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It is proposed to consider dark matter as the perfect dilaton-spin fluid (the particles of which are endowed
with intrinsic spin and dilaton charge) within the framework of the gravitational theory with the Weyl–Cartan
geometrical structure. The modified Friedmann–Lemâıtre equation (with a cosmological term) is obtained for
the homogeneous and isotropic Universe filled with the dilaton-spin dark matter. On basis of this equation we
develop the nonsingular model of evolution of the Universe starting from an inflation-like stage (for superrigid
equation of state), passing radiation dominated and matter dominated decelerating stages and turning into
the post-Friedmann accelerating era.

1. Introduction

The basis concept of the modern fundamental physics consists in the preposition that the spacetime
geometrical structure is compatible with the properties of matter filling the spacetime. It means
that the matter dynamics determines the metric and the connection of the spacetime manifold and
in turn is determined by the spacetime geometric properties. Therefore the possible deviation from
the geometrical structure of the General Relativity spacetime should be stipulated by the existence
of matter with unusual properties, which fills spacetime, generates its structure and interacts with it.
As examples of such matter there were considered the perfect media with intrinsic degrees of freedom,
such as the perfect fluid with spin and non-Abelian colour charge [1], the perfect hypermomentum
fluid (see [2]–[4] and the references therein), the perfect dilaton-spin fluid [5]. All these fluids are the
generalization of the perfect Weyssenhoff–Raabe spin fluid [6]. The modern observations [7, 8] lead
to the conclusion about the existence of dark (nonluminous) matter with the density exceeding by
one order of magnitude the density of baryonic matter, from which stars and luminous components
of galaxies are formed. It is dark matter interacting with the equal by order of magnitude positive
vacuum energy or with quintessence [9, 10] that realizes the dynamics of the Universe in modern
era. Another important consequence of the modern observations is an understanding of the fact
that the end of the Friedmann era occurs when the expansion with deceleration is succeeded by
the expansion with acceleration, the transition to the unrestrained exponential expansion being
possible.
The hypothesis about the existence of dark matter into galaxies was proposed by Zwicky in

his pioneering work [11]. But the essence of dark matter is yet unknown. The hypothesis that
dark matter was endowed with a new kind of gravitational charge, which generates a short-range
gravitational interaction of Proca type, was proposed in [12]. This interaction is best appreciated
in terms of the existence of Weyl–Cartan spacetime. Independently in [13] it was shown that Weyl–
Cartan geometry was generated by a perfect dilaton-spin fluid and the corresponding non-singular
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cosmological model was constructed. Then in [14] the hypothesis on the perfect dilaton-spin fluid
as the model of dark matter was proposed within the framework of the gravitational theory with
Weyl–Cartan geometrical structure.
Within the framework of these ideas the modified Friedmann–Lemêıtre (FL) equation with a

cosmological term for the homogeneous and isotropic Universe filled with the dilaton-spin dark
matter was constructed for an arbitrary equation of state of dark matter [13]–[15]. In present paper
the solutions of this equation for the various equations of state are received. The inflation-like
solution is obtained in case of the superrigid equation of state of dark matter at the early stage of
the Universe. The evolution of the Universe starts from very small, but non-zero size, then passes
Friedmann decelerating stage and turns into the post-Friedmann accelerating era.
Throughout the paper the signature of the metric is assumed to be (+,+,+,−) and the conventi-

ons c = 1, ~ = 1 are used.

2. Weyl–Cartan space

Let us consider a connected 4-dimensional oriented differentiable manifold M equipped with a
metric ğ of index 1, a linear connection Γ and a volume 4-form η. Then a Weyl–Cartan space CW4
is defined as the space equipped with a curvature 2-form Rαβ and a torsion 2-form T α with the
metric tensor and the connection 1-form obeying the condition 1

−Dgαβ = Qαβ =
1

4
gαβQ , Q = gαβQαβ = Qαθ

α , (2.1)

where Qαβ – a nonmetricity 1-form, Q – a Weyl 1-form and D = d+Γ∧ . . . – the exterior covariant
differential. Here θα (α = 1, 2, 3, 4) – cobasis of 1-forms of the CW4-space (∧ – the exterior product
operator).
A curvature 2-form Rαβ and a torsion 2-form T α,

Rαβ =
1

2
Rαβγλθ

γ ∧ θλ , T α =
1

2
Tαβγθ

β ∧ θγ , Tαβγ = −2Γ
α
[βγ] .

are defined by virtue of the Cartan’s structure equations,

Rαβ = dΓ
α
β + Γ

α
γ ∧ Γ

γ
β , T α = Dθα = dθα + Γαβ ∧ θ

β . (2.2)

The Bianchi identities for the curvature 2-form, the torsion 2-form and the Weyl 1-form are valid [16],

DRαβ = 0 , DT α = Rαβ ∧ θ
β , dQ = 2Rγγ . (2.3)

It is convenient to use the auxiliary fields of 3-forms ηα, 2-forms ηαβ , 1-forms ηαβγ and 0-forms
ηαβγλ with the properties,

ηα = ~eαcη = ∗θα , ηαβγ = ~eγcηαβ = ∗(θα ∧ θβ ∧ θγ) , (2.4)

ηαβ = ~eβcηα = ∗(θα ∧ θβ) , ηαβγλ = ~eλcηαβγ = ∗(θα ∧ θβ ∧ θγ ∧ θλ) . (2.5)

Here ∗ is the Hodge operator and c is the operation of contraction (interior product) which obeys
to the Leibnitz antidifferentiation rule,

~vc(Φ ∧Ψ) = (~vcΦ) ∧Ψ+ (−1)pΦ ∧ (~vcΨ) , (2.6)

where Φ is a p-form.

1Our notations differ by some details from the notations accepted in [16].
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The properties (2.4), (2.5) lead to the following useful relations,

θσ ∧ ηα = δ
σ
αη , θσ ∧ ηα1...αp = (−1)

p−1pδσ[α1ηα2...αp] , (2.7)

θσ ∧ θρ ∧ ηαβ = 2δ
σ
[αδ
ρ
β]η , (2.8)

θσ ∧ θρ ∧ ηαβγ = 3θ
σ ∧ δρ[αηβγ] = 6δ

σ
[αδ
ρ
βηγ] , (2.9)

θ[α ∧ ∗(θβ] ∧ θγ) = −
1

2
ηαβ ∧ θγ , (2.10)

~eλc(θ
α1 ∧ . . . ∧ θαp) = pδ[α1λ θ

α2 . . . ∧ θαp] . (2.11)

In space CW4 the equality Dη = 0 is fulfilled and the following formulae are valid [16],

Dηαβγλ = −
1

2
Qηαβγλ , Dηαβγ = −12Q∧ ηαβγ + T

ληαβγλ , (2.12)

