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A classical spinning particle based on the Kerr-Newman black hole (BH) solution is considered. For

parameters of spinning particles |a| >> m, the BH horizons disappear and BH image is drastically changed.

We show that it turns into a skeleton formed by two coupled stringy systems. One of them is the Kerr

singular ring which can be considered as a circular D-string with an orientifold world-sheet. Analyzing the

aligned to the Kerr congruence electromagnetic excitations of this string, we obtain the second stringy system

which consists of two axial half-infinite chiral D-strings. These axial strings are similar to the Dirac monopole

strings but carry the induced chiral traveling pp-waves. Their field structure can be described by the field

model suggested by Witten for the cosmic superconducting strings. We discuss a relation of this stringy

system to the Dirac equation and argue that this stringy system can play a role of a classical carrier of the

wave function.

1. Introduction

The Kerr rotating black hole solution displays some remarkable relations to spinning particles [1–
9] For the parameters of elementary particles, |a| >> m, and black-hole horizons disappear. This
changes drastically the usual black hole image since there appear the rotating sourc in the form of a
closed singular ring of the Compton radius a = J/m.1 In the model of the Kerr spinning particle —
“microgeon” [3] this ring was considered as a gravitational waveguide leading the traveling electro-
magnetic (and fermionic) wave excitations. The assumption that the Kerr singular ring represents
a closed relativistic string was advanced about thirty years ago [4], which got confirmation on the
level of the evidence of Refs. [6, 10, 11]. However, the attempts to show it explicitly ran into obsta-
cles which were related with the very specific motion of the Kerr ring — the lightlike sliding along
itself. It could be described as a string containing lightlike modes of only one direction. However,
the relativistic string equations do not admit such solutions.

In previous paper [12] we resolved this problem showing that the Kerr ring satisfies all the
stringy equations representing a string with an orientifold structure.

In this paper we consider consequences of the electromagnetic excitations of the Kerr circular
string and find out an unavoidable appearance of one or two axial half-infinite strings which are
topologically coupled to the Kerr ring and similar to the Dirac monopole string. These strings carry
the chiral traveling waves induced by the e.m. excitations of the Kerr circular string.

Indeed, the frame of the Kerr spinning particle consists of two topologically coupled stringy
systems. The appearance of the axial half-infinite strings looks strange at first sight. Meanwhile,
we obtain that it can be a new and very important element of the structure of spinning particles.
For the moving particle the excitations of the chiral strings are modulated by de Broglie periodicity
and therefore, the axial strings turn out to be the carriers of de Broglie wave.

In the zone which is close to the Kerr string, our treatment is based on the Kerr-Schild for-
malism [13] and previous paper [15] where the real and complex structures of the Kerr geometry
were considered. For the reader convenience we describe briefly the necessary details of these struc-

1Here J is angular momentum and m is mass. We use the units c = h̄ = G = 1, and signature (−+++).
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tures. Meanwhile, in the far zone, structure of this string is described by the very simple class
of pp-wave solutions [17, 18]. The resulting stringy frame turns to be very simple and easy for
description. We obtain that these strings belongs to the class of the chiral superconducting strings
which have recently paid considerable attention in astrophysics.

Figure 1: Stringy skeleton of the Kerr spin-
ning particle. Circular D-string and the di-
rected outwards two axial half-infinite chiral
D-strings.
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2. The structure of the Kerr congruence. Microgeon

We use the Kerr-Schild approach to the Kerr geometry [13], which is based on the Kerr-Schild
form of the metric

gμν = ημν + 2hkμkν , (1)

where ημν is the metric of auxiliary Minkowski space-time, h =
mr−e2/2
r2+a2 cos2 θ

, and kμ is a twisting null

field, which is tangent to the Kerr principal null congruence (PNC) and is determined by the form2

kμdx
μ = dt+

z

r
dz +

r

r2 + a2
(xdx+ ydy)−

a

r2 + a2
(xdy − ydx). (2)

