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We discuss a framework for investigation of mixed symmetry tensor fields in Minkowski and (A)dS spaces

and their possible interactions.

Introduction

In four-dimensional flat Minkowski space-time massive particles are characterized by one pa-
rameter — spin s and the most simple and economic description of such particles is the one based
on completely symmetric (spin)-tensors. But moving to the dimensions greater than four, one faces
the fact that representations of appropriate groups require more parameters and as a result in many
interesting cases such as supergravity theories, superstrings and (supersymmetric) high spin theo-
ries one has to consider different mixed symmetry (spin)-tensors. One of the technical difficulties
(besides purely combinatorial ones) one faces working with such fields is that to get analog of gauge
invariant “field strengths” one has to build expressions with more and more derivatives (or has
to work with non-local terms in the equations of motion or the Lagrangians) [1–4]. This problem
appears already for the massless spin two field in gravity, but in this case there exist very elegant
solution: one goes to the first order formalism and obtains the description in terms of tetrad eμ

a

and Lorentz connection ωμ
[ab] which play the roles of the gauge fields and “normal” gauge invariant

field strengths T[μν]
a and R[μν]

[ab] having nice geometrical interpretation as torsion and curvature.
The structure of gauge transformation laws is also appears to be rather complicated, moreover,
these transformations often turn out to be reducible. All this make the problem of investigation of
possible interactions among such fields a very complicated task [5–10]. In (Anti) de Sitter space the
problem becomes even more complicated because particles in (A)dS reveal a number of very peculiar
features such as unitary forbidden regions (i.e. not all values of mass and cosmological constant are
allowed) and appearance of partially massless theories [11]–[19]. Moreover not all massless fields in
flat Minkowski space could be deformed into the (A)dS space without introduction of additional
fields [20, 21, 22], making the very definition of mass for such fields problematic.

Our aim here — to give a framework which could be powerful enough to allow careful inves-
tigation of all related questions and at the same time simple enough to make such investigations
tractable [22, 23, 24]. Two main ingredients of such framework: first order (“tetrad”) formalism
and gauge invariant description of massive high spin particles.

1. First order formalism

Our first order formalism for mixed symmetry tensor fields is a generalization of well known
tetrad formalism for spin 2 in gravity. It is instructive to compare this formalism with another very
well known example of first order formulation — for spin 1.

Spin 1

For the description of spin-1 particles one use vector field Aμ and in order to have right number
of physical degrees of freedom the theory has to be invariant under the gauge transformations
δAμ = ∂μΛ. In this, it is easy to construct a field strength Fμν = ∂μAν − ∂νAμ which is gauge
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invariant and contains first derivatives only. Then the second order Lagrangian could be written
as L = −14Fμν

2. Moreover, introducing independent object Fμν one can construct first order
Lagrangian: L = 1

4Fμν
2 − Fμν∂μAν , which is equivalent to second order one.

Spin 2

The simplest possibility for the description of spin-2 particle is symmetric second rank tensor
hμν with gauge transformations δhμν = ∂μξν + ∂νξμ. But in this case in order to construct gauge
invariant object one has to use second derivatives of hμν :

Rμν,αβ = ∂μ∂αhνβ − ∂ν∂αhμβ − ∂μ∂βhνα + ∂ν∂βhμα.

As a result, there is no gauge invariant “field strength” with one derivative and second order La-
grangian can’t be written in a form quadratic in some gauge invariant object. Thus, straightforward
generalization of first order formalism for the spin-1 field on the spin-2 (and all higher spin) case is
not possible.
However, first order formalism for spin-2 particle does exist. This so called tetrad formulation

is very well known mainly due to its nice geometrical interpretation, but for our purpose it is
instructive to consider this formalism as a transition from second order formulation to first order
one. Then it looks like the following steps.

• Abandon symmetry property of the field: hμν ⇒ hμa (thus introducing additional field com-
ponents — antisymmetric tensor h[μa]).

• Change gauge transformations: δhμa = ∂μξa.

• Now it is easy to construct gauge invariant “field strength” (torsion): Tμνa = ∂μhνa − ∂νhμa

containing first derivatives only.

• Then second order Lagrangian could be written as:

L =
1

8
Tμν,αTμν,α +

1

4
Tμν,αTμα,ν −

1

2
TμTμ.

• This Lagrangian is also invariant under the local shifts: δhμν = η[μν]. Due to this invariance
the additional components h[μa] could be gauged away leaving us with correct number of
physical degrees of freedom.

• Moreover, this last invariance suggests the introduction of additional field — “Lorentz con-
nection”: ωμ

ab playing a role of gauge field for local ηab transformations: δωμ
ab = ∂μη

ab.

