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This note is an appeal to the physics and metrology communities to join their efforts and work out the
standard on the numerical expression of the results of joint measurements. It turns out that there are no
acceptable guides or rules on the numerical expression the result of jointly measured quantities.

1 Introduction

Existing standard guides on the numerical expression of the estimates of physical quantities are
relatively well elaborated only for one measurand [1], [2].

Unfortunately, metrologists move too slowly with creating the long waiting guidelines and stan-
dards for numerical presentations of the results on jointly measured quantities in scientific and
technical documents 1.

The absence of the common procedures on the “expression of uncertainties” in the multivariate
cases leads to proliferation in the bad practice of presenting the incorrect numbers in the scientific
and technical publications, in the scientific and technological databases, and even in the authori-
tative numerical resources recommended by ICSU and CODATA (see examples of old and recent
discussions of that “bad practice” in [5], [6], [7], [8],[9], [25]. Additional critical notes will be presented
in the sections to follow.)

In some cases (unfortunately too often) the absence of the standard on the multivariate un-
certainty estimation procedure and presentation the results in publications makes it impossible
comparison of different measurements of the same set of quantities, even qualitative.

Let us recall, that for the correct numerical expression the estimates of some random quantity
one needs, at least, the following data structure: mean values and the confidence region (or scatter
region). For the scalar quantity it is the mean value and one standard deviation interval. For the
random vector we will need a mean vector and multidimensional scatter region defined by the joint
probability distribution. For example: for the m-dimensional normal distribution the confidence
region is the m-dimensional ellipsoid defined by the m×m covariance matrix.

For m = 2 the corresponding data structure looks as:

([
ζ

η

]

,

[
σ2ζ σζση ∙ rζη

σζση ∙ rζη σ2η

])

⇒

([
ζ ± σζ
η ± ση

]

,

[
1 rζη
rζη 1

])

. (1)

To work with the above structure correctly in computations and data exchanges one cannot use
procedures developed and standardized for the case of “one measurand.” Indeed, at any admissible
data transformations we will have to trace the boundedness of the scatter region and inter-linkage
of the transformed mean vector and the transformed scatter region: the end of the rounded mean
vector should belong to the “non-rounded” scatter region. The simplest transformation that may
destroy the correct result is independent rounding of the mean vector components and the matrix
elements of the covariance matrix.

The above “quality requirements” are self evident, nevertheless we have many examples in the
computation and data exchange procedures where these requirements are badly violated: (i) experts

1It should be noted that some steps to improve the famous ISO GUM was started just after its first release (see [3]).
Set of contemporary, informative, and instructive documents are created by SSfM programme [4].
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report only mean vector components with corresponding “standard deviations” but not the correla-
tion matrix, (ii) often estimates are “over-rounded” in such a way that the rounded matrix is non
positive semi-definite, (iii) the over-rounded vector of mean values of it’s components moved the
end of the mean vector out of unrounded (original) scatter region for many standards.

To recall, let us consider a simple example how one can destroy correct estimates by unjustified
implementation of the procedures recommended only for the scalar case. We rotate the estimates
(ζ, η) of two dimensional vector to obtain vector (x, y) by rotation on the angle π/4:

[
ζ

η

]

=

([√
2(1.500± 0.100)√
2(0.345± 0.001)

]

, r(ζ, η) =

[
1.0 0.0
0.0 1.0

])

⇒

[
x = (ζ + η)/

√
2

y = (ζ − η)/
√
2

]

⇒

[
x

y

]

=

([
1.845± 0.100
1.155± 0.100

]

, r(x, y) =

[
1.0000 0.9998
0.9998 1.0000

])

. (2)

In this example the calculations are produced with sufficient stipulated numerical accuracy.
It is easy to see that the standard rounding rules recommended for the statistically independent

quantities are not applicable in this case.

• If correlation coefficient will be rounded as recommended in ISO GUM “Correla-
tion coefficients should be given with three digit accuracy if their absolute values
are near unity.” one will get degenerate correlation matrix.

• The numerical presentations of the (x, y) components which seems redundant for
statistically independent x and y estimates are correct indeed. The independent
rounding by standard rules will move the end of the (x, y) vector out of the image
of the initial scatter region.

For example, on the first rounding step we will get deviation
[
Δx/σx
Δy/σy

]

=

([
−0.05
0.05

]

, r(x, y) =

[
1.0000 0.9998
0.9998 1.0000

])

.

To characterize this deviation quantitatively we can use the quadratic form χ2.
Confidence region in terms of (Δx,Δy) is defined by condition:

[Δx/σx,Δy/σy] ∙
1

1− 0.99982

[
1.0000 −0.9998
−0.9998 1.0000

]

∙

[
Δx/σx
Δy/σy

]

= χ2(Δx,Δy) ≤ 1.

Inserting values of the relative deviations at the first step we get:

χ2(−0.005, 0.005) =
0.0025

1.9998 ∙ 0.0002
∙ [−1, 1] ∙

[
1.0000 −0.9998
−0.9998 1.0000

]

∙

[
−1
1

]

= 25 > 1.

