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A connection between the probability space measurability requirement and the complementarity principle in
quantum mechanics is established. It is shown that measurability of the probability space implies that the
results of the quantum measurement depend not only on properties of the quantum object under consider-
ation but also on classical characteristics of the measuring instruments used. It is also shown that if the
measurability requirement is taken into account, then the hypothesis that the objective reality exists does
not lead to the Bell inequality.

Recently we commemorated the centenary of quantum mechanics. This year we celebrate the
Einstein year. Einstein was one of founders of quantum mechanics. Simultaneously he was one
of the most known critics of quantum mechanics. First of all he criticized quantum mechanics
because in it there is no a mathematical counter-part of a physical reality which becomes apparent
in individual experiment. Seventy years ago he wrote [1]: “a) every element of the physical reality
must have a counter-part in the complete physical theory; b) if, without in any way disturbing a
system, we can predict with certainty (i.e. with probability equal to unity) the value of a physical
quantity, then there is an element of physical reality corresponding to this physical quantity”.
In the report I want to talk about this mathematical counter-part, probability, and quantum

measurement.
At the same time, when the quoted statement of Einstein was written, Kolmogorov created

modern probability theory [2]. Thirteen years ago in review [3] dedicated to interpretations of
quantum mechanics, Home and Whitaker stated: “The fundamental difficulty in interpreting quan-
tum theory is that it provides in general only probabilities of obtaining given results. Thus much
of any discussion of quantum theory must depend on what one means by probability — how one
defines or interprets the term”. In this review, much space was allocated to describing different
interpretations of the probability concept, but Kolmogorov’s approach to the probability problem
was mentioned only briefly.
The Kolmogorov probability theory is nowadays the most developed mathematically. It is com-

monly assumed that a special quantum probability theory is required for quantum systems. In this
work, I defend the opinion that the classical Kolmogorov probability theory is also quite sufficient
for the quantum case if we take the peculiarity of quantum measurements into account.
The Kolmogorov probability theory is based on the notion of the so-called probability space

(Ω,F , P ) (see, e.g., [2, 4]). The first component Ω is the set (space) of elementary events. Along
with elementary event, the notion of a “random event” or simply “event” is introduced. Each event
F is identified with some subset of the set Ω. The event F is assumed to be realized if one of the
elementary events belonging to this set (ϕ ∈ F ) is realized. It is assumed that we can find out
whether an event is realized or not in each trial. For elementary events, this requirement is not
imposed.
Sets of subsets of the set Ω (including the set Ω itself and the empty set ∅) are endowed with the

structure of Boolean algebras. The algebraic operations are the intersection of subsets, the union
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of subsets, and the complement of a subset up to Ω. A Boolean algebra that is closed with respect
to countable unions and intersections is called a σ-algebra. The second component of a probability
space is some σ-algebra F . The set Ω, where a fixed σ-algebra F is chosen, is called a measurable
space.

Finally, the third component of a probability space is a probability measure P . This is a map
from the algebra F to the set of real numbers satisfying the conditions (a )0 ≤ P (F ) ≤ 1 for all
F ∈ F , P (Ω) = 1 and (b )P (

∑
j Fj) =

∑
j P (Fj) for every countable family of disjoint subsets

Fj ∈ F . We note that the probability measure is defined only for the events belonging to the
algebra F . The probability is generally not defined for elementary events.
We now consider the application of the basic principles of probability theory to the problem of

quantum measurements (see [5, 6]). In the probability theory the physical meaning of elementary
events is not explicitly specified, but it is assumed that they are mutually exclusive and that one
and only one elementary event is realized in each trial.

