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In the present work, it is shown that the geometerization philosophy has not been exhausted. Some

quantum roots are already built in non-symmetric geometries. Path equations in such geometries give rise

to spin-gravity interaction. Some experimental evidences (the results of the COW-experiment) indicate the

existence of this interaction. It is shown that the new quantum path equations could account for the results

of the COW-experiment. Large scale applications, of the new path equations, admitted by such geometries,

give rise to tests for the existence of this interaction on the astrophysical and cosmological scales. As a

byproduct, it is shown that the quantum roots appeared explicitly, in the path equations, can be diffused in

the whole geometry using a parameterization scheme.

1 Introduction

Most of the success of physics in the 20th century has been achieved as a result of the applications
of two philosophies.The first is the Quantization Philosophy and the second is the Geometerization
Philosophy. The consequences of applying the first is the Quantum Theory, while the consequences
of applying the second is the General Theory of Relativity, (GR). The study and understanding of
the four known fundamental interactions are not equally successful using, only, one of these two
rival philosophies. Electromagnetism, weak and strong interactions are well understood using the
quantization philosophy, while gravity is not understood using this philosophy. In the context of
geometerization of physics, GR is considered as a good theory for gravity, while there are no such
successful geometric theories for the other three interactions.

It seems that a third philosophy is needed to unify the physics of the four fundamental inter-
actions. This philosophy may lead to new physics. This would be, undoubtedly, a difficult task.
It would be of importance to reach the conclusion that the two rival philosophies are completely
exhausted, before trying a third one. This my be a less difficult task. It needs a careful examination
of applying the existing philosophies. Examination of the geometric approach to physics shows that
this approach is not exhausted yet. Some types of geometry admit some quantum properties. This
is what I am going to show in the present work.

The following statement summarizes the philosophy of gemeterization of physics:

“To understand nature one should start with geometry and end with physics”.

In applying this philosophy, one should look for an appropriate geometry. Einstein, in applying his
geometerization philosophy, used three types of geometry. Some of the main properties of these
geometries are summarized in the following table.
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Table I: Comparison between 3-types of geometry.

Geometry [Ref.] Metric Connection Building Blocks (#)

Riemannian [1] Symmetric Symmetric Metric tensor (10)

Absolute Parallelism [2] Symmetric Non-symmetric Tetrad vectors (16)

Einstein Non-symmetric [3] Non-symmetric Non-symmetric Metric tensor (16)

We mean by the term “Building Block” the geometric object, using which one can construct the
whole geometry. In the last column of Table I, we assume that the dimension of space n = 4.

Riemannian geometry has been used by Einstein to construct his successful theory of gravity,
GR. It is well known that the number of building blocks in this geometry is just sufficient to describe
gravity. For this reason, we are going to consider the other two geometries, in Table I, since the
number of building blocks in each is enough to accommodate other interactions, together with
gravity. These interactions may have some quantum properties.

The term “Non-Symmetric Geometry” will be used to indicate that the geometry admits non-
symmetric connection. In such a geometry, one can define define three types of tensor derivatives
(derivatives that preserve tensor properties):

A
µ
+| ν

def.
= Aµ,ν +AαCµ.αν , (1.1)

A
µ
−| ν

def.
= Aµ,ν +AαCµ.να, (1.2)

A
µ
0| ν

def.
= Aµ,ν +AαC

µ
.(αν), (1.3)

where Aµ is an arbitrary vector and Cµ.να is the non-symmetric connection. Braces ( ) are used
for symmetrization and brackets [ ] will be used for anti-symmetrization. The comma is used for
ordinary (not tensor) partial differentiation.

Now, what is the starting point for examining non-symmetric geometries to look for any quantum
features? It is well known that, quantum properties in microscopic world were discovered when
Planck tried to interpret black body radiation, a phenomena which is closely connected to the
motion of electrons. On the other hand, in the context of geometerization of physics, motion is
described using paths (curves) of an appropriate geometry. So, a good starting point, may be a
search for path equations in the geometries under consideration.

Bazanski [4],[5] has established a new approach to derive the equations of geodesic and geodesic
deviation simultaneously by carrying out variation on the following Lagrangian:

LB = gµνU
µDΨν

DS
, (1.4)

where Uµ
def
= dxµ

dS , gµν is the metric tensor, Ψµ is the deviation vector and D
DS is the covariant

differential operator using Christoffel Symbol. We are going to generalize the Bazanski approach,
by replacing the covariant derivative, used in his Lagrangian, by tensor derivatives of the types
given by (1.1), (1.2) and (1.3), admitted by the geometry under consideration.

The work in this review is organized as follows: Section 2 gives a brief review of the two non-
symmetric geometries under consideration, together with the new path equations resulting from
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each one. Section 3 gives some remarks about the quantum features appearing in these geometric
paths. A method for diffusing the quantum properties, in the whole geometry, is given in Section 4.
The general quantum path, of the absolute parallelism geometry, is linearized in Section 5. Section
6 gives confirmation and applications of the quantum paths. the work is discussed and concluded
in Section 7.