Dηαβ = −
1

2
Q∧ ηαβ + T

γ ∧ ηαβγ , Dηα = −12Q∧ ηα + T
β ∧ ηαβ . (2.13)

In a Weyl–Cartan space the following decomposition of the connection 1-form is valid,

Γαβ =
C
Γ
α
β +Δ

α
β , Δαβ =

1

8
(2θ[αQβ] + gαβQ) , (2.14)

where
C
Γαβ denotes a connection 1-form of a Riemann–Cartan space U4 with curvature, torsion and

a metric compatible with a connection. This decomposition of the connection induces corresponding
decomposition of the curvature 2-form [5],

Rαβ =
C
Rαβ+

C
D Δ

α
β +Δ

α
γ ∧Δ

γ
β =

C
Rαβ +

1

4
δαβR

γ
γ + P

α
β , (2.15)

Pαβ =
1

4

(

T[αQβ] − θ[α∧
C
D Qβ] +

1

8
θ[αQβ] ∧Q−

1

16
θα ∧ θβQγQ

γ

)

, (2.16)

where
C
D is the exterior covariant differential with respect to the Riemann–Cartan connection 1-form

C
Γαβ and

C
Rαβ is the Riemann–Cartan curvature 2-form. The decomposition (2.15) contains the Weyl

segmental curvature 2-form Rγγ (2.3).
The Riemann–Cartan connection 1-form can be decomposed as follows [16],

C
Γ
α
β =

R
Γ
α
β +K

α
β , T α = Kαβ ∧ θ

β , (2.17)

Kαβ = 2~e[αcTβ] −
1

2
~eαc~eβc(Tγ ∧ θ

γ) , (2.18)

where
R
Γαβ is a Riemann (Levi–Civita) connection 1-form and Kαβ is a contortion 1-form.

The decomposition (2.17) of the connection induces the decomposition of the curvature as fol-
lows,

C
Rαβ =

R
Rαβ+

R
D Kαβ +K

α
γ ∧ K

γ
β , (2.19)

where
R
Rαβ is the Riemann curvature 2-form and

R
D is the exterior covariant differential with respect

to the Riemann connection 1-form
R
Γαβ .
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3. The model of dilaton-spin fluid

The perfect dilaton-spin fluid was introduced in [5], where the variational theory of this fluid in
a Weyl–Cartan space was developed. The additional degrees of freedom of a fluid element are
described with the help of the material frame attached to every fluid element and consisting of four
1-forms lp (p = 1, 2, 3, 4), which have dual 3-forms lq, the constraint l

p ∧ lq = δ
p
qη being fulfilled.

Each fluid element possesses a 4-velocity vector ~u = uα~eα which corresponds to a flow 3-form
u := ~ucη = uαηα and a velocity 1-form ∗u = uαθα = ğ(~u, ∙ ∙ ∙) with ∗u ∧ u = −η that means the
usual condition ğ(~u, ~u) = −1.
In case of the dilaton-spin fluid the spin dynamical variable of the Weyssenhoff–Raabe fluid is

generalized and becomes the new dynamical variable Jpq named the dilaton-spin tensor:

Jpq = S
p
q +
1

4
δpqJ , Spq = J[pq] , J = Jpp . (3.1)

Here Spq is the specific (per particle) spin tensor. Spin of particles is spacelike in its nature that is
the fact of fundamental physical meaning. This leads to the classical Frenkel condition [17], which
can be expressed in the exterior form language in two equivalent forms, Spqlp∧∗u = 0, Spqlq∧u = 0.
It should be mentioned that the Frenkel condition appears to be a consequence of the generalized
conformal invariance of the Weyssenhoff perfect spin fluid Lagrangian [18]. Quantity J in (3.1) is
the specific (per particle) dilaton charge of the fluid element. The existence of the dilaton charge is
the consequence of the extension of the Poincaré symmetry (with the spin tensor as the dynamical
invariant) to the Poincaré–Weyl symmetry with the dilaton-spin tensor as the dynamical invariant.
It is important that only the first term of Jpq (the spin tensor) obeys to the Frenkel condition [5].

As the consequence of this fact the variational theory of the perfect dilaton-spin fluid developed in [5]
is the limiting case of the variational theory of the perfect hypermomentum fluid developed in [4],
but does not appear to be the limiting case of the variational theory of the hyperfluid developed
in [3], in which the Frenkel condition is imposed on the full intrinsic hypermomentum tensor.
The measure of intrinsic motion contained in a fluid element is the quantity Ωqp which generalizes

the intrinsic ‘angular velocity’ of the Weyssenhoff spin fluid theory,

Ωqpη = u ∧ l
q
αDl

α
p , Dlαp = dl

α
p + Γ

α
βl
β
p .

An element of the perfect dilaton-spin fluid possesses the additional intrinsic ‘kinetic’ energy density
4-form,

E =
1

2
nJpqΩ

q
pη =

1

2
nSpqu ∧ l

q
αDl

α
p +
1

8
nJu ∧ lpαDl

α
p ,

where n is the fluid particles concentration.
The Lagrangian density 4-form of the perfect dilaton-spin fluid can be constructed from the

quantities ε and E with regard to the constraints (the fluid particles number conservation law,
d(nu) = 0, the entropy s conservation law along streamline of the fluid, d(nus) = 0, two forms
of Frenkel conditions), which should be introduced into the Lagrangian density by means of the
Lagrange multipliers ϕ, τ , χ, χq and ζp ,

Lfluid = −ε(n, s, S
p
q, J)η +

1

2
nSpqu ∧ l

q
αDl

α
p +
1

8
nJu ∧ lpαDl

α
p + nu ∧ dϕ

+nτu ∧ ds+ nχ(∗ ∧ u+ η) + nχqSpqlp ∧ ∗u+ nζpS
p
ql
q ∧ u . (3.2)

The fluid motion equations and the evolution equation of the dilaton-spin tensor are derived by
the variation of (3.2) with respect to the independent variables n, s, Spq, J , u, l

q and the Lagrange
multipliers, the thermodynamic principle (see [5]) being taken into account and master-formula
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(4.7) being used. We shall consider the 1-form lq as an independent variable and the 3-form lp as
a function of lq. One can verify that the Lagrangian density 4-form (3.2) is proportional to the
hydrodynamic fluid pressure, Lfluid = pη.
The variation with respect to the 1-forms lq yields the motion equations of the material frame,

which lead to the dilaton charge conservation law J̇ = 0 and to the evolution equation of the spin
tensor, Ṡαβ+Ṡ

α
γu
γuβ+Ṡ

γ
βuγu

α = 0 , where the ‘dot’ notation for the tensor object Φ is introduced,
Φ̇αβ = ∗(u ∧DΦαβ).
By means of the variational derivatives of the matter Lagrangian density (3.2) one can derive

the external matter currents which are the sources of the gravitational field [5]. The variational
derivative of the Lagrangian density (3.2) with respect to θσ yields the canonical energy-momentum
3-form,

Σσ =
δLfluid
δθσ

= pησ + (ε+ p)uσu+ nṠσρu
ρu . (3.3)

Here the Frenkel condition, the dilaton charge conservation law J̇ = 0 and the evolution equation
of the spin tensor have been used. In case of the dilaton-spin fluid the energy density ε in (3.3)
contains the energy density of the dilaton interaction of the fluid.

