡ G,i′|k′ = G,i′k′ − Γs

′

i′k′G,s′ = G,i′k′ −G
l′sG,i′k′sG,l′ . (7.82)
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Covariant derivatives ∇̃x
′

k , ∇̃x
′

i with respect to x commute, as well as ∇x
′

k , ∇x
′

i , i.e.

(
∇̃x
′

k ∇̃
x′

i − ∇̃
x′

i ∇̃
x′

k

)
T
sp′

ml′ ≡ 0,
(
∇x
′

k ∇
x′

i −∇
x′

i ∇
x′

k

)
T
sp′

ml′ ≡ 0, (7.83)

where T sp
′

ml′ is an arbitrary tensor at points x and x′. Unprimed indices are associated with the point

x, and primed ones with the point x′. The covariant derivatives commute, because the Riemann-

Christoffel curvature tensors R̃.ji.kl, R
.j
i.kl constructed respectively of Christoffel symbols Γ̃sil and Γsil

vanish identically

R̃.si.lm ≡ Γ̃sil,m − Γ̃sim,l + Γ̃jilΓ̃
s
jm − Γ̃jimΓ̃sjl ≡ 0, (7.84)

R.si.lm ≡ Γsil,m − Γsim,l + ΓjilΓ
s
jm − ΓjimΓsjl ≡ 0. (7.85)

One can test the identity (7.84), substituting (7.75) into (7.84).

Covariant derivatives ∇̃xk′ , ∇̃
x
i′ with respect to x′ commute as well as ∇xk′ , ∇

x
i′ . Commutativity

of covariant derivatives ∇̃x
′

i , ∇̃x
′

k with respect to x for all values of x′ means that the covariant

derivative ∇̃x
′

i , ∇̃x
′

k are covariant derivatives in some flat spaces Ẽx′ . The same is valid for covariant

derivatives ∇x
′

i , ∇x
′

k which are covariant derivatives in the flat spaces Ex′ . The spaces Ẽx′ , Ex′ are

associated with the Σ-spaces V = {Σ,Mn+1} and Vs = {G,Mn+1} respectively, given on Mn+1

by means of the world function Σ and its symmetric part G. Any of two-point invariant quantities

Σ and G with nonvanishing determinants det ||Σik′ || 6= 0, and det ||Gik′ || 6= 0 realize two sets of

mappings. For instance, the quantity Σ generates mappings V = {Σ,Mn+1} → Ẽx′ , V → Ẽx
The two-point quantity G generates also two sets of mappings Vs = {G,Mn+1} → Ex′ , Vs → Ex.

Mappings of any set are labelled by points x or x′ of the manifoldMn+1. In the case of G both sets

of mappings V → Ex′ and V → Ex coincide, but in the case of Σ the sets V → Ẽx′ and V → Ẽx
are different, in general.

It is easy to see that

∇̃x
′

s Σik′ = Σik′||s = Σ,ik′s − Γ̃pisΣpk′ = Σ,ik′s − Σpl′Σisl′Σpk′ ≡ 0.

The covariant derivatives have the following properties

∇̃x
′

k t
i′

l′
(
x′
)

= 0, ∇x
′

k t
i′

l′
(
x′
)

= 0, ∇̃xk′t
i
l (x) = 0, ∇xk′t

i
l (x) = 0, (7.86)

∇̃x
′

s Σik′ = Σik′||s = 0, Σik′||s′ = 0, Gik′|s = 0, Gik′|s′ = 0, (7.87)

where ti
′

l′ (x
′) is an arbitrary tensor at the point x′, and til (x) is an arbitrary tensor at the point x.

The considered mappings onto Euclidean spaces can serve as a powerful tool for description of

the Σ-space properties. Let us note in this connection, that the Riemannian space may be considered

to be a set of infinitesimal pieces of Euclidean spaces glued in some way between themselves. The

way of gluing determines the character of the Riemannian space in the sense, that different ways of

gluing generate different Riemannian spaces. The way of gluing is determined by the difference of

the metric tensor at the point x and at the narrow point x+ dx, where it has the forms gik (x) and

gik (x+ dx) respectively. The metric tensor depends on a point and on a choice of the coordinate

system. It is rather difficult one to separate dependence on the way of gluing from that on the

choice of the coordinate system. Nevertheless the procedure of separation has been well developed.

It leads to the curvature tensor, which is an indicator of the way of gluing.

In the case of the Σ-space one considers a set of finite Euclidean spaces Ex′ (instead of its

infinitesimal pieces) and a set of mappings Σ → Ex′ . Here the ”way of gluing” is determined by

the dependence of mapping on the parameter x′. It does not depend on a choice of the coordinate
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system. This circumstance simplifies investigation. Differentiating the mappings with respect to

parameters x′, one derives local characteristics of the ”way of gluing”, which are modifications of

the curvature tensor. For instance, considering commutators of derivatives ∇̃x
′

i and ∇̃xi′ , one can

introduce two-point curvature tensor for the Σ-space, as it have been made for the Riemannian

space [17, 18]. We shall see this further.

Let G̃(x′)ik be the metric tensor in the Euclidean space Ẽx′ at the point x. Then the Christoffel

symbol Γ̃ikl = Σis′Σ,kls′ in the space Ẽx′ can be written in the form

Γ̃ikl = Σis′Σ,kls′ =
1

2
G̃im(x′)

(
G̃(x′)km,l + G̃(x′)lm,k − G̃(x′)kl,m

)
, (7.88)

where G̃im(x′) are contravariant components of the metric tensor G̃(x′)ik.