2 Geometries with Built-in Quantum Roots

21. The Absolute Parallelism Geometry

Absolute parallelism (AP)space is an n-dimensional manifold each point of which is labelled
by n-independent variables xν(ν = 1, 2, 3, ..., n) and at each point we define n-linearly independent
contravariant vectors λ

i

µ(i = 1, 2, 3, 3..., n, denotes the vector number and µ = 1, 2, 3..., n, denotes

the coordinate component) subject to the condition,

λ
i

µ
+
.| ν = 0, (2.1)

where the stroke and the (+) sign denote absolute differentiation, using a non-symmetric connection
to be defined later. Equation (2.1)is the condition for the absolute parallelism. The covariant
components of λ

i

µ are defined such that

λ
i

µ
λ
i
ν = δµν , (2.2)

and

λ
i

ν
λ
j
ν = δij . (2.3)

Using these vectors, the following second order symmetric tensors are defined:

gµν
def
= λ

i

µ
λ
i

ν , (2.4)

gµν
def
= λ

i
µ λ
i
ν , (2.5)

consequently,
gµαgνα = δµν . (2.6)

These second order tensors can serve as the metric tensor and its conjugate of Riemannian space,
associated with the AP-space, when needed. This type of geometry admits, at least, four affine con-
nections. The first is a non-symmetric connection given as a direct solution of the AP-condition(2.1),
i.e.

Γα. µν = λ
i

α
λ
i
µ,ν . (2.7)

The second is its dual Γ̂α. µν(= Γα. νµ) since (2.7) is non-symmetric. The third one is the symmetric
part of (2.7), Γα.(µν). The fourth is Christoffel symbol defined using (2.4),(2.5) ( as a result of imposing

a metricity condition). The torsion tensor is the skew symmetric part of the affine connection (2.7),
i.e.

Λα. µν
def
= Γα. µν − Γα. νµ. (2.8)

Another third order tensor (contortion) is defined by,

γα. µν
def
= λ

i

α
λ
i
µ;ν . (2.9)

317



The semicolon is used to characterize covariant differentiation using Christoffel symbol. The two
tensors are related by the formula,

γα.µν =
1

2
(Λα.µν − Λ α

ν.µ − Λ α
µ.ν). (2.10)

A basic vector could be obtained by contraction of one of the above third order tensors, i.e.

Cµ
def
= Λα.µα = γα.µα. (2.11)

The curvature tensor of the AP-space is, conventionally, defined by,

Bα
.µνσ

def
= Γα.µσ,ν − Γα.µν,σ + ΓαενΓε.µσ − Γα.εσΓε.µν ≡ 0. (2.12)

This tensor vanishes identically because of (2.1).
The autoparallel paths, of this geometry, are given by the equation,

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0. (2.13)

The AP-geometry, in its conventional form, has two main problems concerning applications:
The first is the identical vanishing of its curvature tensor and the second is that its path equations
(2.13) do not represent any known physical trajectory. These problems will be treated in Section 4.

Many authors believe that, because of (2.12), the AP-space is flat. It is shown [6] that AP-spaces
are, in general, curved. The problem of curvature in AP-spaces is a problem of definition. In any
affinely connected space there is, at least, two methods for defining the curvature tensor. The first
method is by replacing Christoffel symbol, in the definition of Riemann-Christoffel tensor, by the
affine connection defined in the space concerned. The second method is to define curvature as a
measure of non-commutation of tensor differentiation using the affine connection of the space. It is
known that, the two methods give identical results in case of Riemannian space. But the situation
is different for spaces with non-symmetric connections. The two methods are not identical.

The application of the second method in non-symmetric geometries implies a problem. That is,
we usually use an arbitrary vector in order to study the non-commutation of tensor differentiation,
and the resulting expression will not be free from this vector. Fortunately, this problem is solved
in AP-spaces [7]. We can replace the arbitrary vector by the vectors defining the structure of
AP-spaces. In this case we can define the following curvature tensors:

λ
i

µ
+
|νσ − λ

i

µ
+
|σν = λ

i

αBµ
.ανσ, (2.14)

λ
i

µ
−
|νσ − λ

i

µ
−
|σν = λ

i

αLµ.ανσ, (2.15)

λ
i

µ

0
|νσ − λ

i

µ

0
|σν = λ

i

αNµ
.ανσ, (2.16)

λ
i

µ
;νσ − λ

i

µ
;σν = λ

i

αRµ.ανσ, (2.17)

here we use the stroke , a (+) sign and (-) sign to characterize absolute differentiation using the
connection (2.7) and its dual, respectively. We use the stroke without signs to characterize absolute
differentiation using the symmetric part of (2.7), while the semicolon is used to characterize covariant
differentiation using the Christoffel symbols. The curvature tensors defined by (2.14), (2.15), (2.16)
and (2.17) are in general non-vanishing except the first one, which vanishes (because of the AP-
condition (2.1)).
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The curvature tensors defined above can be written explicitly in terms of torsion, or contortion
via (2.10), i.e.