The metric stress-energy 4-form can be derived in the same way,

σαβ = 2
δLfluid
δgαβ

=
(
pgαβ + (ε+ p)uαuβ + nṠ(αγu

β)uγ
)
η .

The dilaton-spin momentum 3-form can be obtained in the following way,

J αβ = −
δLfluid
δΓβα

=
1

2
n

(

Sαβ +
1

4
Jδαβ

)

u = Sαβ +
1

4
J δαβ . (3.4)

In a Weyl–Cartan space the matter Lagrangian obeys the diffeomorphism invariance, the local
Lorentz invariance and the local scale invariance that lead to the corresponding Noether identities [5],

DΣσ = (~eσcT
α) ∧ Σα − (~eσcR

α
β) ∧ J

β
α −
1

8
(~eσcQ)σ

α
α , (3.5)

(

D+
1

4
Q

)

∧ Sαβ = θ[α ∧ Σβ] , DJ = θα ∧ Σα − σ
α
α .

The Noether identity (3.5) represents the quasiconservation law for the canonical matter energy-
momentum 3-form. This law leads to the equation of motion of the perfect dilaton-spin fluid in the
form of the generalized hydrodynamic Euler-type equation of the perfect fluid [5],

u ∧D
(
πσ +

p

n
uσ

)
=
1

n
η~eσcDp−

1

8n
η(ε+ p)Qσ − (~eσcT

α) ∧
(
πα +

p

n
uα

)
u

−
1

2
(~eσcR

αβ) ∧ Sαβu+
1

8
(~eσcR

α
α) ∧ Ju . (3.6)

If one evaluates the component of the equation (3.6) along the 4-velocity by contracting with
uσ, then one gets the energy conservation law along a streamline of the fluid [5],

dε =
ε+ p

n
dn . (3.7)
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4. Variational formalism in a Weyl–Cartan space

Let us consider a spacetime with a Weyl–Cartan geometrical structure and develop the variational
formalism of the gravitational field in this spacetime. We represent the total Lagrangian density
4-form of the theory as follows

L = Lgrav + Lfluid , (4.1)

where the gravitational field Lagrangian density 4-form reads,

Lgrav = 2f0

(
1

2
Rαβ ∧ ηα

β − Λη +
1

4
λRαα ∧ ∗R

β
β + %1 T

α ∧ ∗Tα

+%2 (T
α ∧ θβ) ∧ ∗(T

β ∧ θα) + %3 (T
α ∧ θα) ∧ ∗(T

β ∧ θβ)

+ξQ∧ ∗Q+ ζQ∧ θα ∧ ∗Tα

)

+ Λαβ ∧

(

Qαβ −
1

4
gαβQ

)

. (4.2)

Here f0 = 1/(2æ) (æ = 8πG), Λ is the cosmological constant, λ, %1, %2, %3, ξ, ζ are the coupling
constants, Lfluid is the Lagrangian density 4-form of the perfect dilaton-spin fluid (3.2), and Λαβ is
the Lagrange multiplier 3-form with the evident properties,

Λαβ = Λβα , Λγγ = 0 , (4.3)

which are the consequences of the Weyl’s condition (2.1).
In (4.2) the first term is the linear Hilbert–Einstein Lagrangian generalized to a Weyl–Cartan

space. The second term is the Weyl quadratic Lagrangian, which is the square of the Weyl segmental
curvature 2-form (2.3). Here the Weyl 1-form Q, in contrast to the classical Weyl theory, represents
the gauge field, which does not relate to an electromagnetic field, that was first pointed out by
Utiyama [19]. We shall call the field of the Weyl 1-form Q a dilatation field (Weyl field). The
term with the coupling constant ζ represents the contact interaction of the dilatation field with the
torsion that can occur in a Weyl–Cartan space.
The gravitational field equations in a Weyl–Cartan spacetime can be obtained by a variational

procedure of the first order. Let us vary the Lagrangian (4.1) with respect to the connection 1-form
Γαβ (Γ-equation) and to the basis 1-form θ

α (θ-equation) independently, the constraints on the
connection 1-form in a Weyl–Cartan space being satisfied by means of the Lagrange multiplier
3-form Λαβ .
The including into the Lagrangian density 4-form the term with the Lagrange multiplier Λαβ

means that the theory is considered in a Weyl–Cartan spacetime from the very beginning [13]–[15].
Another variational approach has been developed in [20] where the field equations in a Weyl–Cartan
spacetime have been obtained as a limiting case of the field equations of the metric-affine gauge
theory of gravity. These two approaches are not identical in general and coincide only in case when
Λαβ is equal to zero as a consequence of the field equations.
For the variational procedure it is efficiently to use the following general relations which can

be obtained for the arbitrary 2-forms Φβα, Φα and the arbitrary 3-form Ψ
αβ with the help of the

Cartan structure equations (2.2) and the structure equation for the nonmetricity 1-form Qαβ (2.1),

δRαβ ∧ Φ
β
α = d(δΓ

α
β ∧ Φ

β
α) + δΓ

α
β ∧DΦ

β
α , (4.4)

δT α ∧ Φα = d(δθ
α ∧ Φα) + δθ

α ∧DΦα + δΓ
α
β ∧ θ

β ∧ Φα , (4.5)

δQαβ ∧Ψ
αβ = d(−δgαβΨ

αβ) + δΓαβ ∧ 2Ψ(α
β) + δgαβDΨ

αβ . (4.6)

The subsequent derivation of the variations of the Lagrangian density 4-form (4.2) is based on
the master formula derived the following Lemma, proved in [21].
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Lemma. Let Φ and Ψ be arbitrary p-forms defined on n -dimensional manifold. Then the
variational identity for the commutator of the variation operator δ and the Hodge star operator ∗
is valid,

Φ ∧ δ ∗Ψ = δΨ ∧ ∗Φ

+δgσρ

(
1

2
gσρΦ ∧ ∗Ψ+ (−1)p(n−1)+s+1θσ ∧ ∗ (∗Ψ ∧ θρ) ∧ ∗Φ

)