• Using such fields one can easily construct a first order Lagrangian:

LI = −
1

2
ωμ,αβωα,μβ +

1

2
ωμωμ −

1

2
ωμ,αβTαβ,μ − ω

μTμ,

which is invariant under ξa as well as ηab transformations.

• Algebraic equation of motion for ωμab gives:

ωμ,αβ =
1

2
[Tμα,β − Tμβ,α − Tαβ,μ].

Substituting this expression into the first order Lagrangian one obtains exactly the second
order Lagrangian given before.
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• It is very important that this first order Lagrangian could be rewritten as:

LI =
1

2

{ μν
ab

}
ωμ
acων

bc −
1

2

{ μνα
abc

}
ωμ
ab∂νhα

c,

where
{ μν
ab

}
= δμ

aδν
b− δνaδμb and so on. Such formulation greatly simplify the investigations

of possible interactions for spin-2 field.

Mixed Φ[μν],α tensor

As an illustration we consider here the simplest case — mixed Φ[μν],α tensor in d = 4 space-
time, but such formalism could be easily generalized on other mixed tensors in space-time dimensions
d ≥ 4 [23, 25, 26, 27]. Usual description of such field uses third rank tensor Φ[μν],α antisymmetric
on the first two indices and satisfying the relation Φ[μν,α] = 0. It has two gauge transformations:

δΦμν,α = ∂μxνα − ∂νxμα + 2∂αyμν − ∂μyνα + ∂νyμα,

where parameter x{αβ} is symmetric while y[αβ] — antisymmetric. These gauge transformations are
reducible in a sense that if one set

xαβ = 3(∂αξβ + ∂βξα) , yαβ = −∂αξβ + ∂βξα ,

then δΦμν,α = 0. One can introduce a tensor T[μνα],β

Tμνα,β = ∂μΦνα,β − ∂νΦμα,β + ∂αΦμν,β ,

which is invariant under the xαβ-transformations but not invariant under the yαβ-ones. Then one
can write the Lagrangian in the following form:

L0 = −
1

6
Tμνα,βTμνα,β +

1

2
TμνTμν .

There exist one more possibility. Namely, one can introduce another tensor R[μν],[αβ]

Rμν,αβ = ∂αΦμν,β − ∂βΦμν,α + ∂μΦαβ,ν − ∂νΦαβ,ν ,

which is invariant under the yαβ-transformations but not under the xαβ-ones and rewrite the same
Lagrangian in a form:

L0 = −
1

8
[Rμν,αβRμν,αβ − 4R

μνRμν +R
2].

Thus, it is not possible to write second order Lagrangian as a square of some gauge invariant
quantity because there is no combination of the first derivatives of Φ[μν],α that would be invariant
under both gauge transformations (that will require two derivatives).
This situation resembles very much the one for spin-2 filed. It turns out possible to construct

first order formalism in this case following exactly the same procedure as before. We proceed as
follows.

• Abandon the constraint Φ[μν,α] = 0: Φμν,α ⇒ Φμν
a (thus introducing additional field compo-

nents — antisymmetric third rank tensor Φ[μνα]).

• Change the gauge transformations: δΦμνa = ∂μzνa − ∂νzμa, where zμν = x{μν} + y[μν].

• This allows us to introduce gauge invariant “field strength”: Tμναa = ∂[μΦνα]
a containing first

derivatives only.
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• Second order Lagrangian could be written as:

L = −
1

6
Tμνα,βTμνα,β −

1

4
Tμνα,βTμνβ,α +

3

4
TμνTμν .

• This Lagrangian is also invariant under local shifts: δΦμν,α = η[μνα] so that completely anti-
symmetric part of Φμν

a could be gauged away.

• This last local invariance suggests introduction of an additional field: Ωμabc which will play a
role of gauge field for such local shifts: δΩμ

abc = ∂μη
abc.

• With the use of these fields first order Lagrangian invariant under both local transformations
could easily be constructed:

L =
3

4
Ωμ,ναβΩν,μαβ −

3

4
ΩαβΩαβ −

1

2
Ωμ,ναβTναβ,μ +

3

2
ΩαβTαβ .

• Algebraic equation of motion for Ωμabc gives:

Ωμ,ναβ =
2

3
Tναβ,μ +

1

3
[Tμαβ,ν + Tμνα,β + Tμβν,α].

Substituting this expression back into the first order Lagrangian one obtain exactly the same
second order Lagrangian as before.

• Moreover, this Lagrangian could be rewritten in a very simple and suggestive form:

L = −
3

4

{ μν
ab

}
Ωμ
acdΩν

bcd +
1

12

{
μναβ
abcd

}
Ωμ
abcTναβ

d.