We begin by considering a classical physical system. For such a system, ”observable” is a basic
notion.The main property of observables is that they can be multiplied by real numbers, added,
and multiplied by each other. In other words, they form a real algebra Acl. In the classical case,
the algebra turns out to be commutative. Fixing an observable A still tells nothing about the value
ϕ(A) that will be obtained as a result of a measurement in a concrete situation. Fixing the values
of observables is realized by fixing the state of a physical system. In mathematical terms, this
corresponds to fixing a functional ϕ(A) on the algebra Acl.
We know from experience that the sum and product of observables correspond to the sum and

product of the measurement results:

αA1 + βA2 → αϕ(A1) + βϕ(A2), (1)

A1A2 → ϕ(A1)ϕ(A2),

where α and β are real numbers. If the functional ϕ(A) satisfies to the conditions (1) then it refers
to as character of real commutative algebra. The state of classical physical system, i.e. character
of algebra of observables Acl, can play a role of the elementary event in probability theory.
Let us pass to quantum system. Although the observables also have algebraic properties in

the quantum case, it is impossible to construct a closed algebra from them that would be real,
commutative, and associative. In the quantum case the observables form a set A+ of Hermitian
elements of an involutive, associative, and (generally) noncommutative algebra A. The elements of
the algebra A are called dynamical quantities.
Let Q (Q ⊂ A+) denote a maximal real commutative subalgebra of the algebra A. This is the

subalgebra of compatible (simultaneously measurable) observables. If the algebra A is commutative
(an algebra of classical dynamical quantities), then such a subalgebra is unique. If the algebra A
is noncommutative (an algebra of quantum dynamical quantities), then there are many different
subalgebras Qξ (ξ ∈ Ξ).
In quantum measurements in each individual experiment, we deal only with observables belong-

ing to one of the subalgebras Qξ. The result of such a measurement is determined by the functional
ϕξ which is character of a subalgebra Qξ. Let us name the elementary state of quantum system a
totality ϕ = {ϕξ} of functionals ϕξ where ϕξ are characters of all real commutative subalgebras Qξ
(ξ ∈ Ξ) of algebra A.
Fixing an elementary state ϕ, we fix all such functionals. Thus, the result of each individual

measurement of observables of the physical system is determined by the elementary state of this
system. Therefore, the elementary state of quantum system can play a role of the elementary event
in probability theory.

In quantum measurement, the elementary state cannot be fixed unambiguously. Indeed, in one
experiment, we can measure observables belonging to the same maximal commutative subalgebra
Qξ because instruments measuring incompatible observables are incompatible. As a result, we find
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only the values of the functional ϕξ. The rest of the elementary state ϕ remains undetermined.
We can perform repeated measurement using an instrument of other type which allows to measure
observables of other subalgebraQξ′ . It will give the new information but will uncontrollably perturb
the elementary state that arose after the first measurement. The information obtained in the first
measurement will therefore become useless. In this connection, it is convenient to adopt the following
definition.

Elementary states ϕ are said to be ϕξ-equivalent if they have the same restriction ϕξ to the
subalgebra Qξ.

In quantum measurement, we can thus find only the equivalence class to which the studied
elementary state belongs. In a measurement of observables belonging to the subalgebra Qξ, we
easily recognize the state preparation procedure of the standard quantum mechanics. Thus, the
class of equivalent elementary states is a quantum state. Therefore, from the probability theory
standpoint, the quantum state is random event but not the elementary event.

The main purpose of a quantum experiment is to find the probability distributions for some
observable quantities. Using a definite measuring instrument, we can obtain such a distribution
for a set of compatible observables. From the probability theory standpoint, choosing a certain
measuring instrument corresponds to fixing the σ-algebra F .
We suppose that we conduct a typical quantum experiment. We have an ensemble of quantum

systems in a definite quantum state. For example, we consider particles with the spin 1/2 and the
projection of the spin on the x axis equal to 1/2. We suppose that we want to investigate the
distribution of the projections of the spin on the directions having the angles θ1 and θ2 to the x
axis. The corresponding observations are incompatible, and we cannot measure both observables
in one experiment. We should therefore conduct two groups of experiments using different measur-
ing instruments. In our concrete case, the magnets in the Stern–Gerlach instrument should have
different spatial orientations.