Let us consider the set of equations (7.88) as a system of linear differential equations for deter-

mination of the metric tensor components G̃(x′)ik, which is supposed to be symmetric. Solution of

this system has the form

G̃(x′)ik = Σip′ g̃
p′q′

(x′)Σkq′ , (7.89)

where g̃p
′q′

(x′) = g̃
p′q′

(x′) (x′) is some symmetric tensor at the point x′. This fact can be tested by a direct

substitution of (7.89) in (7.88). Taking the relation (7.89) at the coinciding points x = x′ and

denoting coincidence of points x and x′ by means of square brackets, one obtains from (7.89)

g̃
p′q′

(x′)

(
x′
)

=
[
Σlp′

]

x′

[
G̃(x′)lm

]

x′

[
Σmq′

]

x′
, (7.90)

or

G̃(x′)ik

(
x, x′

)
= P̃(x′)

.l′

i. P̃(x′)
.m′

k. G̃(x′)lm

(
x′, x′

)
, (7.91)

where

P̃(x′)
.m′

k. ≡ P̃(x′)
.m′

k.

(
x, x′

)
≡ Σkq′

(
x, x′

)
Σmq′

(
x′, x′

)
≡ Σkq′

[
Σmq′

]

x′
. (7.92)

The relation (7.91) means that the metric tensor G̃(x′)ik of the Euclidean space Ẽx′ at the point

x can be obtained as a result of the parallel transport of the metric tensor from the point x′ in Ẽx′

by means of the parallel transport tensor P̃(x′)
.m′

k. . The parallel transport of the vector bk′ from the

point x′ to the point x is defined by the relation bk = P̃(x′)
.m′

k. bm′ . The parallel transport tensor has

evident properties

∇̃x
′

i P̃(x′)
.m′

k. ≡ P̃(x′)
.m′

k.||i = 0,
[
P̃(x′)

.m′

k.

]

x′
≡ P̃(x′)

.m′

k.

(
x′, x′

)
= δm

′

k′ . (7.93)

In the same way one can obtain the parallel transport tensor P̃(x)
.m
k′. in the Euclidean space Ẽx

P̃(x)
.m
k′. ≡ Σk′q

[
Σmq′

]

x
≡ Σk′q

(
x, x′

)
Σmq′ (x, x) (7.94)

describing a parallel transport from the point x to the point x′ in Ẽx.

In the same way one can obtain the parallel transport tensors P(x′)
.m′

k. and P(x)
.m
k′. respectively

in Euclidean spaces Ex′ and Ex

P(x′)
.m′

k. ≡ Gkq′
[
Gmq

′
]

x′
, P(x)

.m
k′. ≡ Gk′q

[
Gmq

′
]

x
. (7.95)

Thus, the world function Σ of the Σ-space V = {Σ,Mn+1} and its symmetric component G

determine Euclidean spaces Ẽx′ , Ẽx, Ex′ , Ex, mappings of V on them and the parallel transport

of vectors and tensors in these Euclidean spaces independently of that, whether or not the Σ-space

V = {Σ,Mn+1} is degenerate.
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8 Derivatives of the world function at coincidence of points x

and x′

Let the world function be represented in the form (2.8), (2.9). Let us expand the function G and

A with respect to powers of ξi = xi − x′i. Taking into account the symmetry relations (2.9), one

obtains

G
(
x, x′

)
=

1

2
gik
(
x′
)
ξiξk +

1

6
gikl

(
x′
)
ξiξkξl +

1

24
giklm

(
x′
)
ξiξkξlξm + ... (8.96)

=
1

2
gik (x) ξiξk −

1

6
gikl (x) ξiξkξl +

1

24
giklm (x) ξiξkξlξm + ... (8.97)

A
(
x, x′

)
= ai

(
x′
)
ξi +

1

2
aik
(
x′
)
ξiξk +

1

6
aikl

(
x′
)
ξiξkξl + ... (8.98)

= ai (x) ξi −
1

2
aik (x) ξiξk +

1

6
aikl (x) ξiξkξl − ... (8.99)

In relations (8.96) and (8.98) the functions G (x, x′) and A (x, x′) are expanded at the point x′. In

the relations (8.97) and (8.99) one has the same expansions after transposition x↔ x′.

Differentiating relations (8.96) - (8.99) with respect to x and x′ and setting x = x′ thereafter,

one obtains relations between the expansion coefficients and expressions for derivatives of functions

Σ, G, A at the limit of coincidence x = x′.

After calculations one obtains

gikl =
1

2
(gik,l + gli,k + gkl,i) , gik,l ≡ gik,l (x) ≡

∂

∂xl
gik (x) , (8.100)

aik =
1

2
(ai,k + ak,i) , ai,k ≡ ai,k (x) ≡

∂

∂xk
ai (x) , (8.101)

aiklm =
1

2
(aikl,m + aklm,i + almi,k + amik,l − aik,lm − alm,ik) .

Coefficients gik, ai, aikl are arbitrary and symmetric with respect to transposition of indices. Using

square brackets for designation of coincidence x = x′ and relations (8.100), (8.101), one obtains

[G,i (x, x′)] ≡ [G,i] =
[
G,i′
]

= 0, [G,ik (x, x′)] ≡ [G,ik] =
[
G,i′k′

]
= gik,[

G,i′k (x, x′)
]
≡
[
G,i′k

]
= −gik

, (8.102)

[
G,ikl

(
x, x′

)]
≡ [G,ikl] =

[
G,i′k′l′

]
=

1

2
(gik,l + gli,k + gkl,i)

[
G,ikl′

(
x, x′

)]
≡

[
G,ikl′

]
=

1

2
(gik,l − gli,k − gkl,i) (8.103)

