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The contribution of virtual s-channel Kaluza-Klein (KK) gravitons as well as s-channel reggeized gravitons to
high energy scattering of the brane fields is studied in the Randall-Sundrum scenario with a small curvature.

1 Brane world with a small curvature

To explain the hierarchy between electro-weak and Planck scales, a number of theories with extra
dimensions (ED’s) have been proposed. The Randall-Sundrum (RS) model with one extra spacial
dimension [1] describes this hierarchy most economically. The multidimensional gravity appears to
be strong, and the fundamental Planck scale can be related with the string scale. It leads to a new
phenomenology in the TeV energy region.

The RS model is a realization of the ED theory in a slice of the AdS5 space-time with the
following background warped metric:

ds2 = e2κ(πr−|y|) ημν dx
μ dxν + dy2 , (1)

where y = rθ (−π 6 θ 6 π), r being the “radius” of ED, and ημν is the Minkowski metric. The
parameter κ defines a 5-dimensional scalar curvature of the AdS5 space.

We will be interested in the so-called RS1 model [1] which has two 3D branes with equal and
opposite tensions located at the point y = πr (called the TeV brane) and point y = 0 (referred to as
the Plank brane). If k > 0, then the tension on the TeV brane is negative, whereas the tension on
the Planck brane is positive. All the SM fields are constrained to the TeV brane, while the gravity
propagates in five dimensions.

Let us note that the warp factor in the metric (1) is equal to 1 on the TeV brane. By calculating
the zero mode sector of the effective theory, one then obtains the “hierarchy relation”,

M̄2Pl =
M̄35
κ

(
e2πκr − 1

)
, (2)

with M̄5 being a 5-dimensional Planck scale.

From the point of view of an observer located on the TeV brane, there exists an infinite number
of graviton KK excitations with masses

mn = xn κ, n = 1, 2 . . . , (3)

where xn are zeros of the Bessel function J1(x), with

xn = π
(
n+
1

4

)
+O

(
n−1

)
. (4)

Note that all zeros of J1(x)/x are real positive numbers.

∗Electronic address: alexandre.kisselev@ihep.ru

59



The zero graviton mode, h
(0)
μν , and massive graviton modes, h

(n)
μν , are coupled to the energy-

momentum tensor of the matter, Tμν , as follows:

L = −
1

M̄Pl
Tμν h(0)μν −

1

Λπ
Tμν

∞∑

n=1

h(n)μν , (5)

where

Λπ = M̄5

(
M̄5

κ

)1/2
(6)

is a physical scale on the TeV brane.

To get the mass of the lightest KK mode to be m1 ∼ 1 TeV, the parameters of the model are
usually taken to be κ ∼ M̄5 ∼ 1 TeV. Then one obtains a series of massive graviton resonances in
the TeV region which interact rather strongly with the SM particles, since Λπ ∼ 1 TeV.
We will consider a different scenario called small curvature option [2]-[4]:

κ� M̄5 ∼ 1 TeV . (7)

In such a scheme, the physical scale is as large as Λπ = 100 (M5/TeV)
3/2(100 MeV/κ)1/2 TeV.

Contrary to the case κ ∼ M̄5 ∼ 1 TeV, there exists a series of very narrow low-mass spin-2
resonances with an almost continuous mass distribution. For such a case, the following inequalities
were derived in Ref. [3] 1 :

10−5 6
κ

M̄5
6 0.1 . (8)

Notice, in order the hierarchy relation for the warped metric (2) to be satisfied, one has to put
κr ≈ 10.
The present astrophysical bounds significantly restrict the parameter space for a theory with

one compact ED of the size Rc. Namely, R
−1
c > 4.4 ∙ 10−12 GeV, and, correspondingly, M̄4+1 >

1.6 ∙ 105 TeV [6], where M̄4+1 is a gravity scale in a flat space-time with one compact ED 2.
Fortunately, the above mentioned restriction can not be directly applied to the AdS5 space-time

(see, for instance, [4]). Indeed, the AdS5 space-time differs significantly from a 5-dimensional flat
space-time with one large ED even for very small value of κ (i.e. for the small curvature). To see
this, let us consider the hierarchy relation for d-dimensional flat space-time:

M̄2Pl = (2πRc)
d M̄2+d4+d . (9)

For d = 1, this relation (9) is a particular case of Eq. (2) in the limit 2πκr � 1, with r = Rc.
However, the condition 2πκr � 1 can be only satisfied if the curvature parameter κ is unrealistically
small:

κ�
M̄35
M̄2Pl

. (10)

This inequality means that κ� 10−22 eV, for M̄5 = 1 TeV.