+δθα ∧
(
(−1)pΦ ∧ ∗ (Ψ ∧ θα) + (−1)

p(n−1)+s+1 ∗ (∗Ψ ∧ θα) ∧ ∗Φ
)
. (4.7)

This master formula gives the rule how to compute the commutator of the variation operator δ and
the Hodge star operator ∗.
The variational procedure is realized with the help of the computation rules,

∗ ∗Ψ = (−1)p(n−p)+sΨ , Φ ∧ ∗Ψ = Ψ ∧ ∗Φ , (4.8)

~eαc ∗Ψ = ∗(Ψ ∧ θα) , θα ∧ (~eαcΨ) = pΨ , (4.9)

where Ψ and Φ are p-forms and s = Ind(ğ) is the index of the metric ğ, which is equal to the
number of negative eigenvalues of the diagonalized metric. The relations (4.8) and (4.9) lead to the
consequences,

~eαcΨ = (−1)
n(p−1)+s ∗(θα ∧ ∗Ψ) , (4.10)

∗(~eαcΨ) = (−1)
p−1θα ∧ ∗Ψ , (4.11)

∗(~eαc ∗Ψ) = (−1)
(n−1)(p+1)+sΨ ∧ θα . (4.12)

Let apply the master formula (4.7) to the variation of the Lagrangian density 4-form (4.2), the
general relations (4.4)–(4.6) and the computation rules (2.7)–(2.13), (4.8)–(4.12) being used. The
results of the variational procedure for every term of (4.2) have the following form, the exact forms
being omitted,

2f0 : δΓαβ ∧

(

−
1

4
Q∧ ηα

β +
1

2
Tλ ∧ ηα

βλ +
1

2
ηαγ ∧Q

βγ

)

+ δgσρ

(
1

2
gσρRαβ ∧ ηα

β +
1

2
θσ ∧ θβ ∧ ∗R

βρ

)

+ δθσ ∧

(
1

2
Rαβ ∧ ηα

β
σ

)

, (4.13)

2f0 %1 : δΓαβ ∧ 2θ
β ∧ ∗Tα

+ δgσρ

(

T σ ∧ ∗T ρ +
1

2
gσρTα ∧ ∗T

α + θσ ∧ ∗(∗T α ∧ θρ) ∧ ∗Tα

)

+ δθσ ∧ (2D ∗ Tσ + T
α ∧ ∗(Tα ∧ θσ) + ∗(∗Tα ∧ θσ) ∧ ∗T

α) , (4.14)

2f0 %2 : δΓαβ ∧ 2θ
β ∧ θγ ∧ ∗(T

γ ∧ θα) + δgσρ

(
1

2
gσρ(T α ∧ θβ)

+ 2δσβT
α ∧ θρ − θσ ∧ ∗(∗(T α ∧ θβ) ∧ θ

ρ)

)

∧ ∗(T β ∧ θα)

+ δθσ ∧

(

2D
(
θα ∧ ∗(T

α ∧ θσ)
)
− ∗(T β ∧ θα ∧ θσ)(T

α ∧ θβ)

+ 2T α ∧ ∗(Tσ ∧ θα)− ∗
(
∗(T β ∧ θα) ∧ θσ

)
∧ ∗(T α ∧ θβ)

)

, (4.15)

2f0 %3 : δΓαβ ∧ 2θ
β ∧ θα ∧ ∗(T

γ ∧ θγ) + δgσρ

(
1

2
gσρ(T β ∧ θβ)
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+ 2T σ ∧ θρ − θσ ∧ ∗
(
∗(T β ∧ θβ) ∧ θ

ρ
))

∧ ∗(T α ∧ θα)

+ δθσ ∧

(

2D
(
θσ ∧ ∗(T

α ∧ θα)
)
− ∗(T β ∧ θβ ∧ θσ)T

α ∧ θα

+ 2Tσ ∧ ∗(T
α ∧ θα)− ∗

(
∗(T β ∧ θβ) ∧ θ

σ
)
∧ ∗(T α ∧ θα)

)

, (4.16)

2f0 λ : δΓαβ ∧

(
1

2
δβαD ∗ R

γ
γ

)

+ δgσρ

(
1

8
gσρRαα ∧ ∗R

β
β +
1

4
θσ ∧ ∗(∗Rαα ∧ θ

ρ) ∧ ∗Rββ

)

+ δθσ ∧

(
1

4
Rββ ∧ ∗(R

α
α ∧ θσ) +

1

4
∗ (∗Rαα ∧ θσ) ∧ ∗R

β
β

)

, (4.17)

2f0 ξ : δΓαβ ∧ (4δ
β
α ∗ Q)

+ δgσρ

(

2gσρD ∗ Q+
1

2
gσρQ∧ ∗Q− ∗(∗Q ∧ θρ)θσ ∧ ∗Q

)

+ δθσ ∧ (−Q ∧ ∗(Q∧ θσ)− ∗(∗Q ∧ θσ) ∧ ∗Q) , (4.18)

2f0 ζ : δΓαβ ∧
(
2δβαθ

γ ∧ ∗Tγ + θ
β ∧ ∗(Q∧ θα)

)

+ δgσρ

(

gσρT α ∧ ∗Tα − g
σρθα ∧D ∗ Tα +

1

2
gσρQ∧ θα ∧ ∗Tα

+ θσ ∧ ∗(∗Tα ∧ θ
ρ) ∧ ∗(Q∧ θα) + T σ ∧ ∗(Q∧ θρ)

)

+ δθσ ∧

(

D ∗ (Q∧ θσ) +Q∧ θ
α ∧ ∗(Tα ∧ θσ)

+ ∗(∗Tα ∧ θσ) ∧ ∗(Q∧ θ
α)−Q ∧ ∗Tσ

)

, (4.19)

2f0 Λ : δgσρ

(
1

2
gσρη

)

+ δθσ ∧ ησ . (4.20)

The variation of the term with the Lagrange multiplier in (4.2) has the form,

δΛαβ ∧

(

Qαβ −
1

4
gαβQ

)

+ δΓαβ ∧ (−2Λα
β) + δgσρ

(

−DΛσρ −
1

4
Λσρ ∧Q

)

. (4.21)

The variation of the total Lagrangian density 4-form (4.1) with respect to the Lagrange multiplier
3-form Λαβ yields according to (4.21) the Weyl’s condition (2.1) for the nonmetricity 1-form Qαβ .

