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1 Functioning of the Superbracket

Grassmann algebras were born [1] out of the structure of integration over manifolds; once found,
however, they also provided “texture” for supermanifolds, including super-vector fields, i.e. gen-
eralized tangent and cotangent systems [2], and a Z(2)- graded super-Lie bracket for the tangent,
including the further option of having an additional (“interior”) Z-grading with its Z(2)-subgroup
also correlated and contributing to the operation of the bracket [3], which would always be super-
abelian, otherwise.

In “conventional” Golfand-Likhtman (Poincaré) supersymmetry [4], the bracket Z(2) is directly
correlated to the spin-statistics of the carrier-space components, here relativistic quantum fields
with Bose or Fermi statistics. An alternative set of participating elements with the same quantum-
statistics-Z(2), but compatible with Lorentz invariance along the carrier-space super-multiplet and
no correlation with spin, could be based on alternation between physical versus ghost fields, as
displayed in the BRST constraining finite super-ring [5] guaranteeing off-mass-shell unitarity in
Yang-Mills Gauge Theories; in Jean Thierry-Mieg’s geometrical interpretation [6] the ghosts consist
of vertical one-forms, a fact which closes the (virtual) circle. The geometrical methodology has
since gained in acceptance, applications and extension [7].

2 Internal Supersymmetry

In a different type of extension, this author introduced in 1979 “Internal Supersymmetry” [8]. The
same result was reached [9] independently and almost simultaneously by David Fairlie, who was lead
to it from an entirely different angle, that of the method of dimensional reduction. Whatever the
origin, however, as indicated by the adjective “internal”, the “gauged” supergroup, (namely SU(2/1)
here) correlates the superalgebraic Z(2) with a quantum statistics Z(2) in the representation’s carrier
space but this occurs in a Lorentz invariant way, instead of the ∆J = 1

2 jump required by the spin-
statistics correlation. We are thus dealing with a mix of physical and ghost fields. In the specific
case of an electroweak SU(2/1), the symmetry can be defined as a deformation of SU(3) with its
adjoint octet representation given by eight Lorentz-scalar fields, namely the 4 Feynman-de Witt-
Faddeev-Popov ghosts for the Yang-Mills gauge fields of the isospin-hypercharge (weak) U(2), plus
the 4 K-meson-like Higgs fields selected by the result.

The above definition, however, misses some essential features. If, for instance, one presents
the octet in the form of a 3 × 3 supermatrix, instead of an 8- component supervector, one finds
that it might be regarded as a superalgebra acting on a 3-component carrier space surprisingly
fitting precisely the physical Hilbert space for any of the lepton flavors, with the super-algebra’s
Z(2) correlating with the chiral Z(2), as applied in the assignment of electroweak quantum numbers
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to each flavor’s fundamental fields in the Standard Model (ν0
L, e

−
L , e

−
R) This structure also applies

to the quarks, as they fit in the other fundamental representation of SU(2/1), [10] a 4-dimensional
representation inherited from the homomorphism between SU(2/1) and Osp(2/2). These 3 × 3 or
4 × 4 representations appear to contain important additional features, such as the identification
of the symmetry-breaking mass-operator (such as the λ6 operator, using eightfold-way notation,
relating the eL to eR). A priori, a supposed invariance of the electroweak system under SU(2/1) ⊃
SU(2) ⊗ U(1) is a natural extension, considering that its maximal even subgroup coincides with
the gauge symmetry. However, using chiral Z(2) at first appears inappropriate, as there is no
correlated change of statistics under the action of the odd part of the superalgebra, a conceptual
difficulty whose removal required a doubling of all multiplets, so that the number of ghost states
might become equal to that of the physical states [11, 12].

At this point we should also discuss the number of free parameters in the theory. A pri-
ori, the Electroweak unification theory includes the following pieces in its Lagrangian: L(W,Z} +
{L(Φ, Φ̄}}+ L(leptons) + L{quarks}+ +L(Φ

2) + L(Φ
4) (the Higgs potential).

The independent parameters are: (g, g′) or (g, tg (ΘW )), (−µ2), λ) and two Yukawa couplings
per generation, one for quarks and one for leptons.. Use of SU(2/1) produces (sinΘW )2 = .25 and
the coefficient of the quartic (in Φ), λ = (4/3) g2. Assuming universality in this gauge amounts
to assume all Yukawa couplings are of strength g; on the other hand there are as yet no known
and proven non-renormalization theorems, so that these last universality statements may be over-
optimistic.