2 s-channel virtual gravitons

Let us consider the scattering of two SM fields mediated by massive graviton exchanges in the
s-channel,

a ā→ G(n) → b b̄ , (11)

1For the case κ ∼ M̄5 ∼ M̄Pl, analogous bounds look like 0.01 6 κ/M̄Pl 6 0.1 [5].
2Remember that M̄5 denotes the gravity scale in five dimensions with non-factorizable metric.
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where a(b) = e−, γ, q, g, etc. For instance, in hadron collisions virtual graviton effects could be
seen in the processes pp → 2 jets + X, pp → γγ + X, and Drell-Yan process pp → l+l− + X. At
linear colliders, the promising reactions are e+e− → γγ and e+e− → ff̄ .
The matrix element of the process (11) will be studied in the following region:

Λπ �
√
s ∼M5 � κ. (12)

It looks like
M = AS . (13)

The fist factor in Eq. (13) contains the following contraction of tensors:

A = T aμν P
μναβ T bαβ = T

a
μν T

b μν −
1

3
(T a)μμ (T

b)
ν

ν , (14)

where Pμναβ is a tensor part of the graviton propagator, while T
a(b)
μν is the energy-momentum tensor

of the field a(b).
We will concentrate on the second factor in Eq. (13) which is universal for all types of processes

mediated by the s-channel exchanges of the KK gravitons. The relations of all cross sections, which
are necessary for studying effects induced by tree-level exchange of the KK gravitons, with the
quantity S(s) can be found in Ref. [2].
The function S(s) is of the form:

S(s) =
1

Λ2π

∞∑

n=1

1

s−m2n + imnΓn
. (15)

Here Γn denotes the total width of the graviton with the KK number n and mass mn.
This sum is usually estimated in a zero width approximation (i.e. assuming Γn = 0 for all n).

It such a limit, S(s) is purely imaginary [2]:

ImS(s) = −
1

2M̄35
√
s
, ReS(s) ' 0 . (16)

It means that there is no interference of ED contributions with SM ones.
The width of the massive graviton is indeed very small if its KK-number n is not too large [7]:

Γn
mn
= η

(
mn

Λπ

)2
, (17)

with η ' 0.09. However, the main contribution to sum (15) comes from the region n ∼
√
s/κ� 1.

So, nonzero widths of the gravitons in the RS model with the small curvature should be taken into
account [4].
The analytical expression for S(s) was derived in Ref. [4]:

S(s) = −
1

4M̄35
√
s

sin 2A+ i sinh 2ε

cos2A+ sinh2ε
, (18)

where

A =

√
s

κ
+
π

4
, ε =

η

2

(√s
M̄5

)3
. (19)

The following inequalities immediately result from (18):

− coth ε 6 Im S̃(s) 6 − tanh ε , (20)

−
1

1 + 2 sinh2ε
6 Re S̃(s) 6

1

1 + 2 sinh2ε
, (21)
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where the notation S̃(s) = [2M̄35
√
s ]S(s) is introduced. The ratio |ReS(s)/ImS(s)| decreases

rapidly with energy, and it varies from 0.85 at
√
s = M̄5 to 0.08 at

√
s = 3M̄5. The absolute value

of Im S̃(s) tends to 1 very quickly when s grows.
Let us stress that the results obtained in zero mass approximation (16) do not agree with the

exact expression (18), although the imaginary parts become practically the same in both cases in
the trans-Planckian kinematical region, namely, at

√
s > 3M̄5.

Can one approximates the discrete spectrum by the continuous mass distribution, if the mass
splitting ΔmKK is “very small”? The quantity ΔmKK is dimensional and it should be compared with
another dimensional quantities, Γn. Actually, we may regard a set of narrow graviton resonances
to be a continuous mass spectrum (within relevant interval of n), if only

ΔmKK < Γn (22)

is satisfied. Let us underline, it is the inequality that allows one to replace a summation in KK
number n by integration over graviton mass mKK.