The variation of (4.1) with respect to Γαβ can be obtained by combining all terms in (4.13)–
(4.21) proportional to the variation of Γαβ and taking into account the same variation of the fluid
Lagrangian density 4-form (3.2), which is the dilaton-spin momentum 3-form (3.4). This variation
yields the field Γ-equation,

1

4
λδβαd ∗dQ−

1

8
Q∧ ηα

β +
1

2
Tγ ∧ ηα

βγ + 2%1θ
β ∧ ∗Tα

+2%2θ
β ∧ θγ ∧ ∗(T

γ ∧ θα) + 2%3θ
β ∧ θα ∧ ∗(T

γ ∧ θγ)

+4ξδβα ∗Q+ ζ
(
θβ ∧ ∗(Q∧ θα) + 2δ

β
αθ
γ ∧ ∗Tγ

)
−
1

f0
Λα
β

=
1

4f0
n

(

Sβα +
1

4
Jδβα

)

u , (4.22)
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the condition (2.1) being taken into account after the variational procedure has been performed.
The variation of (4.1) with respect to the basis 1-form θσ can be obtained in the similar way that
gives the second field equation (θ-equation),

1

2
Rαβ ∧ ηα

β
σ − Λησ + %1

(
2D ∗Tσ + T

α ∧ ∗(Tα ∧ θσ) + ∗(∗Tα ∧ θσ) ∧ ∗T
α
)

+ %2

(

2D
(
θα ∧ ∗(T

α ∧ θσ)
)
− ∗(T β ∧ θα ∧ θσ)(T

α ∧ θβ)

+ 2T α ∧ ∗(θα ∧ Tσ)− ∗
(
∗(T β ∧ θα) ∧ θσ

)
∧ ∗(T α ∧ θβ)

)

+ %3

(

2D
(
θσ ∧ ∗(T

α ∧ θα)
)
+ 2Tσ ∧ ∗(T

α ∧ θα)

− ∗(T β ∧ θβ ∧ θσ)T
α ∧ θα − ∗

(
∗(T β ∧ θβ) ∧ θσ

)
∧ ∗(T α ∧ θα)

)

+ λ

(
1

4
Rββ ∧ ∗(R

α
α ∧ θσ) +

1

4
∗ (∗Rαα ∧ θσ) ∧ ∗R

β
β

)

+ ζ
(
D ∗(Q∧ θσ) +Q∧ θ

α ∧ ∗(Tα ∧ θσ)

− Q ∧ ∗Tσ + ∗(∗Tα ∧ θσ) ∧ ∗(Q∧ θ
α)
)

+ ξ
(
−Q ∧ ∗(Q∧ θσ)− ∗(∗Q ∧ θσ) ∗Q

)
= −

1

2f0
Σσ . (4.23)

Here Σσ is the fluid canonical energy-momentum 3-form (3.3). In (4.23) the condition (2.1) is
used after the variational procedure has been performed.
The result of the variation of the total Lagrangian density 4-form (4.1) with respect to the

metric components gαβ (g-equation) is not independent and is a consequence of the field Γ- and
θ-equations. For the metric-affine theory of gravitation it was pointed out in [16]. In the Weyl–
Cartan theory of gravitation it can be justified as follows. In this theory, as the consequence of
the scale invariance, the metric of the tangent space can be chosen in the form [19], gab = σ(x)g

M
ab ,

where gMab is the metric tensor of the Minkowski space and σ(x) is an arbitrary function to be varied
when the g-equation is derived. Therefore the g-equation appears only in the trace form. But the
total Lagrangian density 4-form (4.1) also obeys the diffeomorphism invariance and therefore the
Noether identity analogous to the identity (3.5) is valid, from which the trace of the g-equation
can be derived via the Γ- and θ-equations. The quantity ~eσcQ in (3.5) does not vanish identically
in general, otherwise we should have a Riemann–Cartan spacetime, in which case we could choose
σ(x) = const = 1 and the g-equation would not appear.

5. The analysis of the field Γ-equation

Let us give the detailed analysis of the Γ-equation (4.22). The antisymmetric part of this
equation determines the torsion 2-form T α. The symmetric part determines the Lagrange multiplier
3-form Λα

β and the Weyl 1-form Q.
After antisymmetrization the equation (4.22) gives the following equation for the torsion 2-form,

−
1

2
T γ ∧ ηαβγ +

1

8
Q∧ ηαβ + 2%1θ[α ∧ ∗Tβ] + 2%2θ[α ∧ θ|γ| ∧ ∗(T

|γ| ∧ θβ])

+2%3θα ∧ θβ ∧ ∗(T
γ ∧ θγ) + ζθ[α ∧ ∗(Q∧ θβ]) =

1

2
ænSαβu , æ =

1

2f0
. (5.1)
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The torsion 2-form can be decomposed into the irreducible pieces (the traceless 2-form
(1)

T α, the

trace 2-form
(2)

T α and the pseudotrace 2-form
(3)

T α) [16, 20],

T α =
(1)

T α+
(2)

T α+
(3)

T a . (5.2)

Here the torsion trace 2-form and the torsion pseudotrace 2-form of the pseudo-Riemannian 4-
manifold are determined by the expressions, respectively,

(2)

T α =
1

3
T ∧ θα , T = ∗(θα ∧ ∗T

α) = −(~eαcT
α) , (5.3)

(3)

T α =
1

3
∗ (P ∧ θα) , P = ∗(θα ∧ T

α) = ~eαc ∗ T
α , (5.4)

where the torsion trace 1-form T and the torsion pseudotrace 1-form P are introduced.
The irreducible pieces of torsion satisfy to the conditions [16],

(1)

T α ∧ θα = 0 ,
(2)

T α ∧ θα = 0 , (5.5)

~eαc
(1)

T α = 0 , ~eαc
(3)

T α = 0 . (5.6)

Using the computational rules (2.4)–(2.11) and (4.11) let us derive two efficient identities,

T γ ∧ ηαβγ = T γ ∧ (~eγcηαβ) = ~eγc(T
γ ∧ ηαβ)− (~eγcT

γ) ∧ ηαβ

= ~eγc
(
T γ ∧ ∗(θα ∧ θβ)

)
+ T ∧ ηαβ

=
(
~eγc(θα ∧ θβ)

)
∧ ∗T γ + θα ∧ θβ ∧ (~eγc ∗ T

γ) + T ∧ ηαβ

= −θ[α ∧ ∗Tβ] + θ
α ∧ θβ ∧ P + T ∧ ηαβ , (5.7)

θγ ∧ ∗(T
γ ∧ θα) = ∗

(
~eγc(T

γθα)
)
= ∗(−T ∧ θα + Tα) = ∗Tα − 3 ∗

(2)

T α . (5.8)

Using the identities (5.7), (5.8), one can represent the field equation (5.1) as follows,

(1 + 2%1 + 2ρ2)θ[α ∧ ∗Tβ] +

(

−
1

2
+ 2%3

)

θα ∧ θβ ∧ P − 6%2θ[α ∧ ∗
(2)