[
G,ik′l′

(
x, x′

)]
≡

[
G,ik′l′

]
=

1

2
(gkl,i − gli,k − gik,l) ,

[
G,iklm

(
x, x′

)]
≡ [G,iklm] =

[
G,i′k′l′m′

]
= giklm

[
G,iklm′

(
x, x′

)]
≡

[
G,iklm′

]
=
[
G,i′k′l′m

]
= −giklm + gikl,m (8.104)

[
G,ikl′m′

(
x, x′

)]
≡

[
G,ikl′m′

]
= giklm − gikl,m − gikm,l + gik,ml,

[
A,i
(
x, x′

)]
≡ [A,i] = ai,

[
A,i′

(
x, x′

)]
≡
[
A,i′
]

= −ai, (8.105)
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[
A,ik

(
x, x′

)]
≡ [A,ik] = aik =

1

2
(ai,k + ak,i)

[
A,ik′

(
x, x′

)]
≡

[
A,ik′

]
=

1

2
(ai,k − ak,i) (8.106)

[
A,i′k′

(
x, x′

)]
≡

[
A,i′k′

]
= −aik = −

1

2
(ai,k + ak,i) ,

[
A,ikl

(
x, x′

)]
≡ [A,ikl] = aikl

[
A,ikl′

(
x, x′

)]
≡

[
A,ikl′

]
=

1

2
ai,kl +

1

2
ak,il − aikl (8.107)

[
A,ik′l′

(
x, x′

)]
≡

[
A,ik′l′

]
= −

1

2
al,ik −

1

2
ak,il + aikl,

[
A,iklm

(
x, x′

)]
≡ [A,iklm] = aiklm

[
A,iklm′

(
x, x′

)]
≡

[
A,iklm′

]
= −aiklm + aikl,m

[
A,ikl′m′

(
x, x′

)]
≡

[
A,ikl′m′

]
= aiklm − aikl,m − aikm,l + aik,lm (8.108)

[
A,ik′l′m′

(
x, x′

)]
≡

[
A,ik′l′m′

]
= −aiklm − aklm,i

[
A,i′k′l′m′

(
x, x′

)]
≡

[
A,i′k′l′m′

]
= −aiklm.

The first order coefficient ak (x) is a covariant vector at the point x. The second order coefficients

gik (x) is the second rank covariant tensors at the point x. The second order coefficient aik (x) and the

third order coefficients gikl (x), aikl (x) are not tensors, in general. The law of their transformation

at the coordinate transformation is more complicated.

According to (2.8), (8.102) and (8.105)

[Σ,i] = ai (x) ,
[
Σ,i′
]

= −ai (x) . (8.109)

According to (2.8), (8.102) and (8.106)

[Σ,ik] = σ(f)ik = gik +
1

2
(ai,k + ak,i)

[
Σ,i′k′

]
= σ(p)ik = gik −

1

2
(ai,k + ak,i) (8.110)

[Σik′ ] ≡
[
Σ,ik′

]
= −g̃ik = −gik +

1

2
(ai,k − ak,i) .

One obtains for the value
[
Σik′

]
of the quantity Σik′

[
Σik′

]
= −g̃ik, where g̃ik is determined by the

relation

g̃ilg̃ik = g̃il
(

gik −
1

2
(ai,k − ak,i)

)

= δlk. (8.111)

The quantity ai is a one-point vector, and gik is a one-point tensor. Then it follows from (8.110),

(8.111), that g̃ik and g̃ik are also one-point tensors, whereas σ(f)ik and σ(p)ik are not tensors, in

general.

One obtains for the quantities
[
Γikl
]
,
[
Γi
′

k′l′

]
and

[
Γ̃ikl

]
,
[
Γ̃i
′

k′l′

]
the following expressions

[
Γikl
]

=
[
Γi
′

k′l′

]
= γikl (x) =

1

2
gsi (gks,l + gsl,k − glk,s) , gikglk = δil (8.112)

[
Γ̃ikl

]
= γ̃(f)

i
kl = g̃isgps

(
γ
p
kl + β

p
kl

)
,

[
Γ̃i
′

k′l′

]
= γ̃(p)

i
kl = g̃sigps

(
γ
p
kl − β

p
kl

)
, (8.113)
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where

γikl (x) =
1

2
gsi (gks,l + gsl,k − glk,s) , gikglk = δil (8.114)

βikl (x) = gsi
(

−
1

2
(ak,ls + al,ks) + akls

)

. (8.115)

Here γikl (x) is the Christoffel symbol for the symmetric case, when A (x, x′) ≡ 0.

Note that the tensors g̃ik, g̃ik are not symmetric with respect to transposition indices, in general,

whereas γ̃(f)
i
kl =

[
Γ̃ikl

]
, γ̃(p)

i
kl =

[
Γ̃i
′

k′l′

]
, γikl and βikl are symmetric with respect to transposition of

indices k and l. Besides it follows from (8.113), that

βikl (x) = gsi
(

−
1

2
(ak,ls + al,ks) + akls

)

=
1

2
gip
(
g̃spγ̃(f)

s
kl − g̃psγ̃(p)

s
kl

)
. (8.116)

In the case, when ai ≡ 0 and tensor g̃ik is symmetric, the quantity βikl is one-point tensor because

difference of two Christoffel symbols γ̃(f)
s
kl − γ̃(p)

s
kl is a tensor.

9 Curvature tensors

In the Riemannian geometry the Riemann-Christoffel curvature tensor r̃(q)
.l
s.ik is defined as a com-

mutator of covariant derivatives D̃(q)i with the Christoffel symbol γ̃(q)
i
kl

(
D̃(q)iD̃(q)k − D̃(q)kD̃(q)i

)
ts = r̃(q)

.l
s.iktl,

where D̃(q)i is the usual covariant derivative in the Riemannian space with the Christoffel symbol

γ̃(q)
l
si,

r̃(q)
.l
s.ik = γ̃(q)

l
si,k − γ̃(q)

l
sk,i + γ̃(q)

p
siγ̃(q)

l
pk − γ̃(q)

p
skγ̃(q)

l
pi (9.117)

and tl is an arbitrary vector at the point x. Index q runs the values p and f.