The form of the Kerr PNC is shown in Fig. 1. It follows from Eq.(1) that the field kμ is null with
respect to ημν as well as with respect to the full metric gμν ,

kμkμ = k
μkνgμν = k

μkνημν . (3)

The metric is singular at the ring r = cos θ = 0, which is the focal region of the oblate spheroidal
coordinate system r, θ, φ.
The Kerr singular ring is the branch line of the Kerr space on two folds: positive sheet (r > 0)

and ‘negative’ one (r < 0). Since for |a| >> m the horizons disappear, there appears the problem
of the source of the Kerr solution with the alternative: either to remove this twofoldedness or to
give it a physical interpretation. Both approaches have received attention, and it seems that both
are valid for different models. The most popular approach was connected with the truncation of the
negative sheet of the Kerr space, which leads to the source in the form of a relativistically rotating
disk [2] and to the class of the disklike [5] or baglike [9] models of the Kerr spinning particle.
An alternative way is to retain the negative sheet treating it as the sheet of advanced fields.

In this case the source of the spinning particle turns out to be the Kerr singular ring with the
electromagnetic excitations in the form of traveling waves, which generate spin and mass of the
particle. A model of this sort was suggested in 1974 as a model of “microgeon with spin” [3].

2The rays of the Kerr PNC are twistors and the Kerr PNC is determined by the Kerr theorem as a quadric in
projective twistor space [15].
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The Kerr singular ring (Fig. 2) was considered as a waveguide providing a circular propagation of
an electromagnetic or fermionic wave excitation. Twofoldedness of the Kerr geometry admits the
integer and half integer excitations with n = 2πa/λ wave periods on the Kerr ring of radius a, which
turns out to be consistent with the corresponding values of the Kerr parameters m = J/a.
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Figure 2: The Kerr singular ring and 3D section
of the Kerr principal null congruence. Singular
ring is a branch line of space, and PNC propa-
gates from the “negative” sheet of the Kerr space
to the “positive ” one, covering the space-time
twice.

The lightlike structure of the Kerr ring worldsheet is seen from the analysis of the Kerr null
congruence near the ring. The lightlike rays of the Kerr PNC are tangent to the ring.
It was recognized long ago [4] that the Kerr singular ring can be considered in the Kerr spinning

particle as a string with traveling waves. One of the most convincing evidences obtained by the
analysis of the axidilatonic generalization of the Kerr solution (given by Sen [19]) near the Kerr
singular ring was given in [6]. It was shown that the fields near the Kerr ring are very similar to
the field around a heterotic string.

3. The Kerr Orientifold Worldsheet

One can see that the worldsheet of the Kerr ring satisfies the bosonic string equations and
constraints; however, there appear problems with boundary conditions. In this section we recall
briefly the analysis given in [12].

The general solution of the string wave equation ( ∂
2

∂σ2
− ∂2

∂τ2
)Xμ = 0 can be represented as the

sum of the ‘left’ and ‘right’ modes: Xμ(σ, τ) = XμR(τ −σ)+X
μ
L(τ +σ), and the oscillator expansion

is

X
μ
R(τ − σ) =

1

2
[xμ + l2pμ(τ − σ) + il

∑

n 6=0

1

n
αμne

−2in(τ−σ)], (4)

X
μ
L(τ + σ) =

1

2
[xμ + l2pμ(τ + σ) + il

∑

n 6=0

1

n
α̃μne

−2in(τ+σ)], (5)

where l =
√
2α′ = 1√

πT
, T is tension, xμ is position of center of mass, and pμ is momentum of string.