This value for the χ2 corresponds to deviation of the x, y vector out of scatter
region by the more than 3 standard deviations. If rounding is performed up to
one digit to the right of decimal point, as it is recommended in all textbooks
for independent quantities: (1.845± 0.100, 1.155± 0.100) =⇒ (1.8± 0.1, 1.2± 0.1), then
χ2(−0.045, 0.045) = 2025� 1, that means that deviation is more than for 30 standard
deviations.

• In many analogous cases authors give estimates of the vector components and
their uncertainties only without any information about correlations. It is easy to
see from the above calculations that this can completely destroy the results of
measuring (estimation).
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2 Incorrect presentations of correlated data in physics
and metrology: a few recent bad practice examples

In what follows we will need multiple references to some instructive statements from the basic
metrology document — the famous ISO GUM. To simplify reading we will quote some statements
here.

0.1 When reporting the result of a measurement of a physical quantity, it is obligatory
that some quantitative indication of the quality of the result be given so that those who
use it can assess its reliability. Without such an indication, measurement result cannot
be compared, either among themselves or with reference values given in a specification
or standard. It is therefore necessary that there be a readily implemented, easily under-
stood, and generally accepted procedure for characterizing the quality of a result of a
measurement, that is, for evaluating and expressing its uncertainty.

0.2 The concept of uncertainty as a quantifiable attribute is relatively new in the his-
tory of measurement, although error and error analysis have been long a part of the
practice of measurement science or metrology. It is now widely recognized that, when all
of the known or suspected components of error have been evaluated and the appropriate
corrections have been applied, there still remains an uncertainty about the correctness
of the stated result, that is, a doubt about how well the result of the measurement rep-
resents the value of the quantity being measured.

0.4 The ideal method for evaluating and expressing the uncertainty of the result of a
measurement should be:

universal: the method should be applicable to all kinds of measurements and to all types
of input data used in measurements.

The actual quantity used to express uncertainty should be:

internally consistent: it should be directly derivable from the components that con-
tribute to it, as well as independent of how these components are grouped and
of the decomposition of the components into subcomponents;

transferable: it should be possible to use directly the uncertainty evaluated for one result
as a component in evaluating the uncertainty of another measurement in which the
first result is used. . . .

ISO GUM [1], p. vii

It was expected that detailed deployment of these general requirements will focus efforts of
practitioners from different scientific and technical areas on the creation of the standard methodology
of measurements and expression the results in traditional and electronic forms.

The detailed recommendation is presented in the section “7 Reporting uncertainty” of the
ISO GUM.

7.1.4 Although in practice the amount of information necessary to document a mea-
surement result depends on its intended use, the basic principle of what is required
remains unchanged: when reporting the result of a measurement and its uncertainty, it
is preferable to err on the side of providing too much information rather than too little.
For example, one should

a) describe clearly the methods used to calculate the measurement result and the un-
certainty from the experimental observations and input data;

67



b) list all uncertainty components and document fully how they were evaluated;
c) present data analysis in such a way that each of its important steps can be readily
followed and the calculation of the reported results can be independently repeated if
necessary;
d) give all corrections and constants used in the analysis and their sources.
A test of the foregoing list is to ask oneself: “Have I provided enough information in a
sufficiently clear manner that my result can be updated in the future if new information
or data become available?”

ISO GUM [1], p. 25

In spite of broad discussions of the ISO GUM in international and national metrology bodies more
than ten years, we still have no commonly accepted methodology on the numerical presentations of
the estimates of the multivariate random quantities in publications and in databases even on the
level of the existing ISO GUM requirements 0.0.1–0.0.4, 7.1.4

Presumably this is because the ISO GUM is the raw document especially in recommendations
concerning the expression the results of several jointly measured quantities:

7.2.5 If a measurement determines simultaneously more than one measurand, that is, if
it provides two or more output estimates yi (see H.2, H.3, and H.4), then, in addition to
giving yi and uc(yi), give the covariance matrix element u(yi, yj) or the element r(yi, yj)
of the correlation coefficient matrix (C.3.6, note 2)(and preferably both).

7.2.6 The numerical values of the estimates y and its standard uncertainty uc(y) or
expanded uncertainty U should not be given with an excessive number of digits. It
usually suffices to quote uc(y) [as well as the standard uncertainty u(xi) of the input
estimates xi] to at most two significant digits, although in some cases it may be necessary
to retain additional digits to avoid round-off errors in subsequent calculations.
In reporting final results it may sometimes be appropriate to round uncertainties up
rather than to the nearest digit. For example, uc(y) = 10.47 mΩ might be rounded to
11 mΩ. However, common sense should prevail and a value such as uc(y) = 28.05 kHz
should be rounded down to 28 kHz. Output and input estimates should be rounded
to be consistent with their uncertainties; for example, if y = 10.05762 Ω with uc(y) =
27 mΩ, y should be rounded to 10.058 Ω. Correlation coefficients should be given with
three-digit accuracy if their absolute values are near unity.

(ISO GUM [1], р. 26-27)

Theses statements clearly show that attempts to formulate recommendations for the multivariate
case in the context entirely devoted to the univariate case are hopeless.

2.1 Incorrect expression the uncertainty of measurements in ISO GUM

On the example above with rotation the estimate of the two dimensional vector we have shown
that the recommendation 7.2.6 of ISO GUM is misleading. Moreover the application of the
7.2.6 recommendation for the rounding correlations in the example H.2 of the section Annex H:
Examples of ISO GUM clearly shows the failure of that recommendation. Indeed, in the tables H.3
and H.4 correlation matrices are represented with three decimal digits to the right of decimal point
in accordance with 7.2.6




1. −0.588 −0.485

−0.588 1. 0.993
−0.485 0.993 1.



