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Perfect fluids with intrinsic degrees of freedom, namely, the perfect colour-spin and dilaton-spin fluids are

considered as the sources of the possible post-Riemannian spacetime structure. We develop the variational

theories of the perfect fluids with intrinsic degrees of freedom. We derive the expressions for the corresponding

energy-momentum tensors. The homogeneous and isotropic Universe filled with the dilaton matter as the

dark matter is considered. The modified Friedmann–Lemaitre equation is obtained, from which the absence

of the initial singularity in the cosmological solution follows. Also the existence of two points of inflection

of the scale factor function is established, the first of which corresponds to the early stage of the Universe

and the second one corresponds to the modern era when the expansion with deceleration is replaced by the

expansion with acceleration. The possible equations of state for the self-interacting cold dark matter are

found on the basis of the modern observational data. The inflation-like solution is obtained.

1. Introduction

As it is proposed in the modern fundamental physics, the spacetime geometrical structure is
compatible with the properties of matter filling the spacetime. As a result of this fact the matter
dynamics exhibits the constraints on a metric and a connection of the spacetime manifold. The

possible post-Riemannian spacetime structure and the corresponding cosmology should appear as a
result of existence of some unusual matter, filling spacetime, generating the spacetime geometrical

structure and interacting with it.
As an example of such matter we consider the perfect fluid with intrinsic degrees of freedom,

namely, the perfect colour-spin, dilaton-spin and hypermomentum fluids. All of these fluids gen-
eralize the Weyssenhoff–Raabe perfect spin fluid. Every particle of the first fluid is endowed with

intrinsic spin and non-Abelian colour charge [1]–[7]. This sort of matter generates a Riemann–
Cartan geometrical structure of spacetime. Every particle of the second fluid is endowed with spin

and dilaton charge [8]. This fluid generates a Weyl–Cartan geometry of spacetime. Particles of the
latter sort of fluid are endowed with intrinsic hypermomentum (see [9] and references therein). This
sort of fluid generates a metric-affine geometrical structure.

We develop the variational theories of the perfect fluids with intrinsic degrees of freedom, using
the exterior form language. As a result we derive the expressions for the energy-momentum tensors

and the generalized Euler-type hydrodynamic equations of motion of the perfect fluids with intrinsic
degrees of freedom on post-Riemannian geometrical background.
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The modern observations [10], [11] lead to the conclusion about the existence of dark (non-

luminous) matter with the density exceeding by one order of magnitude the density of baryonic
matter, from which stars and luminous components of galaxies are formed. It is the dark matter

interacting with the equal by order of magnitude positive vacuum energy or with quintessence that
realizes the dynamics of the Universe in modern era. Another important consequence of the modern
observations is the understanding of the fact that the end of the Friedmann era occurs when the

expansion with deceleration is succeeded by the expansion with acceleration.

As dark matter we propose to consider the dilaton matter, the model of which is realized as the

perfect dilaton-spin fluid. Then we develop the variational formalism of the gravitational field in
a Weyl–Cartan spacetime in the exterior form language. The homogeneous and isotropic Universe
filled with the dilaton matter as the dark matter is considered and one of the field equations is

represented as the Einstein-like equation which leads to the modified Friedmann–Lemaitre equation.
From this equation the absence of the initial singularity in the cosmological solution follows. Also

the existence of two points of inflection of the scale factor function is established, the first of which
corresponds to the early stage of the Universe and the second one corresponds to the modern era

when the expansion with deceleration is replaced by the expansion with acceleration. The possible
equations of state for the self-interacting cold dark matter are found on the basis of the modern

observational data. The inflation-like solution is obtained.

Throughout the paper the conventions c = 1, h̄ = 1 are used.

2. Colour-spin perfect fluid in a Riemann–Cartan space

As the dynamic variables describing the fluid in a Riemann–Cartan space U4, we take the 0-form

fields ψ and their conjugates ψ̄, which are transformed by the representations of the direct product
of the Lorentz group and SU(3) colour group. An element of the fluid possesses a 4-dimensional

velocity vector �u = ua�ea, to which the 3- and 1-forms of velocity are corresponded, respectively,
u = �u�η = uaηa and ∗u = uaθ

a = g(�u, · · ·), with ∗u ∧ u = −η, the latter being the conventional

condition for the squared velocity, g(�u, �u) = −1. Here θa are the basis 1-forms, η is the volume
4-form, � denotes the inner product, and ∗ denotes the Hodge dualization. We also introduce the
3- and 2-form fields ηb = �eb�η = ∗θb and ηab = �eb�ηa = ∗(θa ∧ θb), respectively. The basis �ea is