Bα
.µνσ = Rα.µνσ +Qα.µνσ ≡ 0, (2.18)

Lα.µνσ
def
= Λ

α
+

.
µ
+
ν
−|σ
− Λ

α
+

.
µ
+
σ
−|ν

+ Λβ.µνΛα.σβ − Λβ.µσΛα.νβ , (2.19)

Nα
.µνσ

def
= Λα.µν|σ − Λα.µσ|ν + Λβ.µνΛα.βσ − Λβ.µσΛα.νβ , (2.20)

Qα.µνσ
def
= γ

α
+

.
µ
+
ν
+|σ
− γ

α
+

.
µ
+
σ
−|ν

+ γβ.µσγ
α
.βν − γ

β
.µνγ

α
.βσ, (2.21)

It is clear that the vanishing of the torsion will lead to the vanishing of (2.19), (2.20). Also this
will lead to vanishing of (2.21) via (2.10) and consequently the vanishing of Rα.µνσ via (2.18). This
represents another problem facing field theories written in AP-spaces. Such theories will not have
GR limit as the torsion vanishes, if this condition is needed.

22. Quantum Properties of the AP-Geometry

Recently [8], using the affine connections defined in the AP-space to generalize the Bazanski
Lagrangian (1.4), three path equations were discovered in the AP-geometry . These equations can
be written in the form:

dUµ

dS−
+ {µαβ}U

αUβ = 0, (2.22)

dWµ

dS0
+ {µαβ}W

αW β = −
1

2
Λ µ

(αβ). W
αW β , (2.23)

dV µ

dS+
+ {µαβ}V

αV β = −Λ µ
(αβ). V

αV β , (2.24)

where S−,S0and S+ are the parameters varying along the corresponding curves whose tangents are
Jα,Wα and V α, respectively. We can write the new set of the path equations, obtained in this
geometry, in the following form:

dBµ

dŜ
+ a

{
µ

αβ

}

BαBβ = −b Λ . . µ
(αβ) BαBβ , (2.25)

where a, b are the numerical coefficients of the Christoffel symbol term and of the torsion term,
respectively. Thus we can construct the following table.

Table II: Numerical Coefficients of The Path Equation in AP-Geometry.

Affine Connection Used Coefficient a Coefficient b

Γ̂α. µν 1 0

Γα. (µν) 1 1
2

Γα. µν 1 1
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The first column in this table contains the affine connections used to generalize the Bazanski
Lagrangian. The set of equations (2.22), (2.23)and (2.24) possesses some interesting features:
1. It gives the effect of the torsion on the curves (paths)of the geometry.
2. This set is irreducible i.e. no one of these equations can be reduced to the other unless the
torsion vanishes. This vanishing will lead to flat space (in view of the definitions (2.18-21)), which
is not suitable for applications.
3. The coefficient of the torsion term jumps by a step of one-half from one equation to the next (as
clear from Table II).
The last feature is tempting to conclude that:

“paths in AP − geometry are naturally quantized”.

23. Einstein Non-symmetric Geometry

Einstein generalized the Riemannian geometry by dropping the symmetry conditions imposed
on the metric tensor and on the affine connection [3]. In this geometry the non-symmetric metric
tensor is given by:

gµν
def.
= hµν + fµν , (2.26)

where

hµν
def.
=

1

2
(gµν + gµν),

fµν
def.
=

1

2
(gµν − gµν).

Since the connection of the geometry, Uα. µν , is assumed to be non-symmetric, we can define the
following 3-types of covariant derivatives:

A
µ
+|| ν

def.
= Aµ,ν +AαUµ.αν , (2.27)

A
µ
−|| ν

def.
= Aµ,ν +AαUµ.να, (2.28)

A
µ
0|| ν

def.
= Aµ,ν +AαU

µ
.(αν), (2.29)

where Aµ is any arbitrary vector. Now the connection Uα. µν is defined such that [3],

gµ
+
ν
−||σ

= 0, (2.30)

i.e. gµν,σ = gµαU
α
. σν + gανU

α
. µσ. (2.31)

The non-symmetric connection can be written in the the following form:

Uα. µν
def.
= Uα. (µν) + Uα. [µν] =

{
α

µν

}

+Kα
. µν , (2.32)

where

Uα. (µν)
def.
=

1

2
( Uα. µν + Uα. νµ), (2.33)

Uα. [µν]
def.
=

1

2
( Uα. µν − U

α
. νµ) = Kα

. [µν] =
1

2
Sα. µν , (2.34)

where Sα. µν is a third order tensor representing the torsion of the Einstein non-symmetric (ENS)
geometry.
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The contravariant metric tensor gµν is defied such that :

gµαgνα = gαµgαν = δµν . (2.35)

The tensor derivatives (2.27), (2.28) and (2.29) are connected to the parameter derivatives by the
relations :

∇Aµ

∇τ−
= A

µ
−|| αJ̃

α, (2.36)

∇Aµ

∇τ0
= A

µ
0|| αW̃

α, (2.37)

∇Aµ

∇τ+
= A

µ
+|| αṼ

α, (2.38)

where J̃µ,W̃µ and Ṽ µ are tangents to the paths whose evolution parameters are τ−,τ0 and τ+,
respectively.