3 Quillen’s Superconnection

The supermatix solution which we discussed was a precursor to a mathematically strengthened
formulation offered by D.Quillen [13] in 1985. Note that in that picture, we have a product of two
superspaces, namely the Grassmann superalgebra Ξ corresponding to the parameters with which
the superalgebra would be exponentiated to produce a group element and the defining supermatrix
Υ. The superconnection still having to fulfill the role of a gauge-potential (or connection..) for
the supergroup, it has to be odd in the total (product) Z(2). Thus, whereas the Υ-even subgroup
submatrices will get the Yang-Mills potential’s Ξ-(odd) one-forms as coefficients, the Higgs fields,
in themselves Ξ-even 0-forms, multiply the Υ-odd part of the supermatrix. This was precisely the
structure originally adopted intuitively by DB Fairlie and this author. The adaptation of SU(2 /1)
to this formalism was thus straightforward [14]. Further work has produced the extension to include
SU(3)color and generations [15, 16].

4 Noncommutative Geometry

This approach [17] is an extension of geometry, inspired by systems in which one learns about the
properties of a manifold by studying the functions which can exist on it. In NCG they form a Unital
algebra of functions, A (noncommutative). Other important components are a “Dirac operator”
D and a Hilbert Space H, also an involution (∗). The set (A, D, H,∗) defines a geometry. NCG
extends the notions of distance, etc to spaces which are not manifolds. One relevant example is the
model for the electroweak case, developed by A. Connes and J. Lott [18]. It consists in a Bundle
whose base-space is a direct product Z(2) ⊗M = ML ⊕MR, where Z(2) is a 2-points space, the
points representing L and R, namely the two chiralities, M is spacetime, so that in the product
we have two spacetimes with only one chirality each. The group in the Principal Bundle is thus
SU(2)L ⊗ U(1) on both Chiral Spacetimes. The physics occurs in an Associated Vector Bundle
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with, in the lepton case, for example,

(ν0
L(x), e−L (x)),
e−R(x),

∀x ∈ML, e
−
R(x) = 0,

∀y ∈MR, ν
0
L(y) = 0, e−L (y) = 0.

Parallel transport within either ML or MR is achieved by the usual covariant derivative, but in order
to move, e.g. in the above set up, over the path ν0

L(x) ←→ e−R(y) we use the SU(2) connection in
∂µ −W−µ (x) to go ν0

L(x) ←→ e−L (x′), where x′ is the “image” of y in ML after which we have to
perform a discrete “jump” ML ←−MR.

The bridge over the abyss between the two chiralized spacetimes is supplied in the form of a
matrix derivative [19], in this case bridging e−L (x′) ←− e−R(y) accompanied by its connection, the
Φ(x). Although the argument is somewhat more profound, the result can be described in simple
terms: the total covariant derivative will roughly be ∂µWµ(x) + ∆ − −Φ(x) and the curvature
F = ∂W [W,W ]+Φ,Φ+∆Φ so that the Lagrangian F ∧∗F now automatically includes the negative
sign quadratic term of the Higgs potential, arising from the squaring of ∆Φ [20], aside from the
inclusion of the quartic term through the squaring of the symmetric bracket Φ, Φ provided by the
symmetric bracket in supergroup unification.

One theory which has all along applied these concepts as they developed is the Electroweak
SU(2/1) Unification [8,9] mentioned above. It has since been amended in its prediction for the Higgs
mass (originally set at 2

√
2M(W ) = 240 GeV, reevaluated [21] and set at 2M(W ) = 170 GeV and

after [22] a linearized approximation of renormalization effects, expected at M(Φ) = 130+/−6 GeV.
This author has since launched a second example of the matrix-derivative version of a gauged
supergroup, namely applying the hyperexceptional superalgebra P (4, R) ⊃ SL(4, R) ⊃ SO(3, 1) =
SL(2, C) to obtain the (Riemannian) Einstein geometry from a Metric-Affine gauge theory [23].
P (4, R) is a 31-dimensional superalgebra with the 15 generators of sl(4, R) in the even subalgebra
and the 16 generators of gl(4, R) split between the supermatrix’ upper right corner (10 symmetric
4 × 4 matrices) and lower left corner (6 antisymmetric 4 × 4 matrices). The overline bar denotes
a double-covering. The matrix-derivative coincides with the Minkowski metric in the upper right
corner.
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