supposed to be nonholonomic orthogonal with g(�ea, �eb) = gab = diag(1, 1, 1,−1).
The internal-energy density ε of the fluid depends on the extensive (additive) thermodynamic

parameters: the number of particles per unit volume (concentration) n and the entropy per particle
s, and on the quantities describing the internal degrees of freedom of the fluid particle, namely, the

spin tensor Sab = ψ̄Mabψ and the colour charge Jm = ψ̄Imψ, where Mab and Im are the generators
of the corresponding representations of the Lorentz and SU(3) colour groups, respectively.

For the fluid element the first law of thermodynamics has the form,

dε(n, s, Sab, Jm) =
ε + p

n
dn + nT ds +

1

2
nωabdSab + nωmdJm , (2..1)

where p is the hydrodynamic pressure of the fluid. In (2..1) ωab and ωm describe, respectively, the

possible spin and colour charge exchanges between fluid elements. We suppose that the conservation
laws of the particles number and of entropy, which can be expressed as d(nu) = 0 and d(nsu) = 0,

are valid.

It is well-known that the spin tensor is spacelike in its nature that is the fact of fundamental
physical meaning. This leads to the classical Frenkel condition, Sabu

b = 0. In terms of the exterior

forms, this condition can be written as (�ea�S) ∧ u = 0, where the spin 2-form S = (1/2)Sabθ
a ∧ θb

has been introduced.
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The 4-form of Lagrangian density reads,

Lfluid = −ε(n, s, ψ, ψ̄)η + nψ̄Dψ ∧ u− χnJmFm ∧ ∗S
+nλ1(∗u ∧ u + η) + nu ∧ dλ2 + nλ3u ∧ ds

+nζa(�ea�S) ∧ u , (2..2)

where Fm is the strength 2-form of the non-Abelian gauge colour field. Here n, s, ψ, ψ̄ and u are
regarded as independent variables. The constraints imposed on the independent variables are taken

into account by using the Lagrange multipliers λ1, λ2, λ3 and ζa.
Using the variational equation of motion of the perfect fluid one can deduce the evolution

equation of the spin tensor

u ∧DSab + 2S[a
cub]u̇cη = −2S[a

fΠcb]Π
d
f(χFmcdJm + ωcd)η , (2..3)

where the projection tensor is Πcb = δcb + ucub, and “dot” notation is introduced, Φ̇ab = ∗(u∧DΦab).
The total Lagrangian density of the theory has the form,

Lmatter = Lfluid + Lfield , Lfield = −
α

2
Fm ∧ ∗Fm , (2..4)

where Lfield is the 4-form of the colour field Lagrangian density. The equations for the colour field
are obtained by variation of (2..4) over 1-form potential Am,

D(α ∗Fm + χnJm ∗S) = nJmu . (2..5)

With the help of (2..4) we obtain the expression of the energy-momentum 3-form,

Σa = −
δLmatter

δθa
= Σfluida + Σfielda , (2..6)

Σfluida = pηa + n

(
πa +

p

n
ua

)
u + χn(ea�FmJm) ∧ ∗S , (2..7)

where the dynamic momentum per particle is introduced,

πa = ε∗ua − Sa
c
(
u̇c + ub(χJmFmbc + ωbc)

)
. (2..8)

Here ε∗ denotes the effective energy per fluid particle, ε∗η = εoη + χJmFm ∧ ∗S, where εo = ε/n.
With the help of the energy-momentum quasi-conservation law in U4 one can derive the equation

of motion of the perfect spin fluid with colour charge in the form generalizing the Euler hydrody-
namic equation [6], [7]. In this equation by going over to the limit of zero pressure we find that
in U4 space the equation of motion of a particle with a spin and a colour charge in an external

non-Abelian colour gauge field has the form

u ∧Dπa = −(�ea�Fm) ∧ Jmu + χ(�ea�∇)Fm ∧ Jm ∗S −

−1
2
(�ea�Rbc) ∧ Sbcu− (�ea�T b) ∧ πb . (2..9)

The first term on the right-hand side of this equation is a generalization of the Lorentz force to
the case of a non-Abelian gauge field. The second term is a chromomagnetic analog of the Stern–