24. Quantum Properties of ENS-Geometry

Applying the Bazanski approach to the Lagrangian functions:

Ξ− = gµαJ̃
µ∇Ψα

∇τ−
, (2.39)

Ξ0 = gµαW̃
µ∇Θα

∇τ0
, (2.40)

Ξ+ = gµαṼ
µ∇Φα

∇τ+
, (2.41)

where Ψα,Θα and Φα are the deviation vectors, we get [9] the following set path equations respec-
tively,

dJ̃α

dτ−
+

{
α

µν

}

J̃µJ̃ν = −Kα
. µν J̃

µJ̃ν , (2.42)

dW̃α

dτ0
+

{
α

µν

}

W̃µW̃ ν = −
1

2
gασgµρS

ρ
. νσW̃

µW̃ ν −Kα
. µνW̃

µW̃ ν , (2.43)

dṼ α

dτ+
+

{
α

µν

}

Ṽ µṼ ν = −gασgµρS
ρ
. νσṼ

µṼ ν −Kα
. µν Ṽ

µṼ ν . (2.44)

This set of equations can be written in the following general form:

dCα

dτ
+ a

{
α

µν

}

CµCν = −b gασgµρS
ρ
. νσC

µCν − c Kα
. µνC

µCν , (2.45)

where a, b and c are the numerical coefficient of the Christoffel symbol, torsion and K-terms,
respectively. Thus, we can construct the following table:
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Table III: Coefficients of The Path Equations in ENS-Geometry.

Affine Connection used Coefficient a Coefficient b Coefficient c

Ûα. µν 1 0 1

Uα. (µν) 1 1
2 1

Uα. µν 1 1 1

The first column in this table contains the affine connections used to generalize the Bazanski La-
grangian.

From this table, it is clear that, the jumping coefficient of the torsion term (column 3) has the
same values obtained in the case of the AP-geometry (Table II, column 3). So, one can draw a
similar conclusion given in Subsection 2.2:

“Paths in ENS − geometry are naturally quantized”

3 Features of Quantum Roots

(i) We consider the jump of the coefficient of the torsion term in the path equations of Subsections
2.2 and 2.4, by a step of one-half, as quantum roots emerging in non-symmetric geometries. Such
path equations, are usually used to represent trajectories of test particles, in the context of the
scheme of geometerization of physics. So, if such trajectories do exist in nature, then one can
conclude that space-time is quantized and the geometry describing nature should be non-symmetric.

(ii) The quantum properties shown in Tables II and III, are properties built in the examined
geometries. In other words, these properties are intrinsic properties characterizing the type of
geometry used. The properties mentioned above are not consequences of applying any known
quantization schemes.

(iii) In the scheme performed to discover these properties, certain Lagrangian functions are used.
Such functions contain, in their structure, covariant derivatives, in which certain affine connections
are used. The quantum properties discovered are closely related to such connections. It is well
known that, in any non-symmetric geometry, one can define more affine connections by adding any
third order tensor to any affine connection already defined in the geometry. If we do so, in the
geometries examined in Section 2, one would not get any values (for the coefficients given in Tables
II, III) different from those listed in the two tables. As a check one can try the connection,

Ωα
.µν

def
= {αµν}+ Λα.µν , (3.1)

defined in the AP-geometry.
(iv) As stated above, the quantum properties discovered are closely connected to the affine

connection, or more strictly, to its skew pare, the torsion tensor. The coefficients of Christoffel
symbol term (the second column of Tables II and III) are the same for all paths. Also, the coefficient
of the symmetric part of the tensor Ka

µν has no such jumping properties (last column of Table III).

4 Parameterization and Diffusion of Quantum Roots

It is now obvious that the quantum roots discovered in non-symmetric geometries depend mainly
on the existence of non-symmetric connections admitted by such geometries. Furthermore, these
roots, explicitly, appear in the path equations and not in other geometric entity.
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In order to extend these roots to the whole geometry, we are going to reconstruct the geometry
using a general affine connection. This connection is defined as a linear combination of the connec-
tions, already, admitted in the geometry. The combination is carried out using certain parameters.
The general expression obtained may not represent an affine connection, in a conventional sense.
In other words, it might not be transformed as an affine connection, under the group of general
coordinate transformation, unless certain conditions are imposed on the values of the parameters
used. The version of the geometry obtained in this way is a parameterized version.

In the case of the AP-geometry, using the affine connections mentioned in Subsection 2.1 and
carrying out the parameterization scheme mentioned above, the following results are obtained [10]:
Combining linearly the above mentioned connections we get, after some reductions, the following
parameterized expression,

∇µ.αβ = (a+ b){µαβ}+ bγ
µ
.αβ (4.1a)

where a and b are parameters. As a consequence of imposing a metricity condition, using (4.1a),
we get

a+ b = 1. (4.1b)

So, expression (4.1a) will reduce to,

∇µ.αβ = {µαβ}+ bγ
µ
.αβ , (4.2)

which is a general parameterized affine connection. Using (4.2) to generalize the Bazanski La-
grangian (1.4), we get

dZµ

dτ
+ {µαβ}Z

αZβ = −b Λ µ
(αβ). Z

αZβ , (4.3)

where τ is a parameter varying along the path and Zµ is the tangent to the path.
All curvature tensors defined in this parameterized version of geometry, are non-vanishing. For

example if we redefine the curvature (2.12) using the connection (4.2) we get [10]

