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1 Introduction

The proof of analytical properties of scattering amplitudes is one of the most remarkable achieve-
ments of axiomatic approach in quantum field theory.Dispersion relations (DR) for elastic scatter-
ing amplitude were derived in papers of Gell-Mann, Goldberger, Thirring, Miyazawa, Nambu and
Oehme [1–4]. They were rigorously proved in works of Bogoliubov, Oehme, Symanzik, Bremer-
mann, Tailor and Lehmann [5–9]. The detailed proof of DR was made in the book of Bogoliubov,
Medvedev, Polivanov [10].
In deriving analytical properties of scattering amplitudes the standard assumption is the sup-

position of polynomial boundedness of them, that is there exists n such that

F (E)

En
→ 0, E →∞.

Consideration of analytical properties of scattering amplitudes under more general condition was
done in [11]. The main idea of such a proof implies the use of a damping function introduced in [12].
In our report we show that a classical proof of analyticity given in the book of Bogoliubov and

Shirkov [13] can be extended on amplitudes, for which the condition of polynomial boundedness
is substituted by a weaker condition. Namely, we assume the absence of exponential growth of
scattering amplitude (precisely the validity of the inequality (5)). It is very interesting that just the
same condition was obtained by Jaffe in the paper [13], where he introduced more general class of
generalized functions than tempered distribution.
In spite of the fact that polynomial boundedness of scattering amplitudes is the consequence of

very week conditions [15, 16] it is important to weaken as much as possible the conditions under
which analyticity in question can be proved. First of all it is significant for various extensions of
standard theory, e.g. for noncommutative quantum field theory [17]–[19], (for a review, see [20]).
Let us concentrate our efforts on the simplest and the most important case of forward elastic

scattering of two spin-free particles with masses m (meson) and M (nucleon). In reality the same
analytical properties are valid for meson-nucleon scattering after the averaging over spin. Thus we
can omit the complications related with spins of particles. For simplicity we also consider meson
as neutral particle, that is our results are valid directly for (π0 − N)-scattering or for the sum of
(π+ −N)- and (π− −N)-scattering amplitudes.
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2 Forward (π −N)–scattering
We consider the scattering of two neutral particles with masses m and M .
It should be noted that we admit the condition of local commutativity:

[j (x), j (y)] = 0 if (x− y)2 < 0, (1)

j (x) is the current of interacting fields.
In accordance with the standard LSZ reduction formulas (see, e.g. [21]) scattering amplitude is:

F (E, ~q) =

∫
d4x ei (E x0−~q ~x) τ (x0)F (x), (2)

where
F (x) =< M

∣
∣
∣
[
j
(x
2

)
, j
(
−
x

2

)]∣∣
∣M >,

τ (x0) = 1, x0 ≥ 0, τ (x0) = 0, x0 < 0.
We omit in eq. (2) the factor, which is irrelevant to analytical properties of F (E, ~q). Eq. (2) is
written in the reference frame, in which particle with the mass M is at rest. E and ~q are energy
and momentum of the particle with mass m respectively.
Let us write ~q in the form: ~q = ~e |~q|, |~e| = 1. Then

F (E, ~q) =

∫
d4x ei (E x0−~e ~x

√
E2−m2) τ (x0)F (x), (3)

In order to exclude singularity of
√
E2 −m2 we substitute F (E, |~q|, ~e) by

1

2
(F (E, |~q|, ~e) + F (E, |~q|,−~e) ≡ F (E).

This is a standard step. Thus

F (E) =

∫
ei E x0 cos (~e~x

√
E2 −m2) τ (x0)F (x) d

4 x. (4)

The direct extension F (E) on complex E is impossible ([13], chapter 10) as

Im
√
E2 −m2 > ImE.