 . (3)
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The eigenvalues this matrix are [2.403 740 76, 0.596 712 77, −0.000 453 53], that is the correlation
matrix is destroyed by the recommendation 7.2.6.

The correct matrix calculated from the data in the table H.2 with 16 digits to the right of
decimal point looks as




1. −0.588 276 855 797 0084 −0.485 064 613 663 1822

−0.588 276 855 797 0084 1. 0.992 507 542 132 0323
−0.485 064 613 663 1822 0.992 507 542 132 0323 1.



 ,

their eigenvalues are all positive as it should be by definition of the correlation matrix:

2.403 564 371 235 8685, 0.596 435 606 493034, 2.227 109 758 149 771× 10−8.

With our estimate of the safe rounding threshold (see further in this text) we can express this matrix
in a more visible form:




1. −0.588 276 86 −0.485 064 61

−0.588 276 86 1. 0.992 507 54
−0.485 064 61 0.992 507 54 1.



 .

Note. It should be stressed the logical inconsistency of the material organization in the ISO GUM.
From the one side there is a warning in the text that it is applicable only to the one measurand case,
but from the other side when describing recommendations how to estimate uncertainty of the one
random function which is dependent upon several random quantities we unavoidably encountered
with the problem of the correct numerical expression the estimates of the random vectors.

Unfortunately the absurdity of the recommendation 7.2.6 of ISO GUM in the part concerning
the rounding correlations (as well as its application in the example H.2 of the section Annex H:
Examples) where not noticed in the metrology community. Both, the recommendation and example
H.2, are reproduced in the other metrology documents [2], used in publications, monographs (see
further examples in the subsections to follow), and in the textbooks (see for example the recent
textbook [14] p.128-129).

2.2 Experiment CERN-LEP-DELPHI in European Physical Journal

Presented in [15] results on the measurements of the branching ratios

B1(τ
− → h− neutrals), B3(τ

− → h+ 2h− neutrals), B5(τ
− → 2h+ 3h− neutrals)

one can collect into the structure (see p. 636 and Table 6.):




B1
B3
B5



 =








0.85316± 0.000929stat ± 0.000492syst
0.14569± 0.000929stat ± 0.000477syst
0.00115± 0.000126stat ± 0.000059syst



 ,




1.00 −0.98 −0.08
−0.98 1.00 −0.08
−0.08 −0.08 1.00







 , (4)

in which the correlation matrix are the correlation matrix for the total uncertainties (statistical and
systematic). In the examples above (2) and (3) we saw that independent rounding of correlation
matrix elements is very dangerous transformation especially when correlations are large (close to 1.).

The total correlator in the publication under discussion is rounded up to two digits to the right of
decimal point and the over-rounding is suspected. Besides in the text the statistical and systematic
uncertainties are quoted separately (4), but there are no descriptions of how they were combined
in the total uncertainties and how the correlation of the total uncertainties ([15] page 636) was
obtained.

Our attempts to make agree the relevant data presented in different places in the publication
turned to be successless because the lack of details in the publication concerning the data transfor-
mations for publication.

69



Let us present our procedures that we used to check the self-consistency of the final data presented
in [15]. We use data on systematic uncertainty budget from ([15], Table 6.):

(Source of systematic)i σi(B1)× 106 σi(B3)× 106 σi(B5)× 106

1 Dilepton background 110 -109 -1
2 Cosmic ray background 5 -5 1
3 Four fermion background 42 -41 -1
4 Z → qq background 25 -24 -1
5 Neural Network qq rejection 50 -48 -5
6 Tracking 157 -152 -16
7 VD efficiency 55 -60 6
8 Conversions 126 -121 -8
9 Inelastic Nucl. reinteractons 90 -80 -10
10 Elastic Nucl. reinteractions 24 -24 -2
11 Electron identification 104 -97 -7
12 δ-ray weights 8 -8 1
13 KS regeneration 5 -5 1
14 Exclusive BRs 228 -204 -44
15 3-prong decay modelling 116 -121 10
16 Trigger 15 -15 1
17 E and p scales 19 -20 1
18 τ polarization 18 -19 1
19 Simulation statistics 310 -310 31

Total systematic 492 477 59
Statistical 929 929 126

The covariance matrix of systematic uncertainties which have the statistical origin (the uncertainties
of the type A [1],[2]) is calculated as Gram matrix of the vectors ~σ(B1),~σ(B3),~σ(B5) — contributions
from different sources of the systematic uncertainties into systematic uncertainties of the observable
quantity. In practice “for simplicity” the same procedure is used to combine systematic uncertainties
from all sources (including the uncertainties of the type B). Following this practice we get:

Cov
syst
ij = ~σ(Bi) ∙ ~σ(Bj) =




2.42595× 10−7 −2.34695× 10−7 −4.485× 10−9

−2.34695× 10−7 2.27629× 10−7 3.065× 10−9

−4.485× 10−9 3.065× 10−9 3.54× 10−9



 . (5)

The corresponding vector of standard deviations and correlation matrix are as follows:



0.000492539
0.000477105
0.000059498



 ,




1. −0.998732 −0.153045

−0.998732 1. 0.107973
−0.153045 0.107973 1.