B∗α.µνσ = Rα.µνσ + b Q̂α.µνσ. (4.4)

where Rα.µνσ is Riemann-Christoffel curvature tensor and Qα.µνσ is defined by,

Q̂α. µνσ
def
= γ

α
+

.
µ
+
ν
+|σ
− γ

α
+

.
µ
+
σ
−|ν

+ b (γβ.µσ γ
α
.βν − γ

β
.µν γ

α
.βσ). (4.5)

This tensor is, in general non-vanishing although the corresponding one (2.18) vanishes identi-
cally in the old version of the geometry. The torsion and the basic vector of AP-geometry are also
parameterized and defined by[12],

Λ∗α.µν
def
= ∇α.µν −∇

α
.νµ = b Λα.µν , (4.6)

Ĉµ
def
= Λ̂α.µα = b Λα.µα. (4.7)

The tangent of the new path (4.3) can be written in the form,

Zµ = Uµ + b ζµ, (4.8)

where Uµ is the tangent vector of the geodesic of metric and the vector ζµ represents a deviation
from geodesic. The affine parameter (τ) varying along (4.3) can be related to that varying along
the geodesic (s) by the relation [12],

s = τ (1 + b Uµζµ). (4.9)
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For physical reasons [11], the parameter b is suggested to take the form

b =
n

2
α γ, (4.10)

where n is a natural number, α is the fine structure constant and γ is a dimensionless parameter of
order unity.The presence of n

2 in the parameter b will preserve the jumping step appeared in Table
II We are going to call (4.3) the “Quantum Path Equations”.

The torsion term, on the R.H.S. of (4.3), is suggested [11] to represent a type of interaction
between the torsion of the background gravitational field and the quantum spin of the moving test
particle, Spin-Gravity Interaction. We are going to take n = 0, 1, 2, 3, .... for particles with spin
0, 1

2 , 1,
3
2 , ...., respectively. For slowly rotating macroscopic objects, we are going to take n = 0.

5 Quantum Paths and Their Linearization

The path equation (4.3) can be used as an equation of motion for any field theory, constructed
in the AP-geometry, provided that the theory has good Newtonian limits. In such theories, (e.g.
[7], [13], [14]), the tetrad vectors λ

i
µ are considered as field variables. So, if we write,

λ
i
µ = δiµ + εhiµ, (5.1)

where ε is a small parameter, δiµ is Kroneckar delta and hiµ represents deviations from flat space,
then the weak field condition can be fulfilled by neglecting quantities of the second and higher
orders in ε in the expanded field quantities. For a static field assumption, we are going to assume

the vanishing of time derivatives of the field variables. The vector components Zµ (
def
= dxµ

dτ )will
have the values,

Z1 ≈ Z2 ≈ Z3 ≈ ε , Z0 ≈ 1− ε, (5.2)

where ε is a parameter of the order ( vc ). If we want to add the condition of slowly moving particle to
the previous conditions we should neglect quantities of second and higher orders of the parameter
ε. Thus, in expanding the quantities of the path equation (4.3) we are going to neglect quantities of
orders ε2, ε2, εε and higher, and also time derivatives of the field variable are to be neglected. To
the first order of the parameters, the only field quantities that will contribute to the path equation
(4.3) are given by [11],

Λ. . i00 = −εh00,i, (i = 1, 2, 3) (5.3)

{ i0 0} =
ε

2
Y00,i, (i = 1, 2, 3), (5.4)

where Yµν is defined by,

gµν = ηµν + ε Yµν ,

gµν is given by (2.5) and ηµν is the Minkowski metric tensor . Substituting from (5.3),(5.4) into
(4.3) we get, after some manipulations :

d2xi

dτ2
= −

1

2
ε (1−

n

2
αγ)Y00,i Z

0 Z0. (5.5)

In the present case, the metric of the Riemannian space, associated to AP-space, can be written in
the form [11],

(
dτ

dt
)2 = c2 (1 + ε Y00). (5.6)
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Substituting from (5.6) into (5.5) we get after some manipulations:

d2xi

dt2
= −

c2

2
ε (1−

n

2
αγ) Y00,i (i = 1, 2, 3)

which can be written in the form,

d2xi

dt2
= −

∂Φs

∂xi
(i = 1, 2, 3) , (5.7)

where

Φs
def
=

c2

2
ε (1−

n

2
αγ) Y00. (5.8)

Equation (5.7) has the same form as Newton’s equation of motion of a particle in a gravitational
field having the potential Φs given by (5.8), which differs from the classical Newtonian potential.
In the case of motion of macroscopic particles (n = 0), we get from (5.8):

Φs =
c2

2
ε Y00 = ΦN (5.9)

where ΦN is the Newtonian gravitational potential obtained from a similar treatment of the geodesic
equation. Thus (5.8) can be written in the form,

Φs = (1−
n

2
αγ)ΦN . (5.10)

This last expression shows that the gravitational potential felt by the spinning particle is less than
that felt by a spinless particle or a macroscopic test particle. In other words, the Newtonian potential
is reduced, for spinning particles, by a factor (1 − n

2αγ).