The string constraints ẊμẊ
μ + X ′μX

′μ = 0, ẊμX
′μ = 0, are satisfied if the modes are

lightlike [()′ ≡ ∂σ()],
(∂σXL(R)μ)(∂σX

μ
L(R)) = 0. (6)

Setting 2σ = aφ one can describe the lightlike worldsheet of the Kerr ring (in the rest frame of the
Kerr particle) by the surface

X
μ
L(t, σ) = x

μ +
1

πT
δ
μ
0 p
0(t+ σ) +

a

2
[(mμ + inμ)e−i2(τ+σ) + (mμ − inμ)ei2(τ+σ)], (7)
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where mμ and nμ are two spacelike basis vectors lying in the plane of the Kerr ring. One can see
that

X
′μ
L =

1

πT
δ
μ
0 p
0 + 2a[−mμ sin 2(τ + σ) + nμ cos 2(τ + σ)] (8)

will be a light-like vector if one sets p0 = 2πaT . It shows that the Kerr worldsheet could be
described by modes of one (say “left”) null direction. The solution X(τ, σ) = XL(τ + σ) satisfies
the string wave equation and constraints, but there appears the problem with boundary conditions.
The closed string boundary condition

Xμ(τ, σ) = Xμ(τ, σ + π) (9)

will not be satisfied since the time component X0L(t, σ + π) acquires contribution from the sec-
ond term in (7), which is usually compensated by this term from the ‘right’ mode. The familiar
boundary conditions for the open strings follow from the condition of cancelling of the surface term
−T

∫
dτ [X ′μδX

μ|σ=π −X ′μδX
μ|σ=0] in the string action [20], and are

X ′μ(τ, 0) = X ′μ(τ, π) = 0, (10)

which also demand both types of modes to form standing waves. However, this demand can be
weakened to

X ′μ(τ, 0) = X ′μ(τ, π). (11)

It seems that the lightlike oriented string can contain traveling waves of only one direction if we
assume that it is open, but has the joined ends. However, the ends σ = 0, and σ = π are not joined
indeed.
These difficulties can be removed by the formation of the worldsheet orientifold (Fig. 3).

a) 

b) 

c) 

σ=0 π 

2π 

π 2π 

0 

o 

Fixed point 

Figure 3: Formation of orientifold: a) the initial string interval; b) extension of the interval and formation
of the both side movers; c) formation of the orientifold.

It is well known [20] that the interval of an open string σ ∈ [0, π] can be formally extended to
[0, 2π], setting

XR(σ + π) = XL(σ), XL(σ + π) = XR(σ). (12)

By such an extension, the both types of modes, “right” and “left”, will appear in our case since
the “left” modes will play the role of “right” ones on the extended piece of interval. If the extension
is completed by the changing of orientation on the extended piece, σ′ = π − σ, with a subsequent
identification of σ and σ′, then one obtains the closed string on the interval [0, 2π] which is folded
and takes the form of the initial open string.
Formally, the worldsheet orientifold represents a doubling of the worldsheet with the orientation

reversal on the second sheet. The fundamental domain [0, π] is extended to Σ = [0, 2π] with
formation of folds at the ends of the interval [0, π].
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4. Solution of the e.m. field equations

To realize the idea of the Kerr spinning particle as a “microgeon” we have to consider the
electromagnetic excitations of the Kerr string which are described by the solutions which are aligned
to the Kerr PNC on the Kerr background.
The treatment on this section is based on the Kerr-Schild formalism, and the readers which are

not aware of this formalism can omit this part by first reading going to the physical consequences
of these solutions.
The aligned field equations for the Einstein-Maxwell system in the Kerr-Schild class were ob-

tained in [13]. Electromagnetic field is given by tetrad components of self-dual tensor

F12 = AZ
2 (13)

F31 = γZ − (AZ),1 . (14)

The equations for electromagnetic field are

A,2−2Z
−1Z̄Y,3A = 0, (15)

DA+ Z̄−1γ,2−Z
−1Y,3 γ = 0. (16)

Gravitational field equations yield

M,2−3Z
−1Z̄Y,3M = Aγ̄Z̄, (17)

DM =
1

2
γγ̄, (18)

where

D = ∂3 − Z
−1Y,3 ∂1 − Z̄

−1Ȳ ,3 ∂2 . (19)