3

As was shown in [4], Eq. (22) is equivalent to

√
s & 3M̄5 (23)

(see our comments on the imaginary part of S(s) after formula (21)).
It is a common belief that in the flat space-time with d compact ED’s of the size Rc the mass

splitting is so small (ΔmKK = R
−1
c ) that the continuous mass approximation is undoubtedly valid.

Surprisingly, it is not a case. The reason is that the gravitons are extremely narrow resonances,
Γn ∼ m3n/M̄

2
Pl. Accounting for the hierarchy relation for d compact ED’s (9) and inequality (22),

one finds that only KK gravitons with unrealistically large masses,

m3n > M̄
2− 2

d

Pl M̄
1+ 2

d

4+d , (24)

are continuously distributed [4].

3 t-channel reggeized gravitons

Our formula (18) can be also applied to the scattering of the brane particles, induced by t-channel
graviton exchanges [7]. In the region −t � κ2, with t being 4-momentum transfer, the following
expression has been obtained:

S(t) = −
1

2M̄35
√
−t
. (25)

Note that S(t) (25) is pure real and it coincides with the imaginary part of S(s) derived in the zero
width approximation (16) up to the replacement s→ −t.
In more general approach, one should sum KK-charged gravi-Reggeons, i.e. graviton Regge

trajectories αn(t) which are numerated by the KK number n [8, 3]:

αn(t) = 2 + α
′
gt− α

′
gm

2
n, n = 0, 1, . . . . (26)

In such a case, the amplitude has both real and imaginary parts.

To detect effects induced by low-mass t-channel KK gravitons, it is necessary to look for their
contributions to the scattering of the brane fields in the trans-Planckian kinematical region [3]

√
s� −t, M̄5 . (27)

3From the point of view of experimental measurements, the mass splitting must be compared with the experimental
resolution Δmres. The spectrum looks continuous when ΔmKK < Δmres, irrespective of Eq. (22).
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In the eikonal approximation, the scattering amplitude in the kinematical region (27) is given by
the infinite sum of gravi-Reggeons (reggeized gravitons in the t-channel).
Let us consider the scattering of ultra-high energy cosmic neutrinos off the atmospheric protons

in order to compare effects induced by ED with the SM predictions [9]. The gravity contribution
to neutrino-proton inelastic cross section,

σ
νp
in (s) =

∫
d2b
{
1− exp

[
− 2Imχνp(s, b)

]}
, (28)

is defined by the eikonal (b is an impact parameter):

χνp(s, b) =
1

4πs

∞∫

0

q⊥dq⊥ J0(q⊥b)A
B
νp(s,−q

2
⊥) . (29)

The Born amplitude in Eq. (29) is given by [3]:

ABνp(s, t) =
α′g s

2

2
√
π M̄35

∑

i

∫
dxx2

1

Rg(sx)
exp

[
tR2g(sx)

]
Fi(x, t) , (30)

where Fi(x, t) is a t-dependent distribution of parton i in momentum fraction x inside the proton.
It coincides with a starndard parton distribution, fi(x), at t = 0. The quantity Rg(s) = α

′
g ln s is

the gravitational interaction radius, where α′g is the gravi-Reggeon slope (see Eq. (26)).
The gravitational part of the cross section is presented in Fig. 1 in comparison with the SM

prediction, σSM, and black hole production cross section, σbh. For the latter, a geometrical form,
σbh = πR

2
S(s), was assumed, where RS(s) is a 5-dimensional Schwarzschild radius. Thus, gravi-

Reggeon interactions can dominate black hole production at Eν > 10
9 − 1010 GeV, depending on

the gravity scale M̄5 and minimal value of the black hole mass, M
min
bh .

Figure 1. The gravitational inelastic neutrino-proton cross-sections (solid lines) vs. black hole production
cross sections (dashed lines) and SM cross section (dotted line). The solid curves correspond to
M̄5 = 0.25 TeV, 0.5 TeV, 1 TeV (from the top). The dash lines correspond to M̄5 = 0.5 TeV and
Mminbh = 0.5 TeV, 1 TeV, 2 TeV (from the top).

The interactions of ultra-high energy neutrinos with atmospheric nucleons can be probed in
inclined (quasi-horizontal) air showers by the Pierre Auger Observatory [10]. In particular, for
the “Waxman-Bahcall” neutrino flux [11], we expect about 5(2) such events per year for M̄5 =
1(2) TeV [12].
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