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In the framework of relativistic theory of gravity the graviton mass is introduced with help of sponta-

neously broken gravitational gauge symmetry mechanism for interacting gravitational and nonlinear sym-

metrical tensor fields.

The gravitational field equations in the massless variant of relativistic theory of gravity (RTG) [1]
are the Einstein ones for the effective metric gik, connected with a tensor gravitational potential
ψik and Minkowsky metric γik with the expression

g̃ik =
√
−ggik =

√
−γ(γik + kψik), (1)

where γ = detγik, g = detgik, k
2 - is the Einstein gravitational constant. This theory can be

regarded as a gauge theory of the group of Lie variations for dynamical variables. The related

transformations are the function form variations for generally covariant transformations. That the
action be invariant for this group under the transformations of the dynamic variables alone requires

replacing the “nondynamical” Minkowski metric γik with effective metric gik.

This approach may be generalized on a case of massive graviton [2]. In this case the free field
Lagrangian has a form

Lg = − 1

k2
[
√
−g(G+

1

2
m2γikg

ik −m2)−m2
√
−γ] , (2)

where
√−gG is Einstein gravitational Lagrangian without second derivatives, m is the graviton

mass. In a linear approximation the field equations, following from (2) have the form

γmn∂m∂nψ
ik +m2ψik = 0 , (3)

that justifies the interpretation of parameter m. To obtain the equation (3), we must to introduce

the Minkowski metric to the Lagrangian and hence to break the gauge invariance obviously. Note,
that first the Lagrangian (2) was investigated in the frames of GR in [3], where it was emphasized

the need to break the geometrical interpretation of GR too.

In present paper we regard the possibility to introduce the graviton mass with help of sponta-

neously broken gauge symmetry by analogy with the theories of others fundamental interactions.

To receive the Lagrangian (1) after spontaneous breaking of symmetry, we consider a symmetric
tensor field fik, which never can not be equal to zero and has the energy minimum than f0ik = γik.

Significantly that the vacuum state f0ik is Lorentzinvariant, moreover the only scalar and symmetric
tensor fields posses this property.

We choose the Lagrangian of the fik field in the next form

Lf = − 1

k2
[R(f)

√
−γ +

1

2
m2fikγ

ik
√
−γ −m2

√
−f ] = Ld + L1 , (4)
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where R is the scalar curvature for tensor fik and f = det(fik). The dynamical part Ld is chosen

so manner that additional gravitational Lagrangian should not arise after spontaneous braking of
symmetry.

If we are interesting in the constant solutions of field equations, the latter have a form

∂L1

∂fik
= 0 . (5)

From eq. (5) we are receiving

∂L1

∂fik
= −m

2

2k2
(γik
√
−γ − f ik

√
−f) = 0 . (6)

The only solution of this equation is (in Cartesian coordinates)

fik = foik = ηik = diag(1,−1,−1,−1). (7)

To show that this solution has a local energy minimum, we must compare its energy with
the energies of neighboring solutions. For solution (7) the energy, corresponding to the canonical

energy-momentum tensor is equal to m2

k2
. The same result is obtained for metric energy-momentum

tensor

Tik =
2√−γ

δL1

δγik
. (8)

For the Lagrangian L1 we receive

k2Tik = m2(
1

2
fmnγ

mnγik − fik) , (9)

E = T00(f
0
ik) =

m2

k2
. (10)

For an arbitrary solution we have

k2Tik = Rγik +m2(
1

2
fmnγ

mnγik − fik) , (11)

k2T00 = R+m2(
1

2
fmnγ

mn − f00) . (12)

Now we will find the field equations, varying the Lagrangian (5). Using the equality

δR

δfik
= −Rik . (13)

where Rik is Ricci tensor for fik, we have

Rik − 1

2
m2γik +

1

2
m2f ik

√
f

γ
= 0 . (14)

and

R =
1

2
m2F − 2m2

√
f

γ
, (15)

where F = fikγ
ik is a trace of the field fik.
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The equations (14) may be presented now in the following form

H ik = Rik − 1

2
m2γik +

1

8
m2Ff ik − 1

4
Rf ik = 0 . (16)

They satisfy the identity

H ikfik = 0 (17)

and don’t allow to determine the value F (or R). Consequently we may to choose the one from
values F or R arbitrary, then the second is defined from the condition (15).

Substituting (15) to (11), we have

k2Tik = m2(Fγik − fik − 2

√
f

γ
γik) . (18)

Now we will proceed to variable φik, doing a shift

fik = γik + φik . (19)

For the values of φik near to γik we have (in Cartesian coordinates)

F = 4 + φ ,
√
−f = 1 +

1

2
φ , (20)

k2T00 = m2(1− φ00) . (21)

The value φ = φikγ
ik may be chosen arbitrarily. We will put φ = c, where c is a negative

constant and |c| < 1. Then this constant may be chosen so that φ00 < 0, T00 >
m2

k2
, and all solutions

will have possess the energy larger than the vacuum solution.

We will regard the equation (14) in linear approximation, presenting this equation in the form

Rik −
1

2
m2γmnfimfkn +

1

2
m2fik

√
f

γ
= 0 . (22)

Taking into account the equations (19), (20) we get

RLik −
1

2
m2φik +

φ

2
m2γik = 0 . (23)

Here RLik is the linearized Ricci tensor. For variables hik = φik − 1
2
γikφ this equation describes a

tensor particle with the mass equal to m.
Now we consider the Lagrangian of fik-field, interacting with a gravitational one

Lfg = − 1

k2
[
√
−g(G(g) + R(f) +

1

2
m2fikg

ik −m2)−m2
√
−f ] (24)

and will proceed from the field fik to field φik

Lφg = − 1

k2
[
√
−g(G(g) +

1

2
m2γikg

ik −m2)+

+R(φ)
√
−g −m2

√
−f(φ) +

1

2
m2φikg

ik
√
−g] . (25)

So, we obtained the RTG Lagrangian (2) with a massive graviton interacting with the φ-field,
moreover the total Lagrangian remains gauge invariant.
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The energy-momentum tensor and field equations for the field φik has a form

k2T φik = R(φ)gik −m2φik +
1

2
m2φgik , (26)

Rik(φ)− 1

2
m2(gik −

√
f

g
f ik) = 0 . (27)

In the linear approximation for the field φik the expression (26) takes the form

k2T φik = m2[(1− σ)φgik − φik − 2σgik] , (28)

where σ =
√
γ
g

and the field φik satisfies the linearized equation (27).

Recontly due to new cosmological data a number of generalizations of GR, connected with intro-
ducing new fundamental fields, for example dynamical scalar field “quintessence” [4], [5], appeared.

The introducing the tensor field fik is related with some kind of generalizations but it dependends
on internal reasons of the theory, namely the demand to introduce a graviton mass without obvi-

ously breaking gravitational gauge symmetry. In RTG the graviton mass imitates the λ - term of
GR, though does not coinside with it. The last cosmological data show that λ – term is different

from zero, hence the graviton mass must be different from zero too. The consideration of energy-
momentum tensor of the field φik in the gravitational field equations must change the theory results
concerning strong gravitational fields and the cosmological scenario. In particular in this approach

the cosmological expansion acceleration problem [6], [7] may be considered.
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