6 Confirmation and Applications of the Quantum Paths

In the context of geometerization of physics, path equations of an appropriate geometry are used
to represent trajectories of test particles. It appears clearly, from the previous section, that in the
case of a static weak field and a slowly moving test particle, we get Newtonian motion, provided
that the particle is spinless. In the following subsections, we are going to use the quantum path
equation (4.3), and its linearization consequences, to study the motion of spinning test particles in
gravitational fields.

61. The COW-Experiment

Colella, Overhauser and Werner suggested and carried out experiments concerning the quantum
interference of thermal neutrons [15], [16], [17]. This type of experiments is known, in the literature,
as the COW-experiment. The aim of the experiment is to test the effect of the Earth’s gravitational
field on the phase difference between two beams of thermal neutrons, one is more closer to the
Earth’s surface than the other. The second version of the COW experiment was carried out by
Werner et al.[18]. This version is characterized by a high accuracy in the measurements of the
phase shift (1 part in 1000). The measurements show that the experimental results are lower than
the theoretical calculations (using the Newtonian gravity) by about 8 parts in 1000. This is a real
discrepancy, which may indicate the presence of a type of non-Newtonian effects.

Now one can use equation (4.3) to give an interpretation for the discrepancy in the COW-
experiment. In fact we are going to use the consequence of equation (4.3) given by equation (5.10)
since the following conditions, under which (5.10) is derived, hold:
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-thermal neutrons can be considered as slowly moving test particles, and
-the Earth’s gravitational field can be considered as weak and static.

The phase difference (∆Ω) between the two beams of neutrons in the COW-experiment is given
by (cf. [19]),

(∆Ω)N = −
1

h̄

∫ ABD

ACD
ΦNdt, (6.1)

where ABD and ACD are the trajectories of the upper and lower beams of neutrons, in the interfer-
ometer, respectively . The index N is used to indicate that (6.1) is obtained using the Newtonian
potential ΦN , and h̄ is the Planck’s constant. Since neutrons are spinning particles they will be
affected by the torsion of space-time, as suggested. Thus we replace ΦN in (6.1) by ΦS given by
(5.10). In this case (6.1) will take the form [20]:

(∆Ω)S = −(1−
n

2
γα)

1

h̄

∫ ABD

ACD
ΦNdt, (6.2)

i.e.,

(∆Ω)S = (∆Ω)N −
n

2
γα(∆Ω)N . (6.3)

The index S is used to indicate that (6.2) is obtained using the potential ΦS . Taking the value of
α = 1

137 , n = 1 for spin 1
2 - particles (neutrons), we easily get the following results [20]:

(1) the theoretical value of the COW-experiment will decrease by about 4 parts in 1000, if we take
γ = 1,
(2) the theoretical value will coincide with the experimental one if we take γ = 2.

62. SN1987A

Carriers of astrophysical information are massless spinning particles. These carriers are photons,
neutrinos, and expectedly, gravitons. These three types of carriers are assumed to be emitted
from supernovae events. In February, 23rd,1987 a supernova , in the Large Magellanic Cloud, was
observed (cf. [21]). Observations of the arrival time of neutrinos, at the Kamiokande detectors,
was recorded in February 23rd, 1987, 7h35mUT , while the arrival time of photons was on the same
day at 10h40mUT . The bar of the gravitational waves antennae in Rome and Maryland recorded
relatively large pulses, 1.2 seconds earlier than neutrinos (cf. [22], [23]). Although the three types
of particles have different spins, general relativity assumes that they follow the same trajectory
(null-geodesic of the metric), since they are all massless.

In the context of general relativity, it is well known that the time interval required for a massless
particle to traverse a given distance is longer in the presence of gravitational field having the potential
Φ(r). The time delay is given by (cf. [24])

∆tGR = const.

∫ a

e
Φ(r)dt, (6.4)

where e and a are the emission and arrival times of the carrier, respectively. In SN1987A’s time de-
lay (cf. [24], [25], [26]), Φ(r) is taken to be the Newtonian potential ΦN (spin independent). In this
case we can construct a spin-independent model, for the emission times of the carriers. If we assume
that Φ(r) is the spin dependent gravitational potential Φs (5.10), we then get the spin-dependent
model. The results of these two models [27] are summarized in table IV.
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Table IV: Emission Times Given By The Models.
Particles Emitted Spin Independent Model Spin Dependent Model

(Cause) (Null-Geodesic) (Quantum Path)

Neutrino (core collapse) 0.0 0.0

Photons (maximum brightness) +3h5m +15h18m

Gravitons (?) −1s.2 +36h28m

From Table IV, we can conclude that, the two models assume two different scenarios for the
emission of carriers of astrophysical information. The spin-independent model shows an indication
that neutrinos were emitted due to core collapse, associated with gravitons as a result of sudden
change in the space-time symmetry, probably, due to a kicked born neutron star. About three hours
later photons were emitted as a result of maximum brightness of the envelope. The spin-dependent
model shows that: neutrinos were emitted due to a core collapse, preserving sphericity of the core.
After 15 hours photons were emitted due to maximum brightness of the envelope, in agreement with
SN theories, then 21 hours later the envelope explodes asymmetrically producing a sudden change
of space-time symmetry which causes the emission of gravitational waves. It could be seen that the
spin-dependent model is more preferable than the spin-independent model.