Solutions of this system were given in [13] only for stationary case for γ = 0. Here we consider the
oscillating electromagnetic solutions which corresponds to the case γ 6= 0.
For the sake of simplicity we have to consider the gravitational Kerr-Schild field as stationary,

although in the resulting e.m. solutions the axial symmetry is broken, which has to lead to oscillating
backgrounds if the back reaction is taken into account.
The recent progress in the obtaining the nonstationary solutions of the Kerr-Schild class is

connected with introduction of a complex retarded time parameter τ = t0 + iσ = τ |L which is
determined as a result of the intersection of the left (L) null plane and the complex world line [15].
The left null planes are the left generators of the complex null cones and play a role of the null
cones in the complex retarded-time construction. The τ parameter satisfies to the relations

(τ),2= (τ),4= 0 . (20)

It allows one to represent the equation (15) in the form

(AP 2),2= 0 , (21)

and to get the following general solution

A = ψ(Y, τ)/P 2, (22)

which has the form obtained in [13]. The only difference is in the extra dependence of the function
ψ from the retarded-time parameter τ .

91



It was shown in [15] that action of operator D on the variables Y, Ȳ and ρ is following

DY = DȲ = 0, Dρ = 1 , (23)

and therefore Dρ = ∂ρ/∂t0Dt0 = PDt0 = 1, that yields

Dt0 = P
−1. (24)

As a result the equation (16) takes the form

Ȧ = −(γP ),Ȳ , (25)

where ˙( ) ≡ ∂t0 .
For considered here stationary background P = 2−1/2(1+ Y Ȳ ), and Ṗ = 0. The coordinates Y ,

and τ are independent from Ȳ , which allows us to integrate Eq. (25) and we obtain the following
general solution

γ = −P−1
∫
ȦdȲ = −P−1ψ̇(Y, τ)

∫
P−2dȲ =

21/2ψ̇

P 2Y
+ φ(Y, τ)/P, (26)

where φ is an arbitrary analytic function of Y and τ .
The term γ in F31 = γZ − (AZ),1 describes a part of the null electromagnetic radiation which

falls of asymptotically as 1/r and propagates along the Kerr principal null congruence e3. As
it was discussed in [15, 16] it describes a loss of mass by radiation with the stress-energy tensor

κT
(γ)
μν =

1
2γγ̄e

3
μe
3
ν and has to lead to an infrared divergence. However, the Kerr twofoldedness and

the structure of the Kerr principal null congruence show us that the loss of mass on the positive
sheet of metric is really compensated by an opposite process on the “negative” sheet of the Kerr
space where is an in-flow of the radiation. In the microgeon model [15, 12, 16], this field acquires

interpretation of the vacuum zero point field T
(γ)
μν =< 0|Tμν |0 >. Similar to the treatment of the

zero point field in the Casimir effect one has to regularize stress energy tensor by the subtraction

T (reg)μν = Tμν− < 0|Tμν |0 >, (27)

under the condition T (γ) μν ,μ= 0 which is satisfied for the γ term.
Let’s now consider in details the second term in (14):

(AZ),1= (Z/P )
2(ψ,Y −2ψPY ) + (Z/P

2)ψ̇τ,1+AZ,1 . (28)

For stationary case we have relations Z,1= 2iaȲ (Z/P )
3 and τ,1= −2iaȲ Z/P 2 (see Appendix).

This yields
(AZ),1= (Z/P )

2(ψ,Y −2iaψ̇Ȳ /P
2 − 2ψPY /P ) +A2iaȲ (Z/P )

3. (29)

Since Z/P = 1/(r + ia cos θ), this expression contains the terms which are singular at the Kerr
ring and fall off like r−2 and r−3. However, it contains also the factors which depend on coordinate
Y = eiφ tan θ2 and can be singular at the z-axis.
These singular factors can be selected in the full expression for the aligned e.m. fields and as a

result there appear two half-infinite lines of singularity, z+ and z−, which correspond to θ = 0 and
θ = π and coincide with corresponding axial lightlike rays of the Kerr principal null congruence. On
the “positive” sheet of the Kerr background these two half-rays are directed outward. However, one
can see that they are going from the “negative” sheet and appear on the “positive” sheet passing
through the Kerr ring (see Fig. 2).
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The general solution for the aligned electromagnetic fields has the form