2. Massive particles and gauge invariance

As we have already mentioned particles in (A)dS spaces reveals a number of peculiar features.
Let us recall some of them.

• There is no unambiguous definition of mass for general tensor fields in (Anti) de Sitter space.

• There exist unitary forbidden regions i.e. not all combinations of mass-like parameters and
cosmological constant lead to the ghost-free theories.

• There are many massless theories in flat Minkowski space that could not be generalized to
(A)dS space at all.

• On the other hand in (A)dS there exist so called partially massless theories with the number
of physical degrees of freedom different from that of massive or massless theory.

In (A)dS spaces gauge invariant description even for massless particles requires (besides the
replacement of usual derivatives by the covariant ones) addition to the Lagrangian and gauge trans-
formation laws mass-like terms proportional to the cosmological constant value. Such a procedure
looks very much like the transition from massless to massive particle in gauge invariant description
of the later. So it turns out convenient to consider both transition simultaneously. Let us again
illustrate an idea on a simple but non-trivial example.
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Massive spin-2 particle

Gauge invariant description of massive spin-2 particle requires introduction of two additional
(Goldstone) fields: vector Aμ and scalar ϕ ones. Using first order formalism for all fields we start
with the sum of flat space massless Lagrangians:

L0 = L0(ωμ
ab, hμ

a) + L0(F
ab, Aμ) + L0(π

a, ϕ),

L0(ωμ
ab, hμ

a) =
1

2

{ μν
ab

}
ωμ
acων

bc −
1

2

{ μνα
abc

}
ωμ
ab∂νhα

c,

L0(F
ab, Aμ) =

1

4
Fab
2 −
1

2

{ μν
ab

}
F ab∂μAν ,

L0(π
a, ϕ) = −

1

2
πa
2 + { μa}π

a∂μϕ,

which is invariant under the following set of gauge transformations:

δ0hμa = ∂μξa + ημa, δ0ωμ
ab = ∂μη

ab, δ0Aμ = ∂μΛ.

Working with the first order formalism it is very convenient to use tetrad formulation of the
underlying (Anti) de Sitter space. We denote tetrad as eμ

a and Lorentz covariant derivative as Dμ.
(Anti) de Sitter space is a constant curvature space with zero torsion, so we have:

D[μeν]
a = 0, [Dμ, Dν ]v

a = Rμν
abvb = −

Λ

3
(eμ
aeν
b − eμ

beν
a)vb.

Due to non-commutativity of covariant derivatives the Lagrangian no longer invariant under
gauge transformations, but this invariance could be restored by adding to Lagrangian:

ΔL =
m
√
2
[
{ μν
ab

}
ωμ
abAν + {

μ
a}F

abhμ
b]− α { μa}π

aAμ

+(
m2

2
−
Λ

3
)
{ μν
ab

}
hμ
ahν

b +
mα
√
2
{ μa}hμ

aϕ+m2ϕ2,

as well as appropriate terms to gauge transformation laws:

δ1hμ
a =

m
√
2
eμ
aΛ , δ1Aμ =

m
√
2
ξμ , δ1ϕ = αΛ,

where
α2 = 3m2 − 2Λ.

So we have a one parameter family of Lagrangians in general describing a massive spin-2 par-
ticle in constant curvature space. Let us analyze this theory in de Sitter and anti de Sitter spaces
separately.

De Sitter space
We have unitary forbidden region: m2 < 2Λ/3. One can easily check that if we change the

sign of scalar field ϕ kinetic terms then the construction will work for the forbidden region but the
theory cease to be unitary, the scalar field being the ghost one. At the boundary of this region
m2 = 2Λ/3⇒ α = 0⇒ scalar field ϕ decouples. The rest fields with the Lagrangian

L = L0(ωμ
ab, hμ

a) + L0(F
ab, Aμ) +m

{ μν
ab

}
ωμ
abAν +m {

μ
a}F

abhμ
b

and gauge transformations:

δhμ
a = Dμξ

a + eμbη
ba +meμ

aΛ, δAμ = DμΛ +meμaξ
a
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describes partially massless spin-2 particles (helicities ±2,±1) which has no direct analog in flat
Minkowski space.