These two groups of experiments can be described by the respective probability spaces (Ω,F1, P1)
and (Ω,F2, P2). Although the space of elementary events Ω is the same in both cases, the probability
spaces are different. To endow these spaces with the measurability property, they are given different
σ-algebras F1 and F2.
Formally and purely mathematically, we can construct a σ-algebra F12 including both the alge-

bras F1 and F2. Such an algebra is called the algebra generated by F1 and F2. In addition to the
subsets F

(1)
i ∈ F1 and F

(2)
j ∈ F2 of the set Ω, it also contains all intersections and unions of these

subsets. But such a σ-algebra is unacceptable from the physical standpoint.

Indeed, the event Fij = F
(1)
i ∩ F (2)j means that the values of two incompatible observables

lie in a strictly fixed domain for one quantum object. For a quantum system, it is impossible in
principle to conduct an experiment that could distinguish such an event. For such an event, the
notion ”probability” therefore does not exist at all, i.e., the subset Fij does not correspond to any
probability measure, and the σ-algebra F12 cannot be used to construct the probability space.
Here, an important peculiar feature of the application of probability theory to quantum systems

is revealed: not every mathematically possible σ-algebra is physically allowable.

An element of the measurable space (Ω,F) thus corresponds in the experiment to a pair consist-
ing of a quantum object (for example, in a definite quantum state) and certain type of measuring
instrument that allows fixing an event of a certain form. Each such instrument can separate events
corresponding to some set of compatible observable quantities, i.e., belonging to the same subal-
gebra Qξ. If we assume that each measuring instrument has some type ξ, then the σ-algebra F
depends on the parameter ξ: F = Fξ.
In view of the peculiarity of quantum experiments, we should take care in defining one of the basic

notions of probability theory – the real random variable. A real random variable is usually defined
as a map from the space Ω of elementary events to the extended real axis R̄ = [−∞,+∞]. But
such a definition does not take peculiarities of quantum experiments, where the result may depend
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on the type of measuring instrument, into account. We therefore adopt the following definition.

A real random variable is a map from the measurable space (Ω,Fξ) of elementary events to the
extended real axis.

For an observable A, this means that

ϕ
A
−→ Aξ(ϕ) ≡ ϕξ(A) ∈ R̄.

We assume that an event Ã is realized in the experiment if the registered value of the observable
A does not exceed Ã. Let Pξ(Ã) = P (ϕ : ϕξ(A) ≤ Ã) denote the probability of this event and
Pξ(dϕ) ≡ [P (ϕ : ϕξ(A) ≤ (Ã+ d Ã))− P (ϕ : ϕξ(A) ≤ Ã)].
Then the average of the observable A is determined by the equation

〈A〉 =
∫
Pξ(A)(dϕ)ϕ(A). (2)

Here ξ(A) must be such that A ∈ Qξ.
We can investigate how the measurability condition on the probability space is manifested in

the important case of the derivation of the Bell inequality [7]. Forty years ago Bell has derived the
inequality assuming that there is a physical reality which can be is marked with some parameter.
There are many forms of this inequality. Hereinafter, we refer to the version proposed in [8]. This
variant is usually designated by the abbreviation CHSH.

Let particle with the spin 0 decay into two particles A and B with spin 1/2. These particles
move apart, and the distance between them becomes large. The projections of their spins are
measured by two independent devices Da and Db. Let the device Da measures the spin projection
of the particle A on a direction, and the device Db measures the spin projection of the particle B
on the b direction. We let A and B denote the corresponding observables and let Aa and Bb denote
the measurement results.

Let us assume that the initial particle has some physical reality that can be marked by the
parameter λ. We use the same parameter to describe the physical realities for the decay products.
Accordingly, it is possible to consider measurement results of the observables Â, B̂ as the function
Aa(λ), Bb(λ) of the parameter λ. Let the distribution of the events with respect to the parameter
λ be characterized by the probabilistic measure P (λ):

∫
P (dλ) = 1, 0 ≤ P (λ) ≤ 1.