F = F31 e
3 ∧ e1 + F12 (e

1 ∧ e2 + e3 ∧ e4). (30)

In the null Cartesian coordinates the Kerr-Schild null tetrad has the form 3

e1 = dζ − Y dv, e2 = dζ̄ − Ȳ dv,

e3 = du+ Ȳ dζ + Y dζ̄ − Y Ȳ dv,

e4 = dv + he3. (32)

Evaluating the basis two-forms in the Cartesian coordinates we obtain

e1 ∧ e2 + e3 ∧ e4 = dζ ∧ dζ̄ + du ∧ dv + Y dζ̄ ∧ dv, (33)

and

e3 ∧ e1 = Y dζ̄ ∧ dζ + du ∧ dz − Y du ∧ dv − Y 2 dζ̄ ∧ dv. (34)

5. Axial singular waves

The obtained general solution for the aligned electromagnetic fields (30) contains the factors
which depend on coordinate Y = eiφ tan θ2 and can be singular at the z-axis.

We will now be interested in the wave terms and omit the terms describing the longitudinal
components and the field γ.

The wave terms are proportional to the following basis two-forms

e3 ∧ e1|wave = du ∧ dζ + Y 2dv ∧ dζ̄
and

e1 ∧ e2 + e3 ∧ e4|wave = dζ ∧ dζ̄.
Near the positive half-axis z+, we have Y → 0 and near the negative half-axis z−, we have

Y →∞.
Therefore, with the exclusion the γ term, the wave terms of the e.m. field (30) take the form

F|wave = fR dζ ∧ du+ fL dζ̄ ∧ dv, (35)

where the factor

fR = (AZ),1 (36)

describes the “right” waves propagating along the z+ half-axis, and the factor

fL = 2Y ψ(Z/P )
2 + Y 2(AZ),1 (37)

describes the “left” waves propagating along the z− half-axis, and some of them are singular at z
axis.

3In the paper [13] treatment is given in terms of the “in” — going congruence e3 (advanced fields). Here we need
to use the “out” — going congruence. The simplest way to do it retaining the basic relations of the paper [13] is to
replace t→ −t in the definition of the null Cartesian coordinates. Therefore, we use here the notations

2
1
2 ζ = x+ iy, 2

1
2 ζ̄ = x− iy,

2
1
2 u = z − t, 2

1
2 v = z + t. (31)
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Besides, since Z/P = (r+ia cos θ)−1, all the terms are also singular at the Kerr ring r = cos θ = 0.
Therefore, the singular excitations of the Kerr ring turn out to be connected with the axial singular
waves.
Let us consider the solutions describing traveling waves along the Kerr ring

ψn(Y, τ) = qY
n exp iωτ ≡ q(tan

θ

2
)n exp i(nφ+ ωnτ). (38)

Near the Kerr ring one has ψ = exp i(nφ+ ωt), and |n| corresponds to the number of the wave
lengths along the Kerr ring. The parameter n has to be integer for the smooth and single-valued
solutions, however, as we shell see bellow, the half-integer n can be interesting too.
Meanwhile, by Y → 0 one approaches to the positive z-axis where the solutions may be singular

too. Similar, by Y →∞ one approaches to the negative z-axis, and some of the solutions turns out
to be singular there.
When considering asymptotical properties of these singularities by r →∞, we have z = r cos θ,

and for the distance ρ from the z+ axis we have the expression ρ = z tan θ ' 2r|Y | by Y → 0.
Therefore, for the asymptotical region near the z+ axis we have to put Y = eiφ tan θ2 ' eiφ ρ2r , and

|Y | → 0, while for the asymptotical region near the z− axis Y = eiφ tan θ2 ' e
iφ 2r
ρ , and |Y | → ∞.