In the Σ-space one can consider commutator of covariant derivatives ∇̃x
′

i and ∇̃xk′ with respect

to xi and x′k respectively. Calculation gives

(
∇̃x
′

i ∇̃
x
s′ − ∇̃

x
s′∇̃

x′

i

)
T
j...m′...
k...l′... = F̃ika′s′Σ

ba′T
j...m′...
b...l′... + . . .− Σja′F̃iba′s′T

b...m′...
k...l′...

− . . .+ Σam′F̃iab′s′T
j...b′...
k...l′... + . . .− F̃ial′s′Σ

ab′T
j...m′...
k...b′... − . . . , (9.118)

where T j...m
′...

k...l′... is an arbitrary two-point tensor. F̃ -tensor, defined by the relation

F̃ilk′j′ ≡ Σiq′Γ̃
q′

k′j′||l = Σpj′Γ̃
p
il||k′ = Σ,ilj′‖k′ = Σ,ilj′k′ − Σ,sj′k′Σ

sm′Σ,ilm′ (9.119)

is a two-point analog of the one-point curvature tensor rslik = glpr
.p
s.ik. To test that the quantity

(9.119) is a tensor, let us represent it in one of two forms

F̃ilk′j′ ≡ Σpj′Γ̃
p
il||k′ = Σpj′

(
Γ̃pil − γ̃(f)

p
il

)

||k′
(9.120)

F̃ilk′j′ ≡ Σiq′Γ̃
q′

k′j′||l = Σiq′

(
Γ̃q
′

k′j′ − γ̃(p)
q′

k′j′

)

||l
. (9.121)
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As far as the difference

Q̃(f)
p
il = γ̃(f)

p
il − Γ̃pil Q̃(p)

q′

k′j′ = γ̃(p)
q′

k′j′ − Γ̃q
′

k′j′ (9.122)

of two Christoffel symbols is a tensor, it follows from (9.120) and (9.122) that F̃ilk′j′ is a tensor.

F̃ -tensor can be presented as a result of covariant differentiation of the Σ-function. Indeed

Q̃(f)
s
il = −Σsj′(Σ,ilj′ − γ̃(f)

m
il Σmj′) = −Σsj′D̃(f)lΣij′ = −Σsj′D̃(f)lD̃(p)j′Σi

= −Σsj′D̃(p)j′D̃(f)lΣi = −Σsj′
(
D̃(f)lΣi

)

||j′
= −

(
Σsj′D̃(f)lΣi

)

||j′
, (9.123)

Q̃(p)
q′

k′j′ = −Σsq′
(

Σ,sk′j′ − γ̃(p)
m′

k′j′Σsm′

)
= −Σsq′D̃(p)j′Σsk′

= −Σsq′D̃(p)j′D̃(f)sΣk′ = −Σsq′D̃(f)sD̃(p)j′Σk′ = −
(

Σsq′D̃(p)j′Σk′

)

||s
. (9.124)

Then according to (9.120) – (9.124), one obtains

F̃ilk′j′ =
(
D̃(f)lΣi

)

||j′||k′
=
(
D̃(p)j′Σk′

)

||i||l
. (9.125)

The commutator of covariant derivatives ∇x
′

i and ∇xk′ , connected with the symmetric component

G of the world function, has the property

T
j...m′...

k...l′...|s′|i
− T j...m

′...
k...l′...|i|s′ = Fika′s′G

ba′T
j...m′...
b...l′... + . . .−Gja

′
Fiba′s′T

b...m′...
k...l′...

− . . .+Gam
′
Fiab′s′T

j...b′...
k...l′... + . . .− Fial′s′G

ab′T
j...m′...
k...b′... − . . . , (9.126)

where the curvature F -tensor has the form

Filk′j′ ≡ Gpj′Γ
p
il|k′ = Gpj′

(
Γpil − γ

p
il

)
|k′ = Gi;l|k′|j′ . (9.127)

Here (;) denotes the usual covariant derivative with the Christoffel symbol γikl, and the Q-tensor is

written as follows

Qikl = γikl − Γikl = −Gsj
′
Gi;l|j′ . (9.128)

One can obtain connection between the F̃ -tensor and the Riemannian-Christoffel curvature

tensor r̃(f)
.l
s.ik, defined by relation (9.117). Taking into account (9.120), evident identity

∂

∂xk

[
Γ̃pil

]

x
≡
[
Γ̃pil,k

]

x
+
[
Γ̃pil,k′

]

x
(9.129)

and using relations (8.110), (8.113), one obtains

[
F̃ilk′j′

]

x
= −g̃pj

[
Γ̃pil,k′

]

x
= −g̃pj

(
γ̃(f)

p
il,k −

[
Γ̃pil,k

]

x

)
. (9.130)

Let us take into account identity

Σpr′Σ,sr′k +
(

Σpr′
)

,k
Σsr′ = 0 (9.131)
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obtained by differentiation of (7.74). Then using relations (8.110), (8.113), one obtains from (9.130)

[
F̃ilk′j′

]

x
= −g̃pj γ̃(f)

p
il,k + g̃pj

[
Σpq′Σ,ilkq′ − Σpr′Σ,sr′kΣ

sq′Σ,ilq′

]

x

= −g̃pj γ̃(f)
p
il,k + g̃pj

[
−g̃pqΣ,ilkq′ − Γ̃pskΓ̃

s
il

]

x

f̃ilkj ≡
[
F̃ilk′j′

]

x
= −

[
Σ,ilkj′

]
x
− g̃pj

(
γ̃(f)

p
il,k + γ̃(f)

s
ilγ̃(f)

p
sk

)
. (9.132)