 .

It should be noted that the rounding of this matrix in accordance with ISO GUM clause 7.2.6
will lead to the non positive definite rounded matrix.

From the data (4) we construct the covariance of the total uncertainties and subtracting the
matrix (5), we obtain a variant of the covariance of the statistical uncertainties. This matrix has
all eigenvalues positive:

(1.70453× 10−6, 3.449919× 10−8, 2.93866× 10−9).

But the statistical matrix should be degenerate due to the used procedure to obtain estimates.
The covariance matrix of the statistical uncertainties is the matrix for three observables B1, B3 =
1−B1 −B5, B5, linearly dependent upon two correlated observables B1, B5.

Thus, we see the sharp contradiction in the data presentations. The origin of this contradiction
could be: our wrong interpretation of the paper; misprints in the journal; and distortions of the data
by authors in due course of paper preparation for publication.

Fortunately we can estimate the statistical covariance matrix in the other way by using data (4)
on statistical uncertainties and the constraint equation. From constraint equation B3 = 1−B1−B5
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we obtain the variation σ23 = σ
2
1+σ

2
5+2σ1σ5rstat(B1, B5), from which we obtain statistical correlation

coefficient rstat(B1, B5) and then we can construct “the true” matrix of statistical covariances which
is degenerate as it should be.




σ21 −(σ21 + σ

2
3 − σ

2
5)/2 (σ23 − σ

2
1 − σ

2
5)/2

−(σ21 + σ
2
3 − σ

2
5)/2 σ23 −(σ23 + σ

2
5 − σ

2
1)/2

(σ23 − σ
2
1 − σ

2
5)/2 −(σ23 + σ

2
5 − σ

2
1)/2 σ25



 .

Its numerical expression is as follows:



8.63041× 10−7 −8.55103× 10−7 −7.938× 10−9

−8.55103× 10−7 8.63041× 10−7 −7.938× 10−9

−7.938× 10−9 −7.938× 10−9 1.5876× 10−8



 . (6)

The eigenvalues of this matrix are

(1.718144× 10−6, 2.3814× 10−8, 1.2× 10−22),

the last one should be considered as zero (machine zero). Now we can obtain “the true” combined
correlation matrix and compare it with that presented in the publication and with (4).




1. −0.9924148111607243 −0.08478919616844724

−0.9924148111607243 1. −0.03348650681292892
−0.08478919616844724 −0.03348650681292892 1.



 . (7)

Its eigenvalues are

1.993743788696688, 1.0056742957244327, 0.0005819155788786556.

In accordance with safe rounding threshold [25] (see section 3. of this text) we can represent the
matrix (7) in more visible form:




1. −0.9924 −0.0848

−0.9924 1. −0.0335
−0.0848 −0.0335 1.



 . (8)

Consequently the correctly rounded branching values should have at least 5 digits to the right of
the decimal point.

We have tried to obtain the correct numerical data from the authors of the cited paper but
failed. The correct data were lost forever.

2.3 Experiment CLEO in Physical Review

In the paper [16] of the CLEO collaboration the result of joint measurement of the five combinations
of the τ -lepton branching ratios are presented. The “corrected” correlation matrix represented in
the Erratum has the form:

TABLE XII. Correlation coefficients between branching fraction measurements.

Cτ Be Bμ Bh Bμ/Be Bh/Be

Be 1.00 0.50 0.48 −0.42 −0.39
Bμ 1.00 0.50 0.58 0.08
Bh 1.00 0.07 0.63
Bμ/Be 1.00 0.45
Bh/Be 1.00

The eigenvalues of this matrix are: (2.1735, 1.7819, 1.0550, −0.0075, −0.0028) in sharp contradic-
tion with positive definiteness requirement.
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2.4 Incorrect presentation of the data on the fundamental physical constants
in Reviews of Modern Physics and in other reprints

Let us trace the variation of estimates of a few fundamental physical constants (FPC) in the last
three consecutive adjustments published in the Reviews of Modern Physics and recommended by
CODATA as the unified international source of reference data on FPC.

Table 1.
Comparison of estimates of the selected FPC recommended by CODATA in 1986 [17], 1998 [18],
and 2002 версия 4.0 [19].

CODATA:1986 Symbol [units] Value (uncertainty)×scale Correlations

Elementary charge e [C] 1.602 177 33(49)× 10−19 e h me
Plank constant h [J s] 6.626 075 5(40)× 10−34 0.997
Electron mass me [kg] 9.109 389 7(54)× 10−31 0.975 0.989
1/α(0) α(0)−1 137.035 989 5(61) −0.226 −0.154 −0.005

CODATA:1998 Symbol [units] Value (uncertainty)×scale Correlations

Elementary charge e [C] 1.602 176 462(63)× 10−19 e h me
Plank constant h [J s] 6.626 068 76(52)× 10−34 0.999
Electron mass me [kg] 9.109 381 88(72)× 10−31 0.990 0.996
1/α(0) α(0)−1 137.035 999 76(50) −0.049 −0.002 0.092