Gerlach force acting on a magnetic moment in an electromagnetic field (this force is generated by
the additional potential energy of a magnetic momentum in a magnetic field). The third term on

the right-hand side equation (2..9) represents the Mathisson force arising from the interaction of
the particle spin with the curvature of space, while the fourth term is so-called translational force,
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which is due to the interaction of the particle dynamical momentum with the torsion of space. The

emergence of this force is peculiar to U4 space.
Equation (2..9), supplemented with the evolution equation of the spin tensor (2..3) and the

colour charge evolution equation [7], describe the motion of a particle with a spin and a colour
charge in the presence of spin-chromomagnetic interaction. They generalize the well-known Wong
equations [13] to the case of the SU(3) colour group and take into account the spin of particles,

which may be responsible for the possible interaction between the spin and the chromomagnetic
component of the colour field and for the additional effect of the gravitational field, associated with

the geometry of the Riemann–Cartan space, on the motion of particles.
Then we derive the evolution equation of the particle spin in a colour field in a Riemann–Cartan

space. The particle-spin vector (Tamm–Pauli–Lyubanski vector) is defined as

σa =
1

2
ηabcdSbcud , σ =

√
σaσa , (2..10)

where ηabcd are the components of the Levi-Civita antisymmetric tensor (of the volume 4-form η).

In Minkowski spacetime, the evolution of this vector in a slowly varying electromagnetic field is
governed by the Bargmann–Michel–Telegdi equation [14]. However, this equation take no account
of the effect of the spin on the trajectory of the particle. A more precise equation that describes the

motion of the particle spin in a nonuniform electromagnetic field and which takes into account the
effect of the spin on the motion of the particle was derived by Good who extended the Tamm equation

(see [14]–[16] ). By using equation (2..9) we will now extend the Tamm–Good and Bargmann–
Michel–Telegdi equations to the case of the motion of such a particle in an external colour (generally

nonuniform) field in U4 [2], [7]:

u ∧Dσa = −σb(χηab ∧ FmJm + ωabη)−
uaσb

m∗ [(�eb�Fm) ∧ Jmu

−πc(χηbc ∧ FmJm + ωbcη)− χ(�eb�∇)Fm ∧ Jm ∗S

+
1

2
(�eb�Rcd) ∧ Scdu + (�eb�T c) ∧ πcu] . (2..11)

Note that, apart from terms involving field gradients, the equation of motions for a fluid parti-

cle (2..9) coincides in form with the corresponding equation of motion that follows from the string
action functional [17]. This suggests that this equation of motion may prove to be valid not only
for a fluid particle but also for an extended object like cosmic string.

The theory developed in this section can be applied to the describing of quark-gluon plasma [7].
According to the modern observations in cosmology [10], [11] the energy density of baryonic matter

due to its small magnitude (in comparison with dark matter) does not realize the dynamics of the
Universe. In our opinion quark-gluon plasma can play the essential role in local phenomena, i.e. in

solving the gravitational collapse problem.

3. Dilaton-spin perfect fluid in a Weyl–Cartan space

Now we shall consider the variational theory of the dilaton-spin perfect fluid [8]. A Weyl–Cartan
space is a space with a curvature 2-form Rab, a torsion 2-form T a and with the metric g and the

connection Γ which obey the constraint,

−Dgab = Qab =
1

4
gabQ , Q = gabQab = Qaθ

a , (3..1)

where D = d + Γ ∧ . . . is the covariant exterior differential with respect to the connection 1-form

Γab, Qab is a nonmetricity 1-form and Q is a Weyl 1-form, which represents the gauge field, called
dilaton field.
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The additional degrees of freedom, which a fluid element possesses, are described with the help of

the material frame (called directors) attached to every fluid element. In the exterior form language
the material frame is realized as the coframe of 1-forms lp (p = 1, 2, 3, 4), which have dual 3-forms

lq, the constraint lp ∧ lq = δpqη being fulfilled.
The perfect dilaton-spin fluid obeys the Frenkel condition for the spin tensor Spq, that in the

exterior form language can be written as follows, Spqlp ∧ ∗u = 0, Spql
q ∧ u = 0.