Alternating with respect to indices k, l, one obtains

f̃ilkj − f̃iklj = g̃pj r̃(f)
.p
i.kl, (9.133)

where r̃(f)
.s
i.kl is the Riemann-Christoffel curvature tensor, constructed on the base of the Christoffel

symbol γ̃(f)
s
ik

r̃(f)
.p
i.kl = γ̃(f)

p
ik,l − γ̃(f)

p
il,k + γ̃(f)

s
ikγ̃(f)

p
sl − γ̃(f)

p
ilγ̃(f)

k
sk. (9.134)

In the same way one can express f̃ilkj− f̃iklj via the Riemann-Christoffel curvature tensor r̃(p)
.s
i.kl,

constructed by means of (9.117) on the base of the Christoffel symbol γ̃(p)
s
ik

f̃ilkj − f̃iklj = g̃lpr̃(p)
.p
k.ij , (9.135)

where

r̃(p)
.p
i.kl = γ̃(p)

p
ik,l − γ̃(p)

p
il,k + γ̃(p)

s
ikγ̃(p)

p
sl − γ̃(p)

p
ilγ̃(p)

k
sk. (9.136)

To obtain representation (9.135), let us use another representation (9.121)

F̃ilk′j′ = Σiq′Γ̃
q′

k′j′,l

of the F̃ -tensor, which differs from the representation (9.120) by a change x ↔ x′. Producing the

same operations (9.130) – (9.132), one obtains (9.135) instead of (9.133).

Note that relations (9.133) and (9.135) are different, because the tensor g̃ik is not symmetric. In

(9.133) summation is produced over the first index, whereas in (9.135) it is produced over the second

index. In the symmetric T-geometry, when g̃ik is symmetric, three expressions (9.137) (9.133) and

(9.135) coincide.

In the symmteric T-geometry one obtains the relation

r.ls.ik =
[
Γlis|k′ − Γlks|i′

]

x
=
[
Γlis,k′ − Γlks,i′

]

x
= −glpfispk + glpfkspi, (9.137)

between the Riemann-Christoffel curvature tensor r.ls.ik and the F -tensor at coinciding points

fispk ≡
[
Fisp′k′

]
x

=
[
Glp′Γ

l
is|k′

]

x
= −glp

[
Γlis|k′

]

x
. (9.138)

According to (9.127) the one-point tensor fispk is symmetric with respect to transposition indices

i↔ s and p↔ k separately.

fispk = fsipk, fispk = fiskp. (9.139)

Equation (9.137) can be written in the form

glpr
.l
s.ik = −fispk + fkspi. (9.140)
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The metric tensor gik is symmetric, and fispk has the following symmetry properties

fispk = fsipk, fispk = fiskp, fispk = fpkis. (9.141)

There are two essentially different cases of asymmetric T-geometry:

1. Rough antisymmetry, when the field ai (x) 6= 0. In this case the field ai (x) dominates at

small distances x− x′, and the world function is determined by the linear form

Σ
(
x, x′

)
= ai (x)

(
xi − x′i

)
+ ...

In this case the antisymmetry is the main phenomenon at small distances.

2. Fine antisymmetry, when the field ai (x) ≡ 0. In this case the antisymmetric effects are

described by the field aikl. At small distances x − x′ the symmetric structure dominates, and the

world function is determined by the quadratic form

Σ
(
x, x′

)
=

1

2
gik (x)

(
xi − x′i

) (
xk − x′k

)
+ ...

as in the symmetric T-geometry. In this case the antisymmetric effects may be considered as

corrections to gravitational effects. This corrections may be essential at large distances ξi = xi−x′i,
when the form 1

6aiklξ
iξkξl becomes of the same order as the form 1

2gikξ
iξk,

The asymmetric T-geometry with fine antisymmetry is simpler, because it is rather close to the

usual symmetric T-geometry.

10 Gradient lines on the manifold in the case of fine antisymmetry
ai ≡ 0

Let us consider a one-dimensional line L(f), passing through points x′ and x′′. This line is defined

by the relations

L(f) : Σ,i′
(
x, x′

)
= τΣ,i′

(
x′′, x′

)
= τbi′ , i = 0, 1, ...n. (10.142)

Let us suppose that det ||Σ,i′k (x, x′) || 6= 0. Then n + 1 equations (10.142) can be resolved with

respect to x in the form

L(f) : xi = xi (τ) , i = 0, 1, ...n, (10.143)

where τ is a parameter along the line L(f). At ai ≡ 0 Σ,i′ (x
′, x′) = 0, and this line passes through

the point x′ at τ = 0 and through the point x′′ at τ = 1. Such a line will be referred to as gradient

line (curve) from the future. Let us derive differential equation for L(f).

Differentiating (10.142) with respect to τ , one obtains

Σ,ki′
(
x, x′

) dxk

dτ
= Σ,i′

(
x′′, x′

)
= bi′ , i = 0, 1, ...n. (10.144)

Differentiating once more, one obtains

Σ,ki′
(
x, x′

) d2xk

dτ2
+ Σ,kli′

(
x, x′

) dxk

dτ

dxl

dτ
= 0, i = 0, 1, ...n. (10.145)

Using relation (7.75), one can write equations (10.145) in the form

d2xi

dτ2
+ Γ̃ikl

(
x, x′

) dxk

dτ

dxl

dτ
= 0, i = 0, 1, ...n. (10.146)
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The equation (10.146) may be interpreted as an equation for a geodesic in some (n+1)-dimensional

Euclidean space with the Christoffel symbol Γ̃ikl (x, x
′). This geodesic passes through the points x′

and x′′.