The parameter τ = t− r − ia cos θ takes near the z-axis the values

τ+ = τ |z+ = t− z − ia, τ− = τ |z− = t+ z + ia. (39)

It has also to be noted that for |n| > 1 the solutions contain the axial singularities which do not
fall of asymptotically, but are increasing. Therefore, we shell restrict the treatment by the cases
|n| ≤ 1.
The leading wave terms for |n| ≤ 1 are given in the Appendix.
The leading singular wave for n = 1 is

F−1 =
4qei2φ+iω1τ−

ρ2
dζ̄ ∧ dv. (40)

It propagates to z = −∞ and has the uniform axial singularity at z− of order ρ−2.
Meanwhile, the leading singular wave for n = −1 is

F+−1 = −
4qe−i2φ+iω−1τ+

ρ2
dζ ∧ du, (41)

and has the similar uniform axial singularity at z+ which propagates to z = +∞.
The waves with n = 0 are regular.
In what follows we will show that these singularities form the half-infinite chiral strings, in

fact superconducting D-strings. There are several arguments in favor of the system containing a
combination of two strings of opposite chirality, n = ±1.
First, if the solution contains only one half-infinite string, like the Dirac monopole string, it

turns out to be asymmetric with respect to the z± half-axis, which leads to a nonstationarity via a
recoil.
Then, the symmetric stringy solutions exclude the appearance of monopole charge.
Note also, that the pure chiral strings, containing modes of only one direction, cannot exist

and any chiral string has to be connected to some object containing an anti-chiral part. Indeed,
the pure chiral excitation depends only on one of the parameters τ± = t ± σ, and as a result the
world-sheet is degenerated in a world-line 4. This is seen in the models of the cosmic chiral strings

4This argument was suggested by G. Alekseev.
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where the chiral excitations are joined to some mass [21] or are sitting on some string having modes
of opposite chirality [22]. In our case the partial pp-wave e.m. excitation has the same chirality as
the half-infinite carrier of this excitation (the axial ray of PNC). Therefore, the combination of two
n = ±1 excitations looks very natural and leads to the appearance of a full stringy system with two
half-infinite singular D-strings of opposite chirality, “left” and “right”, as it is shown at the Fig. 1.
The world-sheet of the system containing from two straight chiral strings will be given by

xμ(t, z) =
1

2
[(t− z)kμR + (t+ z)k

μ
L], (42)

where the lightlike vectors kμ are constant and normalized. At the rest frame the timelike com-
ponents are equal k0R = k0L = 1, and the spacelike components are oppositely directed, k

a
R + k

a
L =

0, a = 1, 2, 3. Therefore, ẋμ = (1, 0, 0, 0), and x′μ = (0, ka), and the Nambu-Goto string action

S = α′−1
∫ ∫ √

(ẋ)2(x′)2 − (ẋx′)2dtdz (43)

can be expressed via kμR and k
μ
L.

To normalize the infinite string we have to perform a renormalization putting α′−1
∫
(x′)2dz = m,

which yields the usual action for the center of mass of a pointlike particle

S = m

∫ √
(ẋ)2dt. (44)

For the system of two D-strings in the rest one can use the gauge with ẋ0 = 1, ẋa = 0, where
the term (ẋx′)2 drops out, and the action takes the form

S = α′−1
∫
dt

∫ √
papadσ, (45)

where

pa = ∂σx
a =
1

2
[x′μR (t+ σ)− x

′μ
L (t− σ)]. (46)

However, one of the most important arguments in favor of the combination of two chiral strings
is suggested by analogue to the Dirac equation, which has to be obtained for the Kerr spinning
particle if it has a relation to the structure of electron. It is known that in the Weyl basis the Dirac
current can be represented as a sum of two lightlike components of opposite chirality

Jμ = e(Ψ̄γμΨ) = e(χ
+σμχ+ φ

+σ̄μφ), (47)

where

Ψ =

(
φα
χα̇

)

, (48)

and

Ψ̄ = (χ+, φ+) (49)