T β]

−
1

2
T ∧ ηαβ +

1

8
Q∧ ηαβ + ζθ[α ∧ ∗(Q∧ θβ]) =

1

2
ænSαβu . (5.9)

Multiplying the equation (5.9) by θβ from the right externally, using the computation rules
(4.8)–(4.12) and then the Hodge star operation, one gets in consequence of the Frenkel condition
(see Section 3) the relation between the torsion trace 1-form T (5.3) and the Weyl 1-form Q,

T =
3(14 + ζ)

2(1− %1 + 2%2)
Q . (5.10)

As a consequence of (5.10) and the relation (2.10) it can be proved the equality for the trace
2-form,

(1 + 2%1 − 4%2)θ[α ∧ ∗
(2)

T β] −
1

2
T ∧ ηαβ +

1

8
Q∧ ηαβ + ζθ[α ∧ ∗(Q∧ θβ]) = 0 . (5.11)
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Then as a consequence of (5.2), (5.4), (5.11) and the conditions (5.5) the field equation (5.9) is
transformed as follows,

(1 + 2%1 + 2%2) θ[α ∧ ∗
(1)

T β] −
1

6
(1− 4%1 − 4%2 − 12%3)θα ∧ θβ ∧ P =

1

2
ænSαβu .

Contracting this equation with gβγ~eγ , we get with the help of the Leibnitz rule (2.6) the equation,

(1 + 2%1 + 2%2)∗
(1)

T α −
2

3
(1− 4%1 − 4%2 − 12%3)θα ∧ P = ænSαβuγη

βγ . (5.12)

By contracting this equation with gαβ~eβ we get the equation

(1− 4%1 − 4%2 − 12%3)P = ænσ , (5.13)

which represents the torsion pseudotrace 1-form P via the Pauli–Lyubanski spin 1-form σ of a fluid
particle,

σ = −
1

2
Sαβuγηαβγ =

1

2
Sαβuγηλαβγθ

λ . (5.14)

As a consequence of (5.13) the field equation (5.12) yields the equation for the traceless piece of
the torsion 2-form,

(1 + 2%1 + 2%2)
(1)

T α = æn

(

Sαβuγθ
β ∧ θγ +

2

3
σβηβα

)

= −
2

3
ænSβ(αuγ)θ

β ∧ θγ . (5.15)

Now let us calculate the symmetric part of the Γ-equation (4.22). Because of (4.3) the result
can be represented as follows,

æΛαβ = %1θ(α ∧ ∗Tβ) + %2θ(α ∧ θ|γ| ∧ ∗(T
|γ| ∧ θβ)) +

1

8
λgαβd ∗dQ+ 2ξgαβ ∗Q

+ζ

(
1

2
θ(α ∧ ∗(Q∧ θβ)) + gαβθγ ∧ ∗Tγ

)

−
1

32
ængαβJu . (5.16)

By contracting the equation (5.16) on the indices α and β and after substituting (5.10) in the
result, one finds the equation of the Proca type for the Weyl 1-form,

∗d ∗dQ+m2Q =
æ

2λ
nJ ∗u , m2 = 16

ξ

λ
+
3(%1 − 2%2 + 8ζ(1 + 2ζ))
4λ(1− %1 + 2%2)

. (5.17)

The equation (5.17) shows that the dilatation field Q, in contrast to Maxwell field, possesses the
non-zero rest mass and demonstrates a short-range nature [19, 2, 12, 22].
By virtue of d(nu) = 0 and J̇ = 0 (see Section 3) the equation (5.17) has the Lorentz condition

as a consequence,

d ∗Q = 0 ,
R
∇α Q

α = 0 ,

where
R
∇α is the covariant derivative with respect to the Riemann connection. Here the latter

relation is the component representation of the former one.
If we use (5.10) and (5.17), then the equation (5.16) takes the form,

æΛαβ = %1θ(α ∧ ∗Tβ) + %2θ(α ∧ θ|γ| ∧ ∗(T
|γ| ∧ θβ))

+
4ζ(1− %1 + 2%2)
3(1 + 4ζ)

θ(α ∧ ∗(T ∧ θβ))−
4ζ + %1 − 2%2
4(1 + 4ζ)

gαβ ∗T . (5.18)
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This equation determines the Lagrange multiplier 3-form Λαβ . It is very important that Λαβ is in
general not equal to zero.
The equations (5.10), (5.13), (5.15) and (5.18) solve the problem of the evaluation the torsion

2-form and the Lagrange multiplier 3-form. With the help of the algebraic field equations (5.13)
and (5.15) the traceless and pseudotrace pieces of the torsion 2-form are determined via the spin
tensor and the flow 3-form u of the perfect dilaton-spin fluid in general case, when the conditions
1 + 2%1 + 2%2 6= 0 and 1− 4%1 − 4%2 − 12%3 6= 0 are valid. With the help of the equation (5.10) one
can determine the torsion trace 2-form via the Weyl field Q, for which the differential field equation
(5.17) is valid. Therefore the torsion trace 2-form can propagate in the theory under consideration.

6. Modified Friedmann–Lemâıtre equation for dilaton-spin dark
matter

Let us consider the cosmological model with the Friedmann–Robertson–Walker (FRW) metric with
scale factor a(t),

ds2 =
a2(t)

1− kr2
dr2 + a2(t)r2

(
dθ2 + (sin θ)2dφ2

)
− dt2 , (6.1)

the comoving frame of reference being chosen,

u1 = u2 = u3 = 0 , u4 = 1 . (6.2)

In this model the homogeneous and isotropic Universe is filled with the perfect dilaton-spin fluid
[14], which realizes the model of dark matter with J 6= 0 in contrast to the baryonic and quark
matter with J = 0. The cosmological constant Λ realizes the dark energy (cosmic vacuum).
As it was shown in [23, 24], in the spacetime with the FRW metric (6.1) the only nonvanishing

components of the torsion are T 141 = T
2
42 = T

3
43 and Tijk for i = 1, 2, 3. In this case from (5.3) we

get that the only nonvanishing component of the trace 1-form is T4 = T4(t) (Ti = 0 for i = 1, 2, 3).
From (5.4) we also find, P = 3T[123]η

1234θ4. But the field equation (5.13) yields, P4 ∼ σ4 = 0, as a
consequence of (5.14) and (6.2). Therefore the pseudotrace piece of the torsion 2-form vanishes. It
is easy to calculate with the help of (5.2), (5.3) that the traceless piece also vanishes. Therefore for
the FRW metric (6.1) we have,

(1)

T α = 0 ,
(3)

T α = 0 , (6.3)

and the torsion 2-form consists only from the trace piece that in the component representation
reads,