We introduce the correlation function E(a, b):

E(a, b) =

∫
P (dλ)Aa(λ)Bb(λ) (3)

and consider the combination

I = |E(a, b)− E(a, b′)|+ |E(a′, b) + E(a′, b′)| (4)

=

∣
∣
∣
∣

∫
P (dλ)Aa(λ) [Bb(λ)−Bb′(λ)]

∣
∣
∣
∣

+

∣
∣
∣
∣

∫
P (dλ)Aa′(λ) [Bb(λ) +Bb′(λ)]

∣
∣
∣
∣ .

The equalities

Aa(λ) = ±1/2, Bb(λ) = ±1/2 (5)
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are satisfied for any directions a and b. Therefore,

I ≤
∫
P (dλ) [|Aa(λ)| |Bb(λ)−Bb′(λ)| (6)

+ |Aa′(λ)| |Bb(λ) +Bb′(λ)|]

= 1/2

∫
P (dλ) [|Bb(λ)−Bb′(λ)|+ |Bb(λ) +Bb′(λ)|].

Due to the equality (5) for each λ one of the expressions

|Bb(λ)−Bb′(λ)|, |Bb(λ) +Bb′(λ)| (7)

is equal to zero and the other is equal to unity. Here it is crucial that the same value of the parameter
λ appears in both expressions. Hence, the Bell inequality then follows:

I ≤ 1/2
∫
P (dλ) = 1/2. (8)

The correlation function can be easily calculated within standard quantum mechanics. We
obtain

E(a, b) = −1/4 cos θab,

where θab is the angle between the directions a and b. For the directions a = 0, b = π/8, a
′ = π/4,

b′ = 3π/8 we have
I = 1/

√
2 .

It contradicts the inequality (8).
Experiments that have been performed corresponded to quantum-mechanical calculations and

did not confirm the Bell inequality. These results have been interpreted as decisive argument against
the hypothesis of the existence of local objective reality in quantum physics. It is easy to see that
if my variant of the probability theory is properly applied to quantum system, then the above
derivation of the Bell inequality is invalid.
Because the σ-algebra and accordingly probability measure depend on the measuring device used

in a quantum case, it is necessary to make replacement P (dλ) → Pξ(AB)(dϕ) in the equation (3).
If we are interested in correlation function E(a′, b′), it is necessary to make replacement P (dλ) →
Pξ(A′B′)(dϕ) in the equation (3). Although we used the same symbols dϕ in both cases for notation
of the elementary volume in the space of the physical states, it is necessary to remember that sets of
the physical states corresponding dϕ, are different. The matter is that these sets should be elements
of the σ-algebras. If observables A, B are incompatible with observables A′, B′, then σ-algebras
are different. Moreover, there are no physically allowable σ-algebra which has these algebras as
subalgebras. Finally, the equation (3) should be replaced on

E(a, b) =

∫
Pξ(AB)(dϕ)ϕ(AB).

Accordingly, the equation (4) now has the form

I =

∣
∣
∣
∣

∫
Pξ(AB)(dϕ)ϕ(AB)−

∫
Pξ(AB′)(dϕ)ϕ(AB

′)

∣
∣
∣
∣+

+

∣
∣
∣
∣

∫
Pξ(A′B)(dϕ)ϕ(A

′B) +

∫
Pξ(A′B′)(dϕ)ϕ(A

′B′)

∣
∣
∣
∣ .

If the directions a and a′ (b and b′) are not parallel to each other, then the observables AB,
AB′, A′B, A′B′ are mutually incompatible. Therefore, there is no physically acceptable universal
σ-algebra that corresponds to the measurement all these observables. It follows that there is no
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probability measure common for these observables. As a result, the reasoning which have led to to
an inequality (8), appears unfair for the elementary states.
On the other hand, we can consider the elementary state as mathematical counter-part for local

objective reality. Therefore, the hypothesis that local objective reality does exist in the quantum
case does not lead to the Bell inequalities. Thus, the numerous experimental verifications of the Bell
inequalities that have been undertaken in the past and at present largely lose theoretical grounds.
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