Two real lightlike 4-vectors kμL, k
μ
R can be expressed in spinor form

k
μ
L = φ

+σ̄μφ k
μ
R = χ

+σμχ, (50)

and two extra complex null vectors can be formed

mμ = χ+σμφ m̄μ = φ+σμχ, (51)
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which complete the null tetrad. This analogue shows that the Dirac equation can only describe the
axial stringy system of the Kerr spinning particle.
Indeed, the solution containing combination of three terms with n = −1, 0, 1 represents also

especial interest since it yields a smooth e.m. field packed along the Kerr string with one half of
the wavelength and gives an electric charge to the solution.
Note, that orientifold structure of the Kerr circular string admits apparently the excitations

with n = ±1/2 too, so far as the negative half-wave can be packed on the covering space turning
into positive one on the second sheet of the orientifold. However, the meaning of this case is unclear
yet, and it demands a special consideration.

6. Einstein-Maxwell axial pp-wave solutions

The e.m. field given by (35), (36) and (37) can be obtained from the potential

A = −AZe3 − χdȲ , (52)

where A = ψ/P 2 is given by (22) and

χ =

∫
P−2ψdY, (53)

Ȳ being kept constant in this integration. The considered wave excitations have the origin from the
term

A = P−2ψnZe
3 = qY n exp iωτP−2Ze3 (54)

and acquire the following asymptotical z± forms:
For n = 1; z < 0

A− = qY eiωτ (r + ia cos θ)−1e3/P ' −2q
eiω1τ−+iφ

ρ
dv. (55)

For n = −1; z > 0

A+ = qY −1eiωτ (r + ia cos θ)−1e3/P ' 2q
eiω−1τ+−iφ

ρ
du . (56)

Each of the partial solutions represents the singular plane-fronted e.m. wave propagating along
z+ or z− half-axis without damping. It is easy to point out the corresponding self-consistent solution
of the Einstein-Maxwell field equations which belongs to the well known class of pp-waves [17, 18].
The metric has the Kerr-Schild form

gμν = ημν + 2hkμkν , (57)

where function h determines the Ricci tensor

Rμν = −kμkν2h, (58)

kμ = e3μ/P is the normalized principal null direction (in particular, for the z+ axis kμdxμ =
−21/2du), and 2 is a flat D’Alembertian

2 = 2∂ζ∂ζ̄ + 2∂u∂v . (59)

The Maxwell equations take the form
2A = J = 0 (60)
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and can easily be integrated leading to the solutions

A+ = [Φ+(ζ) + Φ−(ζ̄)]f+(u, v)du, (61)

A− = [Φ+(ζ) + Φ−(ζ̄)]f−(u, v)dv, (62)

where Φ± are arbitrary analytic functions, and functions f± describe the arbitrary retarded and
advanced waves. In our case we have the retarded-time parameter τ = t− r − ia cos θ which takes
at the z+ axis the values τ ' −21/2u− ia and at the z− axis the values τ ' 21/2v + ia. Therefore,
we have

f+ = f+(u), f− = f−(v). (63)

The corresponding energy-momentum tensor will be

Tμν =
1

8π
|F+−1|

2kμkn, (64)

where for z+ wave kμdx
μ = −21/2du and for z− wave kμdxμ = 21/2dv.

The Einstein equations Rμν = −8πTμν take the simple asymptotic form

2h = |F+−1|
2 = 16q2e−2aωρ−4. (65)

This equation can easily be integrated and yields the singular solution

h = 8q2e−2aωρ−2. (66)

Therefore, the wave excitations of the Kerr ring lead to the appearance of singular pp-waves which
propagate outward along the z+ and/or z− half-axis.
These axial singularities are evidences of the axial stringy currents, which are exhibited explicitly

when we try to regularize the singularities [23] on the base of the Witten field model for the cosmic
superconducting strings [14].
The resulting excitations have the Compton wave length which is determined by the size of the

Kerr circular string. However, for the moving systems the excitations of the axial stringy system
are modulated by de Broglie periodicity.
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Figure 4: Schematic description of the Kerr antiparticle. Two axial singular strings are directed “inward”.