CODATA:2002 Symbol [units] Value (uncertainty)×scale Correlations

Elementary charge e [C] 1.602 176 53(14)× 10−19 e h me

Plank constant h [J s] 6.626 0693(11)× 10−34 1.000
Electron mass me [kg] 9.109 3826(16)× 10−31 0.998 0.999
1/α(0) α(0)−1 137.035 999 11(46) −0.029 −0.010 0.029

All three sub-matrices are presented in accordance with the ISO GUM, clause 7.2.6 with three digits
to the right of the decimal point. All matrices turned to be over-rounded, each of which has negative
eigenvalue with absolute values much larger than machine zero ∼ 10−17 :

CODATA : 1986 {2.99891, 1.00084, 0.000420779, −0.000172106};
CODATA : 1998 {2.99029, 1.01003, −0.000441572, 0.00012358};
CODATA : 2002 {2.99802, 1.00173, 0.000434393, −0.000183906}.

Note. In May, 2005 on the NIST site the new version FPC.v.4.2 appeared. In this new version
(v.4.2) the misprints discovered in versions 4.0 and 4.1 were fixed and for the first time the computer
readable files for the basic (Least Square Adjusted) FPC were released. The data in the computer
readable files are free of critical issues (see [25]), presented with sufficient precision to be used in
high precision calculations.

WARNING
It turns out that the maintenance of the FPC set and re-adjustments are produced only in
the NIST (USA). There are no other independent bodies that produce independent full-scale
adjustments of the FPC system to be compared with that of produced by NIST experts. This
is very strange situation in metrology where every physical and technological quantity are
multiply measured in different laboratories and then results are cross-checked and corrected
before unified values will be accepted for international usage.
All national metrology services unconditionally take CODATA recommendations and

reprinted NIST tables without thorough critical treatments of the results and methods. For
example in the USSR and now in Russia the question on the critical analysis of the CODATA
recommended FPC was never raised and the CODATA FPC system was never certificated for
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usage in science, technology, and education. All russian handbooks and textbooks reprinted
the spoilt (over-rounded) data from NIST publications without mentioning the presence of
large correlations between uncertainties of some constants. Majority of authoritative issues
also reprinted incorrect NIST data without any comments or warnings (see [20], [21], [22],
[23], [24]).

3 Self consistency criteria for the results of the jointly measured
several physical quantities

3.1 Thresholds for the safe rounding of the correlated quantities

In the above examples we show that the rules of the numerical presentations developed for one
measurand are inapplicable in multivariate case. In this section we will reproduce construction of
thresholds for the safe rounding in the multivariate case, developed in [25]. These thresholds are
relatively simple parameters to control the self consistency of the numerical estimates of correlated
quantities. We treat the numerical data on the estimates of the random vector as self consistent
if the data consist of two items: the mean values of the vector components and the scatter region
for it obtained with the predefined confidence level. In the simplest case the scatter region is the
scatter ellipsoid defined by the matrix of the second moments of the joint probability distribution.

For our derivations we will need a few statements from the classical matrix theory.

Weil’s theorem (see [26], [28]): Let C = A+B, where A,B,C ∈ Rn×n – symmetric matrices and
(α1 ≤ α2 ∙ ∙ ∙ ≤ αn), (β1 ≤ β2 ∙ ∙ ∙ ≤ βn), (γ1 ≤ γ2 ∙ ∙ ∙ ≤ γn) their eigenvalues correspondingly.
Then ∀i the following inequalities are valid

αi + βmin ≤ γi ≤ αi + βmax . (9)

Gershgorin’s theorem ( [26], [27], [28]): Every eigenvalue αi of the matrix A belongs to the
interior of one of the circles

|Aii − αi| ≤
n∑

j=1

|Ai 6=j | . (10)

Schur’s theorem ([28]): Let matrix B ∈ Rn×n is symmetric with values of the diagonal elements
b1 ≤ b2 ≤ ∙ ∙ ∙ ≤ bn (in any order) and eigenvalues β1 ≤ β2 ∙ ∙ ∙ ≤ βn, then ∀k ≤ n

k∑

i=1

βi ≤
k∑

i=1

bi . (11)

The equality take place only for k = n.
Let {〈xi〉, ui, rij , N rdig}, i, j = 1, . . . , n be the list of decimal numbers expressing the results of

n jointly measured quantities with:
〈xi〉 — the real decimal number representing the mean value of the i-th observable;
ui — its uncertainty the positive real decimal number;
rij — real decimal numbers representing the matrix elements of the symmetric, positive definite

matrix (correlation matrix) such that

rii = 1 ∀ i = 1, . . . , n, |ri 6=j | < 1.0 ;

N rdig — integer non negative number defined the unified decimal precision of the non diagonal
matrix elements of the correlation matrix rij .

This list is the minimal set of parameters needed for correctness and pithiness of the quantitative
description of the random vector quantity {xi} and its scatter region defined by the “confidence
radius” Rg,CL and the joint probability distribution function g on the confidence level CL.
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n∑

ij

xi − 〈xi〉
ui

∙ r−1ij ∙
xj − 〈xj〉
uj

< R2g,CL . (12)

If g is unknown but the matrix of the second moments is known the Kramer’s scatter ellipsoid is
used with R2 = n+ 2 (see [30] page 80-81, [31] page 102).