In case of the dilaton-spin fluid the spin dynamical variable of the Weyssenhoff fluid Spq is
generalized and becomes the new dynamical variable named the dilaton-spin tensor Jpq:

Jpq = Spq +
1

4
δpqJ , Spq = J [pq] , J = Jpp , (3..2)

where J is the specific (per particle) dilaton charge of a fluid element. The measure of intrinsic

motion contained in a fluid element is the quantity Ωqp which generalizes the intrinsic ”angular
velocity” of the Weyssenhoff spin fluid, Ωqpη = u ∧ lqaDlap . An element of the perfect dilaton-spin

fluid possesses the additional intrinsic ”kinetic” energy density 4-form E = 1
2
nJpqΩ

q
pη. The internal

energy density of the fluid ε obeys to the first thermodynamic principle,

dε(n, s, Spq, J) =
ε + p

n
dn + nT ds +

∂ε

∂Spq
dSpq +

∂ε

∂J
dJ . (3..3)

The perfect fluid Lagrangian density 4-form of the perfect dilaton-spin fluid has the form,

Lfluid = −ε(n, s, Spq, J)η +
1

2
nJpqΩ

q
pη + nu ∧ dϕ + nτu ∧ ds

+nλ(∗u ∧ u + η) + nχqSpqlp ∧ ∗u + nζpS
p
ql
q ∧ u . (3..4)

The fluid motion equations and the evolution equation of the dilaton-spin tensor are derived by
the variation of (3..4) with respect to the independent variables n, s, Spq, J, u, lq and the Lagrange

multipliers, the thermodynamic principle (3..3) being taken into account. We shall consider the
1-form lq as an independent variable and the 3-form lp as a function of lq. As a consequence one

obtains the evolution equation of the spin tensor: Ṡab + Ṡacu
cub + Ṡcbucu

a = 0. This equation
generalizes to a Weyl–Cartan space the evolution equation of the spin tensor in the Weyssenhoff

fluid theory.
By means of the variational derivatives of the matter Lagrangian density (3..4) one can derive the

external matter currents which are the sources of a gravitational field. The variational derivative of
the Lagrangian density (3..4) with respect to θa yields the canonical energy-momentum 3-form [8],

Σa =
δLfluid

δθa
= pηa + (ε + p)uau + nṠabu

bu . (3..5)

It should be mentioned that in case of the dilaton-spin fluid the specific energy density ε in (3..5)

contains the energy density of the dilaton interaction of the fluid.
In a Weyl–Cartan space the matter Lagrangian (3..4) obeys the diffeomorphism invariance that

leads to the Noether identity, which represents the quasiconservation law for the canonical matter
energy-momentum 3-form. This identity is fulfilled, if the equations of matter motion are valid, and
therefore it represents in essence another form of the matter motion equations. With the help of

this Noether identity one can obtain the equation of motion of the perfect dilaton-spin fluid in the
form of the generalized hydrodynamic Euler-type equation of the perfect fluid [8],

u ∧D
(

πa +
p

n
ua

)
=

1

n
η�ea�Dp− 1

8n
η(ε+ p)Qa − (�ea�T b) ∧

(
πb +

p

n
ub

)
u

−1
2
(�ea�Rbc) ∧ Sbcu +

1

8
(�ea�Rbb) ∧ Ju . (3..6)
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If we evaluate the component of the equation (3..6) along the 4-velocity by contracting one with

ua, then after some algebra we get the energy conservation law along a streamline of the fluid [8],

dε =
ε + p

n
dn . (3..7)

On the basis of (3..6) one can prove the following Theorem [8], [9]:

The motion of a test particle with spin and without dilaton charge in a Weyl–Cartan
space coincides with the motion of this particle in the Riemann–Cartan space, the metric
and torsion tensors of which coincide with the metric and torsion tensors of the Weyl–

Cartan space.

The important consequence of this statement means that fluids and particles without dilaton charge

are not subjected to the influence of the possible Weyl structure of spacetime.

4. Dilaton-spin perfect fluid as a source of post-Riemannian spacetime

We shall consider the dilaton-spin fluid energy-momentum tensor (3..5) as a source of gravitati-

onal field [18], [19]. In this case the spacetime becomes a Weyl–Cartan space. The total Lagrangian
density of the theory reads [20],

L = Lgrav + Lfluid ,

Lgrav = 2f0

(
1

2
Rab ∧ ηa

b − Λη +
1

4
λRaa ∧ ∗Rbb + +1 T a ∧ ∗Ta

++2 (T a ∧ θb) ∧ ∗(T b ∧ θa) + +3 (T a ∧ θa) ∧ ∗(T b ∧ θb)

+ξQ∧ ∗Q+ ζQ∧ θa ∧ ∗Ta
)
+ Λab ∧

(
Qab −

1

4
gabQ

)
. (4..1)

Here f0 = 1/(2æ) (æ = 8πG), Λ is the cosmological constant, λ, +1, +2, +3, ξ, ζ are the coupling

constants, and Λab is the Lagrange multiplier 3-form with the evident properties: Λab = Λba, Λcc = 0,
which are the consequences of the Weyl’s condition (3..1).