One can see here a striking similarity with the well known elements and methods of the signal
transmission in the systems of radio engineering and in the radar systems. In fact, the chiral axial
string resembles a typical system for the signal transmission containing a carrier frequency which is
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modulated by the signal — the carrier of an information. One sees that the Kerr circular string can
also be considered as a generator of the carrier frequency, and plays a role of the antenna. Basing
on the principle that the fine description of a quantum system has to absorb maximally the known
classical information on this system, one can conjecture that the above strikingly simple structure
can have a relation to the structure of spinning particles.
In conclusion, one can conjecture which changes could correspond to the Kerr anti-particle. It

has to be the change of the PNC direction, as it is shown in Fig. 4. It yields a natural picture of
annihilation as it is shown in the Fig. 5. It was discussed in [24] that the size of the Kerr circular
string for the massless Kerr spinning particle has to grow to infinity and disappear. As a result
there retains only a single chiral string.
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Figure 5: (a) annihilation of the Kerr particle and antiparticle and (b) formation of the lightlike particle.
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Appendix

The leading wave terms for |n| ≤ 1 are the following:

F−1 =
4qei2φ+iω1τ−

ρ2
dζ̄ ∧ dv, F+−1 = −

4qe−i2φ+iω−1τ+

ρ2
dζ ∧ du, (67)

For n = 1.
At z− half-axis

F−1 = 4q
ei2φ + iω1τ−

ρ2
dζ̄ ∧ dv −

qeiω1τ−

r2
dζ ∧ du, (68)

and at z+ half-axis
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F+1 =
3qei2φ+iω1τ+ sin2 θ

4r2
dζ̄ ∧ dv +

qeiω1τ+

r2
dζ ∧ du. (69)

For n = 0.
At z− half-axis

F−0 = q
(1 + 2aω)eiφ+iω0τ− sin θ

r2
dζ̄ ∧ dv − q

e−iφ+iω0τ− sin θ

r2
dζ ∧ du, (70)

and at z+ half-axis

F+0 = q
eiφ+iω0τ+ sin θ

r2
dζ̄ ∧ dv + q

(2aω − 1)e−iφ+iω0τ+ sin θ
r2

dζ ∧ du. (71)

For n = −1.
At z− half-axis

F−−1 = −
qeiω−1τ−

r2
dζ̄ ∧ dv −

3qe−i2φ+iω−1τ− sin2 θ

4r2
dζ ∧ du. (72)

and at z+ half-axis

F+−1 =
qeiω−1τ+

r2
dζ̄ ∧ dv −

4qe−i2φ+iω−1τ+

ρ2
dζ ∧ du. (73)

Similar, for n = 1/2.
At z− half-axis

F−1/2 = q
21/2ei3φ/2 + iω1/2τ−

ρ3/2r1/2
dζ̄ ∧ dv −

3qe−iφ/2+iω1/2τ− sin1/2 θ

23/2r2
dζ ∧ du, (74)

and at z+ half-axis

F+1/2 =
5qei3φ/2+iω1/2τ+ sin3/2 θ

21/2 4 r2
dζ̄ ∧ dv +

qe−iφ/2+iω1/2τ+

21/2ρ1/2r3/2
dζ ∧ du. (75)

For n = −1/2.
At z− half-axis

F−−1/2 =
−qeiφ/2+iω−1/2τ−

21/2ρ1/2r3/2
dζ̄ ∧ dv −

5qe−i3φ/2+iω−1/2τ− sin3/2

21/2 4 r2
dζ ∧ du, (76)

and at z+ half-axis

F+−1/2 =
3qeiφ/2+iω−1/2τ+ sin1/2 θ

23/2r2
dζ̄ ∧ dv −

21/2qe−i3φ/2+iω−1/2τ+

ρ3/2r1/2
dζ ∧ du. (77)
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