Proposed additional parameter N rdig is needed to assure the quality of the data and its preserva-
tion in the processes of data transfers and in calculations. In what follows we will justify the needs
and usefulness of this and other analogous parameters that follows from the requirements of the
boundedness of the scatter region (positive definiteness of the correlation matrix in particular)

Let us treat two structures D = {〈xi〉, ui, rij , N rdig} and D
∗ = {〈xi〉∗, u∗i , r

∗
ij , N

r,∗
dig} which is

obtained from D by the “uniform” rounding: N rdig → N
r,∗
dig < N

r
dig.

Let Rij be the “rounder” — the real matrix addition of which to the rij will resulted in the matrix
r∗ij = rij + Rij , with preservation of all general features of the original correlation matrix: the
symmetry and positive definiteness but all |r∗i 6=j | < 1 be the decimal numbers with N

r,∗
dig digits to

the right of the decimal point. The matrix Rij has the following properties:

Rii = 0 ∀i = 1, . . . , n; |Ri 6=j | ≤ 5.0× 10
−Nr,∗dig−1. (13)

Now let c1 ≤ ∙ ∙ ∙ ≤ cn, ρ1 ≤ ∙ ∙ ∙ ≤ ρn, and c∗1 ≤ ∙ ∙ ∙ ≤ c
∗
n be the ordered sets of the eigenvalues O the

rij , Rij , and r∗ij matrices correspondingly. Then from the Weil’s theorem (9) ∀l = 1, . . . , n we will
have:

cl + ρ1 ≤ c
∗
l ≤ cl + ρn.

Further from the Gershgorin’s theorem (10)

ρ1 ≥ −(n− 1) ∙ 5 ∙ 10
−(Nr,∗dig+1) = −

(n− 1)
2

∙ 10−N
r,∗
dig

and to have the positive definiteness of the r∗ij matrix it is sufficient the validity of the conditions

0 < c1 −
(n− 1)
2

∙ 10−N
r,∗
dig ≤ c∗1.

From the left inequality we obtain the final estimate of the minimal number of decimal digits to the
right of the decimal point that should be preserved in rounding of the off diagonal elements of the
correlation matrix rij with the minimal eigenvalue c1 = λrmin.

N
r,∗
dig ≥ N

r,th
dig =

⌈

log10

(
n− 1

2 ∙ λrmin

)⌉

+ 1 . (14)

Note. From the statements of the Weil’s (9 ), Gershgorin’s (10), and Shur’s (11) theorems it follows
that any rounding of the off diagonal matrix elements of the degenerate correlation matrix (positive
semi-definite) is inadmissible. The rounding of the degenerate correlation matrix will unavoidably
lead to appearance of the negative eigenvalues in the rounded matrix.

Indeed, as the rounder martix is an Hermitian matrix with zero valued main diagonal from the
statement of the Schur’s theorem it has the negative minimal eigenvalue. Further, from the left
inequality (9 ) of the Weil’s theorem the matrix obtained by the rounding we unavoidably will have
the negative eigenvalue.

In summary:
we have shown that the requirement of the positive definiteness of the correlation

matrix posed firm restrictions on the rounding freedom of the matrix elements of the
correlation matrix.
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The minimal number of decimal digits to the right of the decimal point in the nu-
merical expressions of the positive definite correlation matrix, or in other words the
rounding threshold, is defined by the minimal eigenvalue of the unrounded matrix by
the expression (14)2.

Analogous rounding thresholds can be obtained for the mean values 〈xi〉 and the standard devi-
ations ui. They also are determined by the minimal eigenvalue of the correlation matrix.

Let xRi be the “rounding” vector

|xRi |[uniti] ≤ 5 ∙ 10
−(Nxdig,i+1)[uniti] , (15)

such that the end of the obtained rounded vector 〈xi〉∗ = 〈xi〉 + xRi belongs to the interior of the
“initial” scatter ellipsoid defined by the initial (non-rounded) covariance matrix (12)

n∑

ij

xRi
ui
∙ [r−1]ij ∙

xRj

uj
< R2g,CL . (16)

In the basis of eigenvectors of the initial correlator rij the expression (16) take the form

n∑

ij

n∑

lm

xRi
ui
∙ [L−1]il ∙

δlm
λm
∙ [L]mj ∙

xRj

uj
< R2g,CL , (17)

where L is corresponding rotation matrix, and λm are the eigenvalues of the unrounded correlator.
As‘we seek for the sufficient conditions for the end of the mean vector be in the interior of the

initial (unrounded) scatter ellipsoid (17), we may demand the validity of the inequality obtained
from (17) when all eigenvalues of the correlator are replaced to the minimal one, thus we obtain the
followig inequality:

n∑

i

(
xRi
ui

)2
< (R2g,CL)λ

r
min . (18)

Inequality (18) is rather trivial and means that one can independently rounding the components
of the mean vector only in the maximal hypercube imbedded into the initial scatter ellipsoid:

|xRi |
ui
<

√
(R2g,CL) ∙ λ

r
min

n
. (19)

Substituting bounds on the rounding vector (15) into the inequality (19) we will get after simple
algebra an estimates for the rounding thresholds Nxdig,i:

Nxdig,i >

⌈
1

2
log10

(
n

4 ∙ (R2g,CL) ∙ λ
r
min ∙ (ui/[uniti])2

)⌉

. (20)

In accordance with recommendations 7.2.2, 7.2.4, ISO GUM [1] and common practice the number
of decimal digits to the right of the decimal point in the mean value and in its standard deviation
should be the same we put

Nudig,i = N
x
dig,i, ∀i = 1, . . . , n. (21)

In summary, we have shown that the independent uniform rounding of the decimal estimates of
numbers in the structure {〈xi〉, ui, rij}, i, j = 1, . . . , n representing the results of jointly measured
(estimated) of n random quantities is allowed only under restrictions posed by the requirements of

2 Analogous estimate in other terms was obtained recently in the paper [29].
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the boundedness the “rounded scatter region” (ellipsoid) and the confinement of the end of rounded
mean vector inside the unrounded scatter region (ellipsoid).