The field equations in Weyl–Cartan spacetime can be obtained by the variational procedure of

the first order. Let us vary the Lagrangian (4..1) with respect to the basis 1-form θa and to the
connection 1-form Γab independently, the constraint imposed on the connection 1-form being taken

into account by means of the Lagrange multiplier Λab. It is useful to use the master formula (4..2)
derived in the following Lemma, proved in [21].

Lemma. Let Φ and Ψ be arbitrary p-forms defined on n-dimensional manifold. Then

the variational identity for the commutator of the variation operator δ and the Hodge
star operator ∗ is valid,

Φ ∧ δ ∗Ψ = δΨ ∧ ∗Φ
+δgab

(
1

2
gabΦ ∧ ∗Ψ + (−1)p(n−1)+s+1θa ∧ ∗

(
∗Ψ ∧ θb

)
∧ ∗Φ

)

+δθa ∧
(
(−1)pΦ ∧ ∗ (Ψ ∧ θa) + (−1)p(n−1)+s+1 ∗ (∗Ψ ∧ θa) ∧ ∗Φ

)
. (4..2)

The variationwith respect to the connection 1-form Γab yields the field equation (Γ-equation) [20],
after antisymmetrization of which one obtains the expression for the torsion 2-form,

−1
2
T c ∧ ηabc +

1

8
Q∧ ηab + 2+1θ[a ∧ ∗Tb]

+2+2θ[a ∧ θ|c| ∧ ∗(T |c| ∧ θb]) + 2+3θa ∧ θb ∧ ∗(T c ∧ θc)

+ζθ[a ∧ ∗(Q∧ θb]) =
1

2
ænSabu , æ =

1

2f0
. (4..3)
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The torsion 2-form can be decomposed into the irreducible pieces (the traceless 2-form
(1)

T a,

the trace 2-form
(2)

T a and the pseudotrace 2-form
(3)

T a) [22], [12]: T a =
(1)

T a+
(2)

T a+
(3)

T a, where the

torsion trace 2-form and the torsion pseudotrace 2-form of the pseudo-Riemannian 4-manifold are
determined by the expressions, respectively,

(2)

T a = 1
3
T ∧ θa , T = ∗(θa ∧ ∗T a) = −(�ea�T a) , (4..4)

(3)

T a = 1
3
∗ (P ∧ θa) , P = ∗(θa ∧ T a) = �ea� ∗ T a , (4..5)

where the torsion trace 1-form T and the torsion pseudotrace 1-form P are introduced.

The field equation (4..3) yields the consequences,

T =
3( 1
4
+ ζ)

2(1− +1 + 2+2)
Q , (4..6)

(1− 4+1 − 4+2 − 12+3)P = ænσ , (4..7)

the first of which gives the relation between the torsion trace 1-form T and the Weyl 1-form Q, and
the second one represents the torsion pseudotrace 1-form P via the Pauli–Lyubanski spin 1-form σ

(2..10) of a fluid particle.
As a consequence of (4..7) the field equation (4..3) yields the equation for the traceless piece of

the torsion 2-form,

(1 + 2+1 + 2+2)
(1)

T a = æn

(
Sabucθ

b ∧ θc +
2

3
σbηba

)
= −2

3
ænSb(auc)θ

b ∧ θc . (4..8)

The symmetric part of the Γ-equation determines the Lagrange multiplier 3-form Λab. It is very
important that Λab is in general not equal to zero.

By contracting the Γ-equation and after substituting (4..6) in the result, one finds the equation
of the Proca type for the Weyl 1-form [20],

∗ d ∗dQ+ m2Q =
æ

2λ
nJ ∗u , m2 = 16

ξ

λ
+

3(+1 − 2+2 + 8ζ(1 + 2ζ))

4λ(1− +1 + 2+2)
. (4..9)

The equation (4..9) shows that the dilaton field Q, in contrast to Maxwell field, possesses the non-
zero rest mass and demonstrates a short-range nature, as it was pointed out by Utiyama [23], [24]

(see also [25]). In the component form the Proca type equation for Weyl vector was used in [24],
[26] and in the exterior form language in [12].