To overcome this obstacle we following Bogolyubov and Shirkov substitute F (E) by regularized
amplitude Fε (E):

Fε (E) =

∫
ei E x0 cos (~e~x

√
E2 −m2) τ (x0)Fε (x) d

4 x. (4′)

Fε (x) = exp(−ε(x0
2 + |~x|2))F (x)

Fε (E) is an analytical function in an upper half-plane as integral in the latter equation converges.
The main problem is to prove the existence of analytical function F (E) = limε→0 Fε (E). To

this end let us use the analytical properties of Fε (E). Our goal is to represent Fε (E) at complex
E as integral over real axe only and then go to ε = 0. But it is impossible to do this directly as
Fε (E) 6→ 0 at E → ∞. So first we have to construct such a function. Usually to this end the
polynomial boundedness of F (E) is used. Here we use the weaker bound. Namely we suppose the
existence of the following inequality

|F (E) | < exp
E

(ln E)1+α
, E →∞, (5)
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where α > 0 can be arbitrary small. Evidently inequality (5) is fulfilled also for Fε (E). Condition
similar with the inequality (5) is valid also at E → −∞ as

F (−E + i 0) = F ∗ (E + i 0), Fε (−E + i 0) = F
∗
ε (E + i 0). (6)

Eq. (6) is a standard crossing symmetry condition.
Evidently, function

ψε (E) = Fε (E) ξ (E), (7)

where

ξ (E) = exp

√
m2 − E2

lnβ (−
√
m2 − E2)

, α > β,

satisfies the necessary condition

ψε (E)→ 0, E → ±∞. (8)

Indeed, it is easy to see that at |E| → ∞

ξ (E) ∼= exp
i E

(
ln E − i π2

)β . (7′)

For any ϕ, 0 < ϕ < π

|ξ (E)| < exp
−|E| sin ϕ

(ln E)β
.

At ϕ = 0

|ξ (E)| < exp
−π β |E|

2 (ln E)1+β
.

It is easy to see that ξ (E) is an analytical function in the whole E-plane with cuts (m,∞), (−∞,−m)
satisfying the conditions

ξ (−E + i 0) = ξ∗ (E + i 0) = ξ (E − i 0) (9)

Using the Cauchy formula we see that

ψε (E) =
1

2π i

∫

C

ψε (E
′
) dE′

E′ − E
, ImE > 0. (10)

Contour C consists of interval (−R,R) and semicircle in an upper half-plane.
Now let us demonstrate that owing to cond.(1)

ψε (Re
i ϕ)→ 0 if R→∞, 0 < ϕ < π. (8′)

Indeed, if |E| → ∞, then

Im
√
E2 −m2 ∼= ImE − Im

m2

2E

Thus ∣
∣
∣ei E x0 cos (~e~x

√
E2 −m2)

∣
∣
∣ ≤ e−ImE (x0−|~x|) ∙ e

m2 |~x| sin ϕ
R . (11)

Owing to the factor exp(−ε |~x|2) integral over ~x converges when x0 →∞, so the integration is really
taken over some finite interval. The first factor in (11) is less than unity as x0 > |~x|. The second
factor tends to unity at any fixed ε if R → ∞. Thus the growing factor in exponential in eq. (4′)
disappears at |E| → ∞. So we can conclude that cond. (8′) follows from the cond. (8). Actually
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in order to prove that condition (8′) is the consequence of condition (8), it is sufficient to assume
that ψε (Re

i ϕ) grows more slowly than any exponent and use the Phragmen-Lindelöf theorem (see
e.g. [22]). Thus we can put R =∞ in eq. (10). So

ψε (E) =
1

2π i

∞∫

−∞

ψε (E
′
) dE

′

E
′ − E

, ImE > 0. (12)

Eq. (12) is valid at any fixed ε. Now let us go to ε = 0. First let us consider the interval (m,∞).
We can go to the limit ε = 0 without any problem as in this interval limε→0 Fε (E

′
) = F (E

′
). The

interval (−∞,−m) can be treated similarly in accordance with eq. (6).
Let us show that the remained interval can be considered as well as usually. To consider this

interval let us construct the analytical function in the lower half-plane and then prove that this
function is an analytical continuation of Fε (E). To this end we use the function

F̃ (E, ~q) =

∫
d4x ei (E x0−~q ~x) τ (−x0)F (−x). (13)

Then we substitute F̃ (E, ~q) by
F̃ε (E) =

∫
ei E x0 cos (~e~x

√
E2 −m2)τ (−x0)Fε (−x) d

4 x, (13′)

Fε (−x) = exp(−ε(x0
2 + |~x|2))F (−x).