To meet the safe rounding, the accuracies of the numbers in the structure should be higher
than rounding thresholds (14), (20), (21) defined by the minimal eigenvalue of the positive definite
correlation matrix of the structure to be rounded.

3.2 Criteria for self consistent expression of the results of joint measurements

In case of joint measurements or estimations, to express the results correctly one have to present
the following (minimal) structure {〈xi〉, u(xi), r(xi, xj)}, i, j = 1, . . . , n.

We propose to expand it to the structure

{{〈xi〉, u(xi), N
x
dig,i}, {r(xi, xj), N

r,th
dig }}, i, j = 1, . . . , n (22)

and advocate it as the standard for the numerical expression of the correlated measurements (es-
timates). Such expansion is needed to assure the quality of the measured data and to inform the
potential users on the critical precision needed for correct numerical computations in applications.

Indeed, to form the proposed above structure (22) it is needed:

• to calculate matrix elements of the correlation matrix with precision to assure its positive
definiteness and calculation the corresponding rounding threshold N r,thdig ;

• to calculate mean values and their standard deviations with precisions higher than correspond-
ing rounding thresholds Nxdig,i.

4 Multivariate nonlinear uncertainty propagation is unavoidable

In this section we will show that the problem of correct multivariate rounding is tightly intertwined
with the problem of the multivariate uncertainty propagation. In most multivariate cases the widely
used linear uncertainty propagation law is inapplicable. One will have to use integral (Monte-Carlo)
or nonlinear differential (higher order Taylor polynomials) uncertainty propagation laws.

Let we have the problem of the uncertainty propagation from m random variables

{〈xα〉, u(xα), r(xα, xβ)}

with positive definite correlation matrix r(xα, xβ) to the system of n functions yi = {fi(xα)}n1 . This
means that we have to obtain estimates to fill the minimal structure

{〈yi〉, u(yi), r(yi, yj)}.

In general case (with nonsingular functions) when the joint probability distribution function
g(x1, . . . , xm) is known this problem is formulated as follows:

1)Calculate the joint probability distribution function

F (y1, . . . , yn) =

∫ n∏

i

δ(yi − fi(xα)) ∙ g(xα)d
mx, (23)

and then calculate all its joint moments if needed.
But in reality this way often turns to be unfeasible. The g(xα) is unknown, or the reliable

calculation of F (yi) is impossible due to the lack of computational power.
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2) The usual way to solve the uncertainty propagation problem is the following approximations
(valid and supposedly working well for the multi-normal distribution g(xα)).

Calculate
μi = 〈yi〉 =

∫
fi(xα) ∙ g(xα)d

mx =⇒ fi(〈xα〉). (24)

Then calculate

u(yi, yj) =

∫
(fi(xα)− μi) ∙ (fj(xα)− μj) ∙ g(xα)d

mx =⇒
∂fi

∂xα
∙ u(xα, xβ) ∙

∂fj

∂xβ
, (25)

where u(xα, xβ) = u(xα) ∙ r(xα, xβ) ∙ u(xβ), the partial derivatives calculated at 〈xα〉 with sufficient
numerical accuracy, and the summation over the repeated greek indices in the rightmost part is
assumed.

It is easy to show that due to the positive definiteness of g(xα) the matrix (25), calculated without
approximation (before the right arrow) with sufficient accuracy is the positive definite matrix for
any linearly independent system of functions {fi(xα)}n1 (see [28], theorem 7.2.10).

Let us show this for the functions fi(xα) from the class C∞ and quadratically integrable with
measure g(xα). Indeed, the matrix (25) is n × n numerical Gram matrix of n infinite dimensional
vectors fi(xα)−μi from the functional space with positive definite scalar product. It is a Hermitian
matrix and has the basis of eigenvectors in Rn corresponding to the real non negative eigenvalues.
If the system of functional vectors fi(xα) − μi is linearly independent then all eigenvalues of the
matrix (25) (non approximated) are positive.

Suppose that it is not the case, and there exists nonzero vector z in Rn such that
n∑

1

u(yi, yj) ∙ zj = 0.

This means that ∫ ( n∑

i

(fi(xα)− μi) ∙ zi

)2

g(xα)d
mx = 0,

but this is possible only under condition

n∑

i

(fi(xα)− μi) ∙ zi = 0,

in the existence domain of the g(xα). For the smooth functions fi this condition means that

n∑

i

(fi(xα)− μi) ∙ zi ≡ 0,

which is the condition for the linear dependency of the functional vectors fi(xα) − μi. This con-
tradiction proves the positive definiteness of the covariance matrix (25) for the system of linearly
independent functions.