Let the points x′ and x′′ be infinitesimally close (it is always possible if ai ≡ 0). Then equation

(10.146) can be written in the form

L(f) :
d2xi

dτ2
+ γ̃(f)

i
kl

dxk

dτ

dxl

dτ
= 0, i = 0, 1, ...n, (10.147)

where γ̃(f)
i
kl = γ̃(f)

i
kl (x) =

[
Γ̃ikl

]

x
. Dividing the gradient line L(f) into infinitesimal segments and

writing equations (10.146) in the form (10.147) on each segment, one obtains that the gradient line

L(f) is described by the equations (10.147) everywhere.

The equation (10.147) does not contain a reference to the point x′, and any gradient line (10.142),

(10.143) is to satisfy this equation.

In the case of fine antisymmetry, when ai ≡ 0, the equation (10.147) can be written in other

form. Using relations (8.113), and taking into account that ai ≡ 0, one obtains instead of (10.147)

L(f) :
d2xi

dτ2
+
(
γikl + βikl

) dxk

dτ

dxl

dτ
= 0, ai ≡ 0, (10.148)

where

γikl = γikl (x) =
1

2
gsi (gks,l + gsl,k − glk,s) , (10.149)

βikl = βikl (x) = gsiakls. (10.150)

If aikl = 0, the equations (10.148) may be considered to be the equations for a geodesic in a

Riemannian space with the metric tensor gik.

In the case of rough antisymmetry, when ai 6= 0, equations (10.142), (10.146) also describe a

gradient line, but equation (10.147) is not equivalent to (10.146), because the point x′ does not

belong to L(f), in general. In this case one cannot choose the points x′and x′′ infinitesimally close

and pass from equation (10.146) to (10.147). Thus, in the case of rough antisymmetry the equation

(10.147) does not describe a gradient line, in general.

Now let us consider another type of gradient line L(p), passing through the points x and x′′. Let

the gradient line L(p) be described by the equations (It is supposed again that ai ≡ 0).

L(p) : Σ,i

(
x, x′

)
= τΣ,i

(
x, x′′

)
= τbi, i = 0, 1, ...n, (10.151)

which determine

L(p) : x′i = x′i (τ) , i = 0, 1, ...n. (10.152)

Equation (10.151) distinguishes from the equation (10.142) only in transposition of the first and

second arguments of the world function Σ (x, x′) . The gradient line L(p), determined by the relation

(10.151), may be referred to as the gradient line from the past. Manipulating with the equation

(10.151) in the same way as with (10.142), one obtains instead of (10.147)

L(p) :
d2xi

dτ2
+ γ̃(p)

i
kl

dxk

dτ

dxl

dτ
= 0, i = 0, 1, ...n. (10.153)

In the case of fine antisymmetry, when ai ≡ 0, the equation (10.153) can be written in other

form. Using relation (8.113), and taking into account that ai ≡ 0, one obtains instead of (10.153)

L(p) :
d2xi

dτ2
+
(
γikl − β

i
kl

) dxk

dτ

dxl

dτ
= 0, ai ≡ 0, (10.154)

where γikl and βikl are defined by the relations (10.149), (10.150).
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In the case of symmetric T-geometry, when aikl = 0 and βikl = 0, differential equations (10.148)

and (10.154) respectively for gradient line L(f) and for gradient line L(p) coincide.

In the case of asymmetric T-geometry the quantities
[
Γikl
]
x

and
[
Γi
′

k′l′

]

x
do not coincide, in

general. In this case the equations (10.147) and (10.154) determine, in general, different gradient

curves, passing through the same points x′ and x′′. Differential equations (10.147) and (10.154) for

the gradient curves L(p) and L(f) differ in the sign of the “antisymmetric force”

βikl
dxk

dτ

dxl

dτ
= gsi

(

−
1

2
ak,ls −

1

2
al,ks + akls

)
dxk

dτ

dxl

dτ
. (10.155)

Finally, one can introduce the neutral gradient line L(n), defining it by the relations

L(n) : G,i′
(
x, x′

)
= τG,i′

(
x′′, x′

)
= τbi′ , i = 0, 1, ...n, (10.156)

which determine

L(n) : xi = xi (τ) , i = 0, 1, ...n. (10.157)

Equation (10.156) distinguishes from the equation (10.142) only in replacement of the world function

Σ (x, x′) by its symmetric component G (x, x′) . Manipulating with the equation (10.156) in the same

way as with (10.142), one obtains instead of (10.148)

L(n) :
d2xi

dτ2
+ γikl

dxk

dτ

dxl

dτ
= 0, (10.158)

where the “antisymmetric force” is absent.

The gradient lines (10.142) and (10.151) are insensitive with respect to transformation of the

world function of the form

Σ→ Σ̃ = f (Σ) ,
∣
∣f ′ (Σ)

∣
∣ > 0, (10.159)

where f is an arbitrary function, because for determination of the gradient line only direction of the

gradient Σi or Σi′ is important, but not its module. Indeed, after substitution of Σ̃ from (10.159)

in (10.142) one obtains the equation

Σ,i′
(
x, x′

)
= τ ′Σ,i′

(
x′′, x′

)
, i = 0, 1, ...n, τ ′ = τ

f ′ (Σ (x′′, x′))

f ′ (Σ (x, x′))
, (10.160)

which describes the same gradient line, but with another parametrization.