Evidently
F̃ε (E − i 0) = Fε (−E + i 0) = F

∗
ε (E + i 0) (14)

The last equality in (14) is eq. (6), to prove the first one it is sufficient to replace x by −x. We can
put ε = 0 in eq. (14).

F̃ (E − i 0) = F ∗ (E + i 0) (14′)

The function
ψ̃ε (E) = F̃ε (E) ξ (E) (15)

is an analytical function in a lower half-plane and

ψ̃ε (E)→ 0, E → ±∞.

We use the same arguments as for proof of analyticity of ψε (E) in an upper half-plane. Thus

1

2π i

∫

C̃

ψ̃ε (E
′
) dE

′

E
′ − E

= 0, ImE > 0. (16)

C̃ consists of interval (R,−R) and semicircle in a lower half-plane. Let us sum expressions (10)
and (16). Using eq. (14) and taking into account that integral over semicircle in a lower half-plane
tends to zero if R → ∞ on the same reason as corresponding integral in an upper half-plane, we
obtain that

ψε (E) =
1

π

∞∫

m

Imψε (E
′
) dE

′

E
′ − E

+
1

π

−m∫

−∞

Imψε (E
′
) dE

′

E
′ − E

+

1

2π i

m∫

−m

(
ψε (E

′
)− ψ̃ε (E

′
)
)
dE

′

E
′ − E

, ImE > 0. (17)
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In the two first terms in (17) we can go to lim ε = 0. To consider the remained integral let us obtain
in the physical domain the expression for F (E, ~q) − F̃ (E, ~q) suitable to extension for nonphysical
E(−m < E < m). From the definitions (3) and (13) it follows that

F (E, ~q)− F̃ (E, ~q) = F+ (E, ~q)− F− (E, ~q), (18)

where

F± (E, ~q) =

∫
d4x ei (E x0−~q ~x) F± (x). (19)

F+ (x) =< M
∣
∣
∣j
(x
2

)
j
(
−
x

2

)∣∣
∣M >,

F− (x) =< M
∣
∣
∣j
(
−
x

2

)
j
(x
2

)∣∣
∣M > . (20)

Let us suppose that vectors |p, n > form the complete system of basis vectors and so

< M
∣
∣
∣j
(x
2

)
j
(
−
x

2

)∣∣
∣M >=

∑

n

∑

p0n

∫
d3p < M

∣
∣
∣j
(x
2

)∣∣
∣ p, n >< p, n

∣
∣
∣j
(
−
x

2

)∣∣
∣M >, (21)

p is a momentum, p0n is the energy of the state |p, n >, n denotes all other quantum numbers.
Using the equality

< p
′
|j (x)| p >= ei (p

′
−p) a < p

′
|j (x− a) | p >,

where | p > and | p
′
> are eigenvectors of operator p, we see that owing to eqs. (20), (21)

F± (E, ~q) =
∑

n

∑

p0n

|< M |j (0)| p, n >|2 ∙ δ (p0n −M ∓ E), (22)

~p = ∓~q.
Thus F± (E, ~q) 6= 0 only if

√
M2
n + ~q

2 =M ± E, p0n =
√
M2
n + ~q

2. (23)

Let us suppose that as in case of π − N -scattering Mn ≥ M + m, excluding one M particle
intermediate state. We can extend expression (23) on the E belonging to the interval (−m,m).
F± (E, ~q) 6= 0 in this interval only if Mn =M and E = ∓m2/2M .
Thus we see that in the integral under consideration

lim
ε=0
(ψε (E)− ψ̃ε (E)) = 0,

excluding 2 points: ± m2

2M . In order to vanish integral over the interval (−m,m) it is sufficient to
substitute ψε (E) and ψ̃ε (E) by functions:

Φε (E) =

(

E2 −
m4

4M2

)

ψε (E),

Φ̃ε (E) =

(

E2 −
m4

4M2

)

ψ̃ε (E).
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Representing Φε (E) by the expression analogous to (17) we see that in accordance with this repre-

sentation there exists lim
ε=0
Φε (E) = Φ (E). Function Φ (E) (and so function

(
E2 − m4

4M2

)
F (E))

is an analytical function in the whole E-plane excluding cuts (−∞,−m), (m,∞). Moreover
Φ̃ (E) = lim