As it was already mentioned, often the distribution function is not known but its few first
moments are known. In such cases error propagation is carried out by the “nonlinear differential
uncertainty propagation law” that is derived from the integral one (25) by the replacement of
fi(xα)− μi for the polynomials obtained by the cuts of the Taylor series for fi(xα)− μi 〈xα〉

fi(xα)− μi ⇒ P
N
i (xα) =

N∑

k=1

1

k!

∂kfi

∂xα1 ∙ ∙ ∙ ∂xαk

∣
∣
∣
∣
〈xα〉
∙Δxα1 ∙ ∙ ∙Δxαk , (26)

where Δxαj = xαj − 〈xαj 〉 and the sums over the repeated indices αj are assumed
3.

3It should be noted that in the ISO GUM the corresponding formulae are incorrect. The crucial terms are missed.
This will cause wrong results in calculations (besides rounding) and for some nonlinearity one will even obtain the
negative variances (see ISO GUM: clause 5.1.2 eq. (10), clause F.1.2.3 eq.(F.2), clause H.2.3 eqs. (H.9) and (H.11)).
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Let us show, however, that the requirement of the positive definiteness of the correlation ma-
trix posed clear restrictions on the powers of the Taylor’s polynomials even in the cases when the
approximations μi ≈ fi(〈xα〉) are valid (the senior moments are small).

Indeed, the maximal number T (N,m) of the linearly independent functional vectors of the
type (26) is determined by the relation

T (N,m) =
N∑

k=1

(m+ k − 1)!

(m− 1)! ∙ k!
=
(N +m)!

N ! ∙m!
− 1 . (27)

From this estimate the statement follows:
if the covariance matrix of the system of n functions {fi(xα)}n1 depending upon m random
variables {xα}m1 is determined by the differential uncertainty propagation law (26) of
N-th order such that T (N,m) < n, then it is degenerate and any its numerical expression
in decimal numbers will be the matrix with at least one non positive eigenvalue.

In particular the widely used linear (N = 1) uncertainty propagation law

fi(xα)− μi ≈
m∑

α=1

∂fi

∂xα

∣
∣
∣
∣
〈xα〉
∙ (xα − 〈xα〉) (28)

for n > m is invalid, and for n ≤ m it is dangerous because the possibility of the existence of the
hidden functional relationships like Φ(f1, f2, . . . , fn) = const.

Indeed, let n ≤ m, then the output matrix in linear propagation law in the general case is non
degenerate. However, if there is at least one relationship of the type Φ(f1, f2, . . . , fn) = const, then
the matrix u(fi, fj) derived by the linear uncertainty propagation is degenerate.

It is easy to show this. Let we have such a relationship with Φ(f1, f2, . . . , fn) that is smooth
enough. Then it’s gradient with respect to {xα}m1 is expressible as the linear combination of the
gradients fi,

∂Φ

∂xαi
=
∂φ

∂f1
∙
∂f1

∂xαi
+
∂φ

∂f2
∙
∂f2

∂xαi
+ ∙ ∙ ∙+

∂φ

∂fn
∙
∂fn

∂xαi
≡ 0.

From the other side it is the null vector. This means that gradients of the fi are linearly
dependent, and hence the covariance matrix obtained by the linear uncertainty propagation law is
degenerate.

But the matrix u(fi, fj), calculated with the integral uncertainty propagation law (25) with
relationship Φ(f1, f2, . . . , fn) = const inserted via the Dirac’s δ-function which is non-negative ev-
erywhere by definition.

u(fi, fj) =

∫
(fi(xα)− μi) ∙ (fj(xα)− μj) ∙ g(xα) ∙ δ(Φ(fi)− const)d

mx, (29)

is the positive definite matrix.

5 Conclusion

Let us summarize the discussions of the talk. It is shown in the “bad practice examples collection”
presented in above sections that the multivariate data presented in scientific and technical publi-
cations, posted on the web pages, stored in handbooks and in the databases are in large portions
incorrect and dangerous in usage for simulations of the new fine searches, the behavior of the new
high precision devices 4.

4It should be noted that these observations are not new, it is sufficient to quote the papers [5], [6], [7].
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It seems that majority of the published data, that are incorrectly expressed and presented, where
obtained by inadmissible applications to the multivariate case the recommendations of ISO GUM
and instructions from other metrology documents that were worked out only for the case of one
measurand.

We guess that such confusions are partly inspired by the provocative (and in some cases in-
correct) statements in the ISO GUM and by the absence of the analogous multivariate GUM (see,
however, [3]).

The title of the Leslie Fox 1971 paper “How to get meaningless answers in scientific computation
(and what to do about it)” now may be rephrased as “How to get meaningless data from contemporary
scientific data storages (and what to do about it)”

We hope that we have found a right way to try to get partial answers to the posed questions.
As a first step we propose to standardise the minimal multivariate data structure — mean

values, covariance matrix, rounding thresholds for correlation matrix and mean values
together with the minimally sufficient content of the detailed descriptions of the procedures used to
obtain estimates of all components of the structure.

Having such formalised standard data structure we can hope to make all procedures of multi-
variate data handling more clear, reported data will became more reliable.
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