11 Examples of the first order tubes in nonsymmetric T-geometry

To imagine the possible corollaries of asymmetry in T-geometry, let us construct the first order

tube TP0P1 in the Σ-space. Let us consider Σ-space on the 4-dimensional manifold with the world

function

Σ
(
x, x′

)
= aiξ

i +
1

2
gkiξ

iξk, ai = bi
(
1 + αf

(
ξ2
))
, (11.161)

ξi = xi − x′i, ξ2 ≡ gkiξ
iξk, α, bi, gik = const,

where f is some function of ξ2 and summation is made over repeating indices from 0 to 3. One can

interpret the relation (11.161) as an Euclidean space with a linear structure aiξ
i given on it. Such

a Σ-space is not isotropic, because there is a vector ai, describing some preferable direction in the

Σ-space.
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Let us construct the first order neutral tube TP0P1 . Coordinates of points P0 = {0}, P1 = {y},
R = {x}, where R is the running point. In the given case the characteristic quantity (4.51) has the

form

ηf = ηf (P0, P1, R) = α
(
−bix

if
(
x2
)

+ biy
if
(
y2
)

+ bi
(
xi − yi

)
f
(

(x− y)2
))

. (11.162)

The quantity ηf does not depend on the constant component of the vector ai. Then according to

(4.44) - (4.50) the shape of the tube does not depend on the constant component of the vector

ai. If α = 0 and ai =const, shape of all first order tubes is the same, as in the case of symmetric

T-geometry, when ai = 0. In other words, the shape of the first order tubes is insensitive to the

space-time anisotropy, described by the vector field ai =const. We omit the constant component of

the field ai and consider the cases, when its variable part has the form

1 : f
(
ξ2
)

= ξ2, 2 : f
(
ξ2
)

=
1

1 + βξ2
, β = const (11.163)

ξ2 ≡ gikξ
iξk, ξi ≡ xi − x′i.

In the first case the antisymmetric structure is essential at large distances ξ = x−x′. In the second

case the antisymmetric structure vanishes at large ξ.

The equation (4.44), determining the shape of the tube T0y has the form

∣
∣
∣
∣

2G (0, y) (0y.0x)
(0x.0y) 2G (0, x)

∣
∣
∣
∣ = 4G (0, y)G (0, x)− (0y.0x) (0x.0y) = 0. (11.164)

In the first case, when f
(
ξ2
)

= ξ2, calculation gives for (11.164)

(
xiy

i
)2
− x2y2 = η2

f (11.165)

ηf = α
[(
xiy

i
) (
−2
(
bky

k
)

+ 2
(
bkx

k
))
−
(
bix

i
)
y2 +

(
biy

i
)
x2
]
, (11.166)

where x2 = xixi, y
2 = yiy

i. In the case, when the metric tensor gik is the metric tensor of the

proper Euclidean space, x2y2 ≥
(
xiy

i
)2

, the equation (11.165) has an interesting solution, only if

α = 0. Then

x2y2 =
(
xiy

i
)2
, T0y =

{

x

∣
∣
∣
∣
∣

i=3∧

i=0

xi = yiτ

}

, α = 0. (11.167)

In the case α 6= 0, the first order tube T0y degenerates to the set of basic points {0, y}, because

substitution of xi = yiτ in the square bracket in (11.165) shows that the bracket vanishes only at

τ = 0 or τ = 1. Thus, in the case of proper Euclidean metric tensor gik the first order tube shape

does not depend on ai, provided ai =const.

Let us consider a more interesting case, when the metric tensor gik of Σ-space is the Minkowski

one. Then x2y2 ≤
(
xiy

i
)2
, provided the 0y is timelike (|0y|2 = 2G (0, y) > 0). In this case the

equation (11.165) has the solution (11.167), if α = 0.

If α 6= 0, let us consider the special case, when vector bi is the unit timelike vector, and the

basic vector 0y is chosen in such a way, that

bi =
yi

|y|
, y = {|y| ,0} , |y| =

√
yiyi. (11.168)

Vector 0x is presented in the form

x =
{
x0,x

}
= {t |y| , r |y|} , r =

√
r2. (11.169)
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Using relations (11.168), (11.169), one obtains from (11.166)

ηf = α |y|3
(
3t (t− 1)− r2

)
(11.170)

and equation (11.165) is reduced to the form

−r2 + α2 |y|2
(
3t (t− 1)− r2

)2
= 0. (11.171)

Its solution has the form

r = ±
1

2α |y|

(

−1±

√(
1 + 12α2 |y|2 t (t− 1)

)
)

. (11.172)

Any section t =const of the three-dimensional surface T0y form two (or zero) spheres, whose radii

r = r (t) are determined by the relation (11.172). Equation (11.172) gives four values of r for any

value of t, but only two of them are essential, because radii r and −r describe the same surface.

It follows from (11.172) that

lim
t→∞

r

t
= ±
√

3.

It means the tube T0y is infinite only in spacelike directions. In the timelike directions the tube size

is bounded.

In the vicinity of the vector 0y, generating the tube, the shape of the tube depends on inter-

relation between the intensity of the antisymmetry, described by the constant α, and the length of

the vector 0y. The quantity α appears in the equation (11.172) only in the combination g = α |y|.
In any case, when α 6= 0, the tube T0y does not degenerate into a one-dimensional curve.

If the antisymmetric structure is strong enough, and α |y| > 1/
√

3, the tube T0y is empty in

its center in the sense that intersection of T0y with the plane t = 0.5 is empty. If α |y| < 1/
√

3

intersection of T0y with the plane t = 0.5 forms two concentric spheres of radii

r1 =
3α |y|

2

(√(
1− 3α2 |y|2

)
+ 1

) , r2 =
3α |y|

2

(

1−

√(
1− 3α2 |y|2

)) . (11.173)

If α |y| � 1, one of radii is small r1 = 0.75α |y| and another one is large r2 = 1/ (α |y|).pict 1,2
here The shape of the tube T0y is symmetric with respect to the reflection t→ 1−t. (See Figures 1,2).