63. The Cosmological Parameters

Cosmological information are usually carried by, and extracted from, massless spinning particles,
“carriers of cosmological information”. The photon (spin 1-particle) is a good candidate represent-
ing one type of these carriers. Recently, the neutrino (spin 1

2 -particle) entered the playground as
another type. We expect, in the near future, that a third type of carriers, the graviton (spin 2-
particle), to be used for extracting cosmological information. Two factors affect the properties of
these carriers. The first is the source of the carrier. The second factor is the trajectory of the carrier,
in the cosmic space, from its source to the receiver. The first factor implies the information carried,
which reflect the properties of the source. The second factor represents the impact of the cosmic
space-time on the properties of the carrier. So, information carried by these particles contain, a
part connected to their sources, and another part related to the space-time through which these
particles travelled.

Cosmological parameters are quantities extracted from the information carried by the above
mentioned particles. Consequently, the values of such parameters are certainly affected by the
second factor. In the present work, we are going to explore the impact of this factor on these
parameters.

It is well known that, the red-shift of spectral lines, coming from distant objects, plays an
important role in measuring the cosmological parameters. Theoretical calculations of the red-shift,
in the context of GR, treats it as a metric phenomena, since the metric of space-time is the first
integral of the geodesic equation. But, if the trajectories of test particles, the carriers, are spin-
dependent, then the red-shift of spectral lines is no longer a metric phenomena. In this case one
should look for an alternative scheme for calculating this quantity.

Kermack, McCrea and Whittaker [28] developed two theorems on null-geodesics which were
applied to get the standard red-shift of relativistic cosmology, using the following formula,

λo

λ1
=

1ηµρµ
0ηµ$µ

, (6.5)
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where 1ηµ is the transport vector along the null-geodesic Γ connecting two observers A and B,
evaluated at A, 0ηµ is the transport vector evaluated at B, ρµ is the unit tangent along the trajectory
of A, $µ is the unit tangent along the trajectory of B, λ1 is the wave length of the spectral line as
measured at A, λo is the wave length of the spectral line as measured at B, and Γ represents the
trajectory of a massless particle from A (source) to B (receiver). If the universe is expanding then
λo > λ1. It can be shown that the two theorems, mentioned above, are applicable to any null-path.
So, they can be used for massless spinning particles following the trajectory (4.3).

In order to evaluate the red-shift using (6.5) one has to know first the values of the vectors used
in this formula. Such vectors are obtained as solution of the spin-dependent path equation (4.3).
Robertson [29] constructed two geometric AP-structures for cosmological applications. Using one
of these structures, and performing the necessary calculations we get [30],

λo
λ1

= (
Ro
R1

)(1−n
2
αγ). (6.6)

Now, we define the spin-dependent scale factor as,

R∗ = R(1−n
2
αγ)). (6.7)

Using R∗, in place of R in the standard definitions of the cosmological parameters, we can list
the resulting spin-dependent parameters in Table V. The second column of this Table, gives the
values of the parameters as if they are extracted from massless spinless particles. The values of
the parameters extracted from photons should match the values listed in column 4. It is worth of
mention that the matter parameter is not affected by the spin-gravity interaction. This is due to
its independence on Hubble’s parameter.

Table V: Spin-Dependent Cosmological Parameters.

Parameter Spin-0 Spin- 1
2 (neutrino) Spin-1 (photon) Spin-2 (graviton)

Hubble Ho (1− α
2 )Ho (1− α)Ho (1− 2α)Ho

Age τo
τo

(1−α2 )
τo

(1−α)
τo

(1−2α)

Acceleration Ao (1− α
2 )(Ao − α

2Ho) (1− α)(Ao − αHo) (1− 2α)(Ao − 2αHo)

Deceleration qo
(qo− α

2Ho
)

(1−α2 )

(qo− α
Ho

)

(1−α)

(qo− 2α
Ho

)

(1−2α)

There are some evidences for the existence of the spin-gravity interaction on the laboratory
scale (the results of the COW-experiment), and on the galactic scale (the data of SN1987A). Now,
to verify the existence of this interaction on the cosmological scale, observations of one parameter
at least, using two different types of carriers, are needed. For example, if we observe neutrinos
and photons to get Hubble’s parameter, a discrepancy of order 0.001 would be expected, if this
interaction exists on the cosmological scale.

328



7 General Discussion and Concluding Remarks

In the present work, it is shown that, starting within the geometerization philosophy, some quan-
tum properties appeared very naturally in the structure of two types of non-symmetric geometries
(see the third column of Tables II and III). These properties emerged without imposing any known
quantization schemes on the geometry. The properties characterize the torsion term of two new sets
of path equations discovered in each geometry, (2.25) and (2.45). The natural appearance of such
properties can be considered as quantum roots built in non-symmetric geometry.

It is shown that these roots could be extended and diffuse in the whole geometry, using a certain
parameterization scheme, suggested in Section 4. This scheme, applied to the AP-geometry, could
be applied with some efforts to the ENS-geometry. The application of the parameterization scheme,
not only diffuses the quantum properties in the whole geometric structure, but also solves the two
main problems of the AP-geometry, mentioned in Subsection 2.1. We can summarize the main
advantages of this scheme in the following points:

1. As stated above, it extends the quantum roots, appeared in the path equations, of a non-
symmetric geometry, to other geometric entities.