Anti de Sitter space
There exists truly massless limit m→ 0. In this, the whole system decompose onto two subsys-

tems. One with Lagrangian:

L = L0(ωμ
ab, hμ

a)−
Λ

3

{ μν
ab

}
hμ
ahν

b

and gauge transformations:

δhμ
a = Dμξ

a + eμbη
ba δωμ

ab = Dμη
ab +

Λ

3
(eμ
aξb − eμ

bξa)

corresponds to massless spin-2 particle. Another one with:

L = L0(F
ab, Aμ) + L0(π

a, ϕ) +m { μa}π
aAμ,

δAμ = DμΛ δϕ = −mΛ

describes massive vector particle with m2 = −2Λ

Massive mixed tensor

Tensor Φμν,α has two gauge transformations so for gauge invariant description of massive particle
one needs at least two Goldstone fields h{μν} and B[μν]. But these fields have their own gauge
transformations. Taking into account reducibility of gauge transformations for Φμν,α one can show
that for gauge invariant description one needs one more field: vector Aμ. Thus in first order
formalism we ends with four pairs: (Ωμ

abc,Φμν
a), (ωμ

ab, hμ
a), (Cabc, Bμν) and (F

ab, Aμ).
Again we start with the sum of massless flat space Lagrangians:

L0 = L0(Ωμ
abc,Φμν

a) + L0(ωμ
ab, hμ

a) + L0(C
abc, Bμν) + L0(F

ab, Aμ),

L0(C
abc, Bμν) = −

1

6
Cabc

2 +
1

6

{ μνα
abc

}
Cabc∂μBνα

and corresponding set of gauge transformations:

δ0Φμν
a = ∂μzν

a − ∂νzμ
a + ημν

a, δ0Ωμ
abc = ∂μη

abc,

δ0hμa = ∂μξa + ημa, δ0ωμ
ab = ∂μη

ab,

δ0Bμν = ∂μζν − ∂νζμ, δ0Aμ = ∂μΛ.

Then we switch to the (Anti) de Sitter space. To restore gauge invariance we have to add to the
Lagrangian:

L1 =
α

4

{ μν
ab

}
Ωμ
abchν

c +
α

4

{ μνα
abc

}
ωμ
abΦνα

c −
β

4

{ μνα
abc

}
Ωμ
abcBνα +

−
β

4

{ μν
ab

}
CabcΦμν

c −
β
√
2

{ μν
ab

}
ωμ
abAν −

−
β
√
2
{ μa}F

abhμ
b +

α

2
√
2

{ μν
ab

}
F abBμν

and to the gauge transformations:

δ1Φμν =
α

6
(eμ
aξb − eμ

bξa)− β(eμ
aζb − eμ

bζa), δ1Bμν = βzμν ,

δ1hμ
a = αzμ

a −
β
√
2
eμ
aΛ, δ1Aμ = −

β
√
2
ξμ + α

√
2ζμ,
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α2 − 3β2 = −2Λ.

Again we obtained one parameter family of Lagrangians. Let us consider to spaces separately.

Anti de Sitter space
One can set β = 0, in this the whole system decompose onto two disconnected subsystems. One

of them

L = L0(Ωμ
abc,Φμν

a) + L0(ωμ
ab, hμ

a) +m[
{ μν
ab

}
Ωμ
abchν

c +
{ μνα
abc

}
ωμ
abΦνα

c],

where m2 = −Λ/8 with gauge transformations:

δΦμν
a = Dμzν

a −Dνzμ
a + ημν

a +
2m

3(d− 3)
(eμ
aξν − eν

aξμ),

δhμ
a = Dμξ

a + ημ
a + 4mzμ

a

and describes partially massless theory.
Another one with:

L = L0(C
abc, Bμν) + L0(F

ab, Aμ) +
M

4

{ μν
ab

}
F abBμν ,

where M2 = −4Λ and gauge transformations:

δBμν = Dμζν −Dνζμ, δAμ = DμΛ +Mζμ

gives a gauge invariant description of massive antisymmetric tensor in (A)dS space.

De Sitter space
Now one can set α = 0 and we also obtain two decoupled subsystems. One of them gives us one

more example of partially massless theory:

L = L0(Ωμ
abc,Φμν

a) + L0(C
abc, Bμν) +m[

{ μνα
abc

}
Ωμ
abcBνα +

{ μν
ab

}
CabcΦμν

c],

where m2 = Λ/24 with gauge transformations:

δΦμν
a = Dμzν

a −Dνzμ
a + ημν

a + 4m(eμ
aζν − eν

aζμ),

δBμν = Dμζν −Dνζμ − 4mzμν .

In this, the rest fields (hμ
a, Aμ) gives exactly the same partially massless spin-2 theory as in the

previous subsection.

Conclusions

• First order formalism with its simple, geometric in nature and very suggestive Lagrangians
greatly simplifies investigations with mixed symmetry tensors making calculations at least
tractable.

• In spite of large number of fields involved gauge invariant description of massive high spin
particles turns out to be very well suited for investigation of unitarity, gauge invariance,
(partial) masslessness and so on.

• Partially massless theories (though rather exotic from common flat Minkowski space point of
view) can serve as an important laboratory where a number of non-trivial questions could be
answered.
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