Tλαβ = −
2

3
gλ[αTβ] . (6.4)

As a consequence of (5.13)–(5.15) and the identity,

uλSαβ ≡ u[λSαβ] +
2

3
(u(λSα)β − u(λSβ)α) , (6.5)

we have to conclude that the condition Sαβ = 0 is valid for the spin tensor of the matter source
in the cosmological model considered. It can be understood in the sense that the mean value of
the spin tensor is equal to zero under statistical averaging over all directions in the homogeneous
and isotropic Universe. As a consequence of this fact in this section and in the sequential sections
we shall simplify the equations of the theory by using the conditions (6.3) and Sαβ = 0. In case
Sαβ = 0 dilaton-spin fluid becomes dilaton fluid.
For FRW metric (6.1) the continuity equation d(nu) = 0 (d – the operator of exterior differen-

tiation) yields the matter conservation law na3 = N = const. As an equation of state of the dilaton
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fluid we choose the equation of state p = γε, 0 ≤ γ < 1. Then integration of the energy conservation
law (3.7) for FRW metric (6.1) yields

ε a3(1+γ) = Eγ = const , Eγ > 0 . (6.6)

Let us now decompose the field θ-equation (4.23) into Riemannian and non-Riemannian parts
using the formulae (2.14)–(2.19) and then transform the result to the component form. For this
purpose let us substitute the decomposition (2.16) into the equation (4.23) and after this use the
decomposition (2.19), the relation (6.4) being taken into account. We get the following results for
the every term of the equation (4.23). The linear term or this equation decomposes as follows,

−

(
R
R
α
σ −
1

2
δασ
R
R

)

ηα +
2

3

(
R
∇α T

α

)

ησ −
2

3

(
R
∇σ T

α

)

ηα −
1

9
TαT

αησ −
2

9
TσT

αηα

+
1

12
TαQ

αησ +
1

12
TσQ

αηα +
1

12
QσT

αηα

+
1

4

(
R
∇σ Q

α

)

ηα −
1

4

(
R
∇α Q

α

)

ησ −
1

64
QαQ

αησ −
1

32
QσQ

αηα . (6.7)

The other terms decompose as follows,

%1 :
2

3

(
R
∇σ T

α

)

ηα −
2

3

(
R
∇α T

α

)

ησ +
2

9
TσT

αηα +
1

9
TαT

αησ

−
1

4
QσT

αηα −
1

12
TσQ

αηα +
1

12
QαT

αησ , (6.8)

%2 : −
4

3

(
R
∇σ T

α

)

ηα +
4

3

(
R
∇α T

α

)

ησ −
4

9
TσT

αηα −
2

9
TαT

αησ

+
1

2
QσT

αηα +
1

6
TσQ

αηα −
1

6
QαT

αησ , (6.9)

ζ : −

(
R
∇α Q

α

)

ησ +

(
R
∇σ Q

α

)

ηα +
2

3
TαQ

αησ

−
2

3
QσT

αηα +
1

8
QαQ

αησ −
1

2
QσQ

αηα , (6.10)

ξ : QαQ
αησ − 2QσQ

αηα . (6.11)

After gathering all expressions (6.7)–(6.11) together and substituting the relation (5.10) we receive
the following results.

The terms with the derivatives of the dilatation field, like
R
∇α Qα and

R
∇σ Qα, and the same

derivatives of the torsion trace Tα in a remarkable manner mutually compensate each other and
vanish as a consequence of (5.10),

2

3
(1− %1 + 2%2)

(

ησ
R
∇ρ T

ρ − ηρ
R
∇σ T

ρ

)

−

(
1

4
+ ζ

)(

ησ
R
∇ρ Q

ρ − ηρ
R
∇σ Q

ρ

)

= 0 .

The terms with dQ also vanish, as the equality dQ = 0 is valid identically for the FRW metric
(6.1) that can be easy verified in the holonomic basis, when θα = dxα,

dQ = ∂βQαdx
β ∧ dxα = ∂4Q4dx

4 ∧ dx4 = 0 . (6.12)

This follows from the fact that for this metric one has Q4 = Q4(t), Qi = 0 (i = 1, 2, 3) as a
consequence of (5.10) and the values of the trace torsion for the metric (6.1).
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The remainder terms of the equation (4.23) after some algebra can be represented as follows,
(
R
R
ρ
σ −
1

2
δρσ
R
R

)

ηρ + Λησ + α(2QσQ
ρηρ −QρQ

ρησ) = æΣσ , (6.13)

α =
3
(
1
4 + ζ

)2

4(1− %1 + 2%2)
+ ξ −

3

64
. (6.14)

Then we shall derive the Weyl 1-form Q algebraically as a consequence of (6.12) from the
equation (5.17) via the right side of this equation,

Qα =
æ

2λm2
nJuα , (6.15)

which is in accordance with the conditions (6.2) for the comoving system of reference.
After substituting (6.15) and (3.3) to the equation (6.13), the condition Sαβ = 0 being used, we

can represent the field equation (4.23) as an Einstein-like equation,

R
Rσρ −

1

2
gσρ

R
R= æ

(
(εe + pe)uσuρ + pegσρ

)
, (6.16)

where
R
Rσρ,

R
R are a Ricci tensor and a curvature scalar of a Riemann space, respectively, εe and pe

are an energy density and a pressure of an effective perfect fluid:

εe = ε+ εv − E
( n
N

)2
, pe = p+ pv − E

( n
N

)2
, E = αæ

(
JN

2λm2

)2
,

and εv = Λ/æ and pv = −Λ/æ are an energy density and a pressure of a vacuum with the equation
of state, εv = −pv > 0.
The field equation (6.16) yields the modified Friedmann–Lemâıtre (FL) equation,

(
ȧ

a

)2
+
k

a2
=
æ

3a6

(
εva
6 + Eγa

3(1−γ) − E
)
, (6.17)

We put k = 0 in (6.17) in accordance with the modern observational evidence [7, 9, 10], which
shows that the Universe is spatially flat in cosmological scale.
The other component of the equation (6.16) has the form,

ä

a
=
æ

3a6

[

εva
6 −
1

2
(1 + 3γ)Eγa

3(1−γ) + 2E

]

. (6.18)

7. Scenario of evolution of the Universe with dilaton dark matter

Our hypothesis consists in preposition that the evolution of the Universe begins from the superrigid
stage, when the equation of stage of dilaton fluid is γ = 1. In this case the equation (6.6) yields
ε a6 = E1 = const. The FL equation (6.17) reads,