The equations (4..6), (4..7) and (4..8) solve the problem of the evaluation the torsion 2-form.
With the help of the algebraic field equations (4..7) and (4..8) the traceless and pseudotrace pieces

of the torsion 2-form are determined via the spin tensor and the flow 3-form u of the perfect dilaton-
spin fluid in general case. With the help of the equation (4..6) one can determine the torsion trace

2-form via the dilaton field Q, for which the differential field equation (4..9) is valid. Therefore the
torsion trace 2-form can propagate in the theory under consideration.

5. Homogeneous and isotropic cosmology with dilaton matter

Now we consider the homogeneous and isotropic Universe filled with the perfect dilaton-spin
fluid [18]–[20], which realizes the model of the dark matter with J �= 0 in contrast to the baryonic

and quark matter with J = 0. The metric of this cosmological model is the Robertson–Walker
(RW) metric with scale factor a(t),

ds2 =
a2(t)

1− kr2
dr2 + a2(t)r2

(
dθ2 + (sin θ)2dφ2

)
− dt2 . (5..1)
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As it was shown in [27]–[29], in the spacetime with the RW metric (5..1) the only nonvanishing

components of the torsion are T 141 = T 242 = T 343 and Tijk for i = 1, 2, 3. In this case from (4..4) we
get that the only nonvanishing component of the trace 1-form is T4 = T4(t) (Ti = 0 for i = 1, 2, 3).

From (4..5) we also find, P = 3T[123]η
1234θ4. But the field equation (4..7) yields, P4 ∼ σ4 = 0, as a

consequence of (2..10). Therefore the pseudotrace piece of the torsion 2-form vanishes. It is easy
to calculate with the help of (4..4) that the traceless piece also vanishes. Therefore for the RW

metric (5..1) the torsion 2-form consists only from the trace piece. We also put Sab = 0. In this
case dilaton-spin fluid becomes dilaton fluid.

The variation of (4..1) with respect to the basis 1-form θa gives the second field equation (θ-
equation). The source of this equation is the fluid canonical energy-momentum 3-form (3..5). Now

we decompose the field θ-equation into Riemannian and non-Riemannian parts and then transform

the result to the component form. The terms with the derivatives of the dilaton field, like
R

∇a Qa

and
R

∇b Qa, and the same derivatives of the torsion trace 1-form in a remarkable manner mutually

compensate each other and vanish. The terms with dQ also vanish, as the equality dQ = 0 is
valid identically for the RW metric (5..1) that can be easy verified in the component basis. As a

consequence of this fact we can derive the Weyl 1-form Q algebraically from the equation (4..9).
Then we can represent the field θ-equation as an Einstein-like equation (the condition Sab = 0

being used),
R

Rab −
1

2
gab

R

R= æ
(
(εe + pe)uaub + pegab

)
, (5..2)

where
R

Rab,
R

R are a Ricci tensor and a curvature scalar of a Riemann space, respectively, εe and pe
are an energy density and a pressure of an effective perfect fluid:

εe = ε + εv − αæ

(
nJ

2λm2

)2
, pe = p + pv − αæ

(
nJ

2λm2

)2
, (5..3)

α =
3
(
1
4
+ ζ

)2
4(1− +1 + 2+2)

+ ξ − 3

64
. (5..4)

and εv = Λ/æ and pv = −Λ/æ are an energy density and a pressure of a vacuum with the equation
of state, εv = −pv > 0.

The field equation (5..2) yields the modified Friedmann–Lemaitre (FL) equation,

(
ȧ

a

)2
+

k

a2
=

æ

3

(
ε + εv − αæ

(
Jn

2λm2

)2)
. (5..5)

The integration of the continuity equation d(nu) = 0 (d – the operator of exterior differentiati-

on) for RW metric (5..1) yields the matter conservation law na3 = N = const. As an equation of
state of the dilaton fluid we choose the equation of state p = γε, 0 ≤ γ < 1. Then the integration

of the energy conservation law (3..7) for RW metric (5..1) yields the condition,

ε a3(1+γ) = Eγ = const , Eγ > 0 . (5..6)