2. It solves completely the curvature problems (the identical vanishing of the curvature (2.12)),
mentioned in Subsection 2.1, by defining a general parameterized non-vanishing curvature tensor
(4.4).

3. From the application point of view and depending on the curvature (4.4), field theories written
in the parameterized AP-geometry do not need the condition for a vanishing torsion (which leads
to a flat AP-space via (2.18-21)), in order to get a correct GR-limit. In other words, to switch-off
the effect of the torsion, in such theories, we only take the parameter b = 0.

4. It solves the second problem of conventional AP-geometry, i.e. the non-physical applicability
of the path equations (2.13). The new quantum paths (4.3) could be used for physical applications,
as shown in Section 6.

5. The parameterized absolute parallelism (PAP) geometry is more general than both the
Riemannian and conventional AP-geometries. It could account for both geometries as two limiting
cases. These limits can be obtained using (4.1b). The first limit a = 0 =⇒ b = 1, which corresponds
to the conventional AP-geometry. The second is a = 1 =⇒ b = 0, which corresponds to the
Riemannian geometry. Figure 1 [12], is a schematic diagram giving the complete spectrum of
geometries admitted by the PAP-geometry.

This Figure is plotted using equations (4.4) and (4.6).
The new quantum paths (4.3)can be reduced to the geodesic equation of Riemannian geometry

(or null-geodesic upon reparameterization), upon setting b = 0, which switch-off the effect of the
torsion term. In this case the equation can account for classical mechanics and relativistic mechanics.
But if b 6= 0, then the torsion of the background gravitational field will interact with some of the
properties of the moving particle. Recalling that the parameter b jumps by steps of one-half, (4.10),
then one can conclude that the property of the test particle, by which it interacts with the torsion,
is its quantum spin. For this reason, the torsion term in (4.3) is suggested to represent “Spin-
Gravity Interaction”. The linearization carried out in Section 5, shows clearly that this interaction
will reduce Newton’s gravitational potential, as obvious from (5.10). This equation shows that, the
gravitational potential felt by a spinning particle is less than that felt by a spinless particle, or by a
macroscopic object. In other words, one can say that, spinning particles feel the space-time torsion.
This is similar to the fact that charged particles feel the electromagnetic potential, while neutral
particles do not feel it.
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Figure 1: Quantum Properties of PAP-Geometry.

The discrepancy, between the experimental results and the theoretical calculations (using New-
tonian gravity), of the COW-experiment gives a good indicator for the existence of spin-gravity
interaction, on the laboratory scale. The experimental results are found to be lower than the ex-
pected theoretical calculations. This discrepancy can be interpreted, qualitatively, by a decrease in
the gravitational potential, of the Earth, felt by neutrons (spin one-half particles). The value of this
potential, felt by neutrons, is less than the value given by Newton’s theory. The application of the
new quantum path (4.3), Subsection 6.1, gives good, qualitative and quantitative, agreement with
the experimental results. Such agreement give, not only an evidence of the existence of spin-gravity
interaction, but also a direct confirmation of equation (4.3).

The application of the linearized form of (4.3), in the case of motion of spinning massless particles
coming from SN1987A, Subsection 6.2, gives a good model for the emission times of these particles
from this supernova (see Table IV). This may indicate the presence of the spin-gravity interaction
on the galactic scale. But more efforts are still needed, both to confirm supernovae mechanisms and
for observing more supernovae, to give strong confirmation for the existence of this interaction on
the astrophysical scale.

The full path equation (4.3) is applied in the case of cosmology, Subsection 6.3. It is shown that
the values of the cosmological parameters will be affected by the spin-gravity interaction, if it exists
on the cosmological scale. The values of these parameters will depend on the spin of the particle,
from which cosmological information are extracted. It is suggested that, a cosmological parameter
measured using two massless particles, with different spins (e.g. photon and neutrino) may confirm
the existence of spin-gravity interaction on the cosmological scale. The sensitivity of the apparatus,
or experiment, to be used should be better than 0.001

In view of the present work, I will try to give short probable answers to some of the good
questions raised by professor V.Petrov in the closing session of the conference:

Q1: What is the appropriate topology/geometry?
A1: A non-symmetric geometry.
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Q2: How many dimensions?
A2: So for, in the context of geometerization of physics, we don’t need more that four dimensions.

Mass and charge appear as constants of integration. There are some attempts to represent other
interactions (e.g. electromagnetism) together with gravity in spaces of four dimensions (cf. [7]).

Q3: What are the experimental/observational signature of quantum-geometrical effects?
A3: Concerning the experimental signature, the COW-type experiment is a good media for

testing quantum-geometrical effects on the laboratory scale. the discrepancy in the results of this
experiment gives a good indicator for the existence of such effects.

Concerning the observational signature, more efforts are needed for observing photons and neu-
trinos (and probably gravitons, in the future), from supernovae events, in order to detect the
existence of such effects on the astrophysical and cosmological scales.

Finally, I would like to thank the organizing committee and Professor V.Petrov for inviting me
to participate in the conference and to give this talk.
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