ε=0
Φ̃ε (E) is an analytical continuation of Φ (E) and F (E) is an analytical function

in the same domain excluding points ± m2

2M , where it has poles.
Thus we come to the following expression for F (E):

F (E) ξ (E) =
2

π

∞∫

m

E
′
Im

(
F (E

′
) ξ (E

′
)
)
dE

′

E
′2 − E2

+ pole terms, ImE > 0. (24)

Eq. (24) gives us the necessary continuation of F (E) into the upper-half plane. Passing to the limit
ImE = 0 in eq. (17) and using eqs. (6) and (9), we come to the relation

Re (F (E) ξ (E)) =
2

π

∞∫

m

E
′
Im

(
F (E

′
) ξ (E

′
)
)
dE

′

E
′2 − E2

+ pole terms. (25)

Expression (25) is the generalization of standard dispersion relations for amplitudes, which grow
more rapidly than any polynomial.

References

[1] M. Gell-Mann, M. L. Goldberger and W. E. Thirring, Phys. Rev. 95 (1954) 1612.

[2] M. L. Goldberger, Phys. Rev. 99 (1955) 979.

[3] M. L. Goldberger, H. Miyazawa and R. Oehme, Phys. Rev. 99 (1955) 986.

[4] R. Oehme, Phys. Rev. 100 (1955) 1503; 102 (1956) 1174.

[5] N. N. Bogoliubov, Lecture at International Congress on Theoretical Physics, Seattle, 1956
(unpublished).

[6] R. Oehme, Nuovo Cim. 10 (1958) 1316.

[7] K. Symanzik, Phys. Rev. 105 (1957) 743.

[8] H. J. Bremermann, R. Oehme and J.G. Taylor, Phys. Rev. 109 (1958) 2178.

[9] H. Lehmann, Nuovo Cim. 10 (1958) 579.

[10] N. N. Bogoliubov, B. V. Medvedev and M. K. Polivanov, Theory of Dispersion Relations,
Lawrence Radiation Laboratory, Berkeley, California, 1961.

[11] V. Yu. Lazur and I. V. Khimich, Ukr. Fiz. Zhur., 21 (1976) 1061; 22 (1977) 1057.

[12] Yu. M. Lomsadze, B. A. Agranovsky and E. P. Sabad, Nucl.Phys. B73 (1974) 536.

[13] N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, Wiley,
New York, 1980, 3rd ed.

118



[14] A. Jaffe, Phys. Rev. 158 (1967) 1454.

[15] A. A. Logunov, Nguyen Van Hieu and I. T. Todorov, Usp. Fiz. Nauk 88 (1966) 51 (in Russian).

[16] V. Ya. Fainberg and M. A. Soloviev, Ann. of Fiz. 113 (1978) 421.

[17] Yi Liao, K. Sibold. Phys. Lett. B 549 (2002) 352, hep-th/0209221.

[18] Yu. Vernov and M. Mnatsakanova, Teor. Mat. Fiz. 139 (2004) 3.

[19] M. Chaichian, M. Mnatsakanova, A. Tureanu and Yu. Vernov, Nucl. Phys. B673 (2003) 476,
hep-th/0306158, 2003, 27.

[20] M. R. Douglas and N. A. Nekrasov, Rev. Mod. Phys. 73 (2001) 977, hep-th/0106048.

[21] J. D. Bjorken, S. D. Drell, Relativistic quantum fields, Mc Graw-Hill Book Company, 1965.

[22] N. N. Meiman, Zh. Eksp. Teor. Fiz. 43 (1962) 2247 (translation in Sov. Phys. JETF 16 (1963)
1609).

[23] M. Froissart, Phys. Rev. 123 (1961) 1053.

[24] A. Martin, Phys. Rev. 129 (1963) 1432.

[25] A. Martin, Nuovo Cim. 42 (1966) 901.

[26] V. Ya. Fainberg and Sh. Yu. Lomsadze, Kratkie Soobshcheniya po Fizike 5 (1988) 23 (translated
in Soviet Physics - Lebedev Institute Reports).

[27] Yu. S. Vernov and M. N. Mnatsakanova, in Proceedings of the XIV International Seminar on
High Energy Physics and Quantum Field Theory, Protvino, Nauka, 1992, p. 290.

119