We put k = 0 in (5..5) in accordance with the modern observational evidence [10], [11], [30],
[31], from which one should conclude that the Universe is spatially flat in cosmological scale. In
this case we can conclude from the equation (5..5) that extremum points of the scale factor (ȧ = 0)

correspond to zero points of the equation,

a6 +
Eγ
εv

(
a3(1−γ) − EEγ

)
= 0 , E = αæ

(
JN

2λm2

)2
. (5..7)
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If the condition, 0 < E << 1 is valid, then in case a << 1 the equation (5..7) has one zero point,

a0 ≈
( E
Eγ

) 1
3(1−γ)

=

(
αæ

Eγ

(
JN

2λm2

)2) 1
3(1−γ)

, (5..8)

and none zero points in case a >> 1 (as Eγ > 0).
In order to clarify, whether there is a minimum or a maximum in the extremum point, one can

take the other component of the equation (5..2):

ä

a
= −æ

6
(εe + 3pe) =

æ

3a6

(
εva

6 − 1

2
(1 + 3γ)Eγa3(1−γ) + 2E

)
. (5..9)

At the extremum point (5..8) (in case a << 1) one gets ä > 0. Therefore the value a0 corresponds

to the minimum point of the scale factor a(t).
In case a >> 1 we can neglect the last term in (5..9) and get the equation,

ä

a
=

æ

3

(
εv −

1

2
(1 + 3γ)ε(t)

)
, (5..10)

where ε(t) is the current value of dilaton fluid energy density. This equation is valid for the most
part of the history of the Universe.

Consider now the conditions under which the points of inflection of the function a(t) can exist.
To this end let us equate the right side of (5..9) to zero (ä = 0) and find zero points of the equation,

a6 − (1 + 3γ)Eγ
2εv

(
a3(1−γ) − 4

1 + 3γ
a
3(1−γ)
0

)
= 0 . (5..11)

As the last term in (5..11) is very small, then this equation has two types of zero points: very small

by magnitude with the value a1 and large by magnitude with the value a2:

a1 ≈ a0

(
4

1 + 3γ

) 1
3(1−γ)

, a2 ≈
(
(1 + 3γ)Eγ

2εv

) 1
3(1+γ)

. (5..12)

From a1 up to the a2 one has ä < 0 and the expansion with deceleration occurs up to the end of

the Friedmann era. The point of inflection a2 corresponds to the modern era when the Friedmann
expansion with deceleration is replaced by the expansion with acceleration that means the beginning

of the “second inflation” era.
By equating to zero the equation (5..10) we get the correlation between the vacuum energy

density εv and the dilaton matter energy density ε at the point of inflection a2,

ε =
2εv

1 + 3γ
. (5..13)

For the nonrelativistic cold matter (γ = 2
3
) the formula (5..13) yields,

Ωcdm =
2

3
ΩΛ , Ωcdm =

ε

εtot
, ΩΛ =

εv
εtot

, εtot =
3H2

8πG
.

that fits to the boundary of the modern observational data [30],

ΩΛ = 0.66± 0.06 , Ωcdmh20 = 0.17± 0.02 ,

with H0 = 100 h0 = 65 km s−1Mpc−1 [10].
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Curiously, that if one takes the generally accepted data of [10], Ωcdm = 1
3

, ΩΛ = 2
3
, and substitute

to (5..13), then one gets the value γ = 1, that corresponds to the equation of state of the superrigid
matter. Therefore we can conclude that the theory together with the observational data gives the

approximate range for the viable values of the factor γ in the equation of state of the dilaton matter,
2
3
≤ γ ≤ 1.
It is interesting to investigate the limiting case γ = 1. For this case the equations (5..6)–(5..7)

are valid, but the zero point of the equation (5..7) in case γ = 1 is

ae =

(E − E1
εv

) 1
6

, (5..14)

where E1 = Eγ=1 is the integration constant of the equation (5..6). The value ae corresponds to the

minimum point of the scale factor, ae = amin.
In case γ = 1, k = 0 the equation (5..5) reads,

(
ȧ

a

)2
=

æ

3a6
(
εva

6 − E1 + E
)
=

Λ

3a6
(
a6 − a6min

)
,

and can be exactly integrated. The solution corresponding to the initial data t = 0, a = amin reads,

a = amin(cosh
√
3Λ t)

1
3 , amin =

(
αæ2

Λ

(
JN

2λm2

)2
− æE1

Λ

) 1
6

.

This solution describes the inflation-like stage of the evolution of the Universe, which continues until

the equation of state of the dilaton matter will change and will become differ from the equation of
state of the superrigid matter.
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