In the same time a separation of the tube into internal and external segments is not symmetric with

respect to the reflection t → 1 − t. This is shown schematically in the Figures 3,4, where internal

segment is drawn by a thick line, whereas external segments are drawn by thin line. The shape of

internal segment, as well as that of external ones looks rather unexpected. The internal segment

T[0y] is strongly deformed with respect to the case of symmetric geometry. A part of the internal

segment T[0y] spreads to spatial infinity. Both external segments T0]y and T0[y are restricted in time

direction. The external segment T0[y is placed in a finite region. The segment T0]y spreads to the

spatial infinity, but it is bounded in any timelike direction.pict. 3,4
here We have seen that in the symmetric T-geometry the thickness of the internal segment is re-

sponsible for non-relativistic quantum effects [1]. At the strong antisymmetric field ai the internal

segment thickness becomes to be infinite. It increases quantum effects and may lead to unexpected

phenomena.

Let us consider now the second case (11.163), when the antisymmetric structure is essential only

at small distances. In this case one obtains instead of equation (11.171).

r2 = g2



−
(t− 1)

1 + g1

(
(t− 1)2 − r2

) +
t

1 + g1 (t2 − r2)
−

1

1 + g1





2

, (11.174)
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where the same designations (11.168) - (11.169) are used, and g = α |y| , g1 = β |y|2. At large t the

equation (11.174) transforms to the equation

r2 =
g2

(
1 + β |y|2

)2 , t→∞. (11.175)

It means that the tube is unbounded in the timelike direction 0y and has a finite radius at t→∞.

The tube is bounded in any spatial direction. The tube shape is rather fancy, and the section

T0y ∩ St forms several concentric circles (St is the surface t =const).

Thus, the local antisymmetric structure produces only local perturbation of the tube shape. At

the timelike infinity this perturbation reduces to a nonvanishing radius of the tube. As we have seen

in the fifth section, geometrical stochasticity depends on the thickness of tube internal segment. Any

asymmetry of the world function increases this thickness and increases stochasticity. It generates

additional nondegeneracy of T-geometry, which is connected with the particle mass geometrization

and with quantum effects [1].

12 Concluding remarks

The main goal of the nonsymmetric T-geometry development is its possible application as a space-

time geometry, especially as a space-time geometry of microcosm. Approach and methods of T-

geometry distinguish from those of the Riemannian (pseudo-Riemannian) geometry, which is used

now as a space-time geometry. The Riemannian geometry imposes on the space-time geometry a

series of unfounded constraints. These restrictions are generated by methods used at the description

of the Riemannian geometry. Let us list some of them.

1. The continuity of space-time. This is a very fine property which cannot be tested by a direct

experiment. T-geometry is insensitive to continuity, and it is free of this constraint. For application

of T-geometry is unessential, whether the space-time geometry is continuous or only fine-grained.

2. The Riemannian geometry is a geometry with fixed dimension. It is very difficult to imagine

a geometry with variable dimension in the scope of the Riemannian geometry. Such a problem is

absent in T-geometry.

3. For the Riemannian geometry construction, one uses a coordinate system and the concept

of a curve, which are essentially methods of the Riemannian geometry description. The curve is

considered conventionally to be a geometrical object (but not as a method of the geometry descrip-

tion), and separation of properties of geometry from properties imported by a use of the description

in terms of curves is not considered usually. In particular, in the Riemannian geometry the absolute

parallelism is absent, in general. Parallelism of two vectors at remote points is established by means

of a reference to a curve, along which the parallel transport of the vector is produced. In other

words, geometrical property of parallelism of two vectors is formulated in terms of the method of

description, and it is not known, how to remove this dependence on the methods of description.

T-geometry is free of this defect. The concept of a curve is not used at the T-geometry construction.

There is an absolute parallelism in T-geometry.

4. T-geometry uses a special geometrical language, which contains only concepts immanent to

the geometry in itself (Σ-function and finite subspaces). One does not need to eliminate the means

of the geometry description.

5. The geometrical language admits one to consider and to investigate effectively such a situation,

when the future and the past are not geometrically equivalent.
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6. The means of the Riemannian geometry description suppress such an important property of

geometry as nondegeneracy. As a corollary the particle mass geometrization appears to be impossible

in the framework of Riemannian geometry. Geometrization of the particle mass is important, when

the mass of a particle is unknown and must be determined from some geometrical or physical

relations. It may appear to be important for determination of the mass spectrum of elementary

particles. T-geometry admits geometrization of the particle mass.

7. Consideration of nondegeneracy and geometrization of the particle mass have admitted one to

make the important step in understanding of the microcosm space-time geometry. One succeeded in

explanation of non-relativistic quantum effects as geometrical effects, generated by nondegeneracy

of the space-time geometry. There is a hope that asymmetry of the space-time geometry will admit

one to explain important characteristics of elementary particles geometrically.

Capacities of T-geometry as a space-time geometry are far in excess of the Riemannian geometry

capacities.

Fig. 1. Timelike first order neutral tube for . Fig. 2. Timelike first order neutral tube for α |y| =
0.7.
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Fig. 3. Schematic division of the timelike first or-
der tube (α |y| = 0.4) into internal and ex-
ternal segments. Internal segment is drawn
by thick line, external ones are drawn by
thin line.

Fig. 4. Schematic division of the timelike first or-
der tube (α |y| = 0.7) into internal and ex-
ternal segments. Internal segment is drawn
by thick line, external ones are drawn by
thin line.
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