(
ȧ

a

)2
=
æ

3a6
(
εva
6 − E1 + E

)
,

and can be exactly integrated. The solution corresponding to the initial data t = 0, a = amin
reads [14],

a = amin(cosh
√
3Λ t)1/3 ,

amin =

(
αæ2

Λ

(
JN

2λm2

)2
−
æE1
Λ

)1/6

.
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This solution describes the inflation-like stage of the evolution of the Universe, which continues until
the equation of state of the dilaton matter changes and becomes differ from the equation of state
of the superrigid matter.
When the smooth jump of equation of state from γ = 1 to γ = 1/3 happens, the FL equa-

tion (6.17) describes the graceful exit from superrigid stage to the radiation stage of Universe
evolution.
Let us consider the radiation dominated stage with γ = 1/3. In this case the equation (6.6)

yields ε a4 = E1/3 = const. The modified Friedmann–Lemâıtre equation (6.17) for the expanding
Universe (ȧ > 0) takes the form,

ȧ =

√
æεv
3
∙
1

a2

(

a6 +
E1/3
εv
a2 −

E
εv

)1/2
. (7.1)

When the condition ȧ = 0 holds, then the extremum of the scale factor realizes. In the case
a � 1, when the value of E is positive (α > 0) and sufficiently small in comparison with the value
of E1/3, this extremum is approximately equal to

am1 ≈

(
E
E1/3

)1/2
= a1 � 1 .

This value realizes the minimum of the scale factor because from the equation (6.18) one can see
that for this value the condition ä > 0 holds.
In the limiting case t→ 0, a→ a1 the equation (7.1) can be integrated with the solution,

a2 + a21 ln
a

a1
= a21 + 2

√
æE1/3
3
t .

This solution demonstrates the correct behavior a ∼
√
t of the scale factor of the Friedmann radiation

dominated stage under small (but not infinitesimal) time.
When the radiation energy density becomes sufficiently small in comparison with the energy

density of matter, the matter dominated stage begins with γ = 2/3. Then (6.6) yields εa5 = E2/3 =
const and the modified FL equation (6.17) for the case ȧ > 0 takes the form,

ȧ =

√
æεv
3
∙
1

a2

(

a6 +
E2/3
εv
a−

E
εv

)1/2
. (7.2)

If the value of E is sufficiently small in comparison with the value of E2/3, the minimum of the scale
factor (when ȧ = 0 holds) in the case a� 1 is approximately equal to the value

am2 ≈
E
E2/3

= a2 � 1 . (7.3)

The equation (6.18) in case γ = 2/3 reads,

ä

a
=
æ

3a6

(

εva
6 −
3

2
aE2/3 + 2E

)

, (7.4)

Using this equation, one can easily verify that the value (7.3) of the scale factor corresponds to the
condition ȧ > 0.
In the limiting case t→ 0, a→ a2 the equation (7.2) can be integrated with the solution,

a5/2 +
5

6
a2a

3/2 =
11

6
a
5/2
2 +

5

2

√
æE2/3
3
t .
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This solution demonstrates the correct behavior a ∼ t2/5 of the scale factor of the Friedmann matter
dominated stage under small (but not infinitesimal) time.

In the limiting case t→∞, a→∞ the equation (7.2) has the de-Sitter-like solution with ä > 0,

a = C exp

(
Λ

3
t

)

, C > 0 ,

where C is an arbitrary positive constant. Therefore an accelerating stage of the evolution of the
Universe is predicted.

By equating the right side of the equation (7.4) to zero one can see that two points of inflection
of the scale factor plot exist [14]. The first one has very small value, but the value of the second
one,

ainfl ≈

(
3æE2/3
2Λ

)1/5
,

corresponds to the modern era. This is the point, when the Friedmann expansion with deceleration
has been replaced by the expansion with acceleration, which is in accordance with the modern
observational data [8], [9].

The last stage of expansion is the dust stage with γ = 0. In this case the equation (6.6) yields
εa3 = E0 = const, where E0 is the total mass-energy of the dilaton matter of the Universe.
The modified Friedmann–Lemâıtre equation (6.17) for the expanding Universe (ȧ > 0) takes the

form,

ȧ =

√
æεv
3
∙
1

a2

(

a6 +
E0
εv
a3 −

E
εv

)1/2
. (7.5)

When the condition ȧ = 0 holds, then the minimum of the scale factor realizes,

a3m3 = −
E0
2εv
+
1

2

√
E20
ε2v
+
4E
εv
.

If the value E0 is very large, then one has

am3 ≈

(
E
E0

)1/3
= a0 � 1 .

In this case the equation (7.5) can be exactly integrated with the solution,

a3 +
E0
2εv
+

√

a6 +
E0
εv
a3 −

E
εv
= Ce

√
3Λ t , (7.6)

where C is an arbitrary constant. For initial conditions t = 0, a = am3, the value of this constant is

C =
1

2

√
E20
ε2v
+
4E
εv
,

and the solution (7.6) takes the form

a=

(
æE0
2Λ

) 1
3

(√

1 +
4ΛE
æE20

coth(
√
3Λ t)− 1

) 1
3

.
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Another form of this solution is

a =

(
æE0
2Λ

(
coth(

√
3Λ t)− 1

)

+a3m3 coth(
√
3Λ t)

)1/3
. (7.7)

If one puts in (7.7) am3 = 0 then the cosmological monotonic model ofM1 type universe [25] appears
which after of the point of inflection asymptotically turns into the empty de Sitter universe under
t→∞.

8. Conclusions

Various non-standard cosmological theories lead to various modifications of the Friedmann–Lemâıtre
equation.
In the metric-affine gravitation (MAG) one receives the modified FL equation similar to (6.17),

but without a cosmological term [20]. After analyzing this equation the authors of [20] conclude that
“purely dilational matter amplifies gravitational attraction. In particular, it accelerates rather then
retards the possible collapse of a system.” In this cosmological theory the analog of our constant α
is negative that “corresponds to an additional effective attractive force dominating during the very
early stages of evolution” of the Universe. Recently in [26] the SN Ia supernovae data were analyzed
within this non-standard cosmological model with the cosmological term added.
In [12] the similar modified FL equation (also without a cosmological term) was received within

the framework of the Einstein–Proca–matter system appearing from the Weyl–Cartan geometrical
approach to the gravitational theory. For the pressure-free dust case γ = 0 it was shown by numerical
methods that this equation has both singular and nonsingular solutions.
In [27] within the framework of the version of D-brain cosmology on the boundary of anti-

de Sitter space the modified FL equation similar to (6.17) appears with E ∼ Q24+1, where Q4+1
corresponds to an “electric charge” in (4+1)-dimensional sense.
In our theory the system of equations (6.17)–(6.18) describe the nonsingular model of evolution

of the Universe starting from an inflation-like stage (for the superrigid equation of state), passing
radiation dominated and matter dominated decelerating stages and turning into the post-Friedmann
accelerating era.
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