4 Space Time Measurements of Equivalent Moving
Clocks

In this Section space time measurements of an array of synchronised clocks situated
in the inertial frame S’ will be considered. These clocks may be synchronised by any
convenient procedure * (see for example Ref.[1]). For an observer in S’ all such clocks
are ‘equivalent’ in the sense that each of them records, independently of its position, the
proper time 7' of the frame S’. For convenience, the array of clocks is assumed to be
placed on the wagons of a train which is at rest in S’, as shown in Fig.9a. The clocks
are labelled Cr, ,m = ... — 2,-1,0,1,2,... and are situated (with the exception of the
‘magic clocks’ C)y, Cy, see below) at fixed distances L from each other, along the Ox’
axis, which is parallel to the train. Any observer in S’ will, after making the necessary
corrections for Light Propagation Time Delays (LPTD), note that each Equivalent Clock
(EC) indicates the same time, as shown in Fig.9a. It is now asked how the array of EC
will appear to an observer at a fixed position in the frame S when the train is moving
with velocity Bc parallel to the direction Ox in S (Fig.9b). It is assumed that the EC Cj
is placed at ' = 0 and that it is synchronised with the Standard Clock Cg, placed at
z=0in S, when t =t = 0. The EC C,, and Cjs record exactly equal time intervals when
they are situated in the same inertial frame.

The appearence of the moving EC to an observer in S (after correction for LPTD;
their actual appearence, including this effect, is considered later) at ¢ = 0 is shown in
Fig.9b, and in more detail in Fig.10 for both ¢t = 0 and ¢t = 7. The period 7 is the time
between the passage of successive EC past Cs. The big hand of Cs in Fig.10 rotates
through 180° during the time 7. Explicit expressions for the apparent times are presented
in Table 5. In Fig.9b,10 the apparent positions of the clocks are shown for 3 = 0.6. The
apparent times are readily calculated using the LT equations (3.1),(3.2). Consider the
time indicated by C; at ¢ = 0. The space-time points are:

S (L) ;S i (x,0)
Hence, Eqns.(3.1),(3.2) give:

z = v(L+ot) (4.1)
0 = ”y(t'+ﬂTL) (4.2)

which have the solution [ C;(¢ = 0) |:
t = —=—/— (4.3)
r = - (4.4)

As shown in Fig 9b, the wagons of the train are apparently shorter due to the LFC effect
(Eqn.(4.4)) and also the wagons at the front end of the train are seen at an earlier time

4If an observer in S’ knows the distance D to any of the clocks then the clock is synchronised relative
to a local clock at the same position as the observer, when it is observed to lag behind the latter by the
time D/c
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than those at the rear end. Thus a t = 0 snapshot in S corresponds, not to a fixed ¢ in
S’ but one which depends on z': t' = —fz'/c. This is a consequence of the relativity of
simultaneity of space-time events in S and S’, as first pointed out by Einstein in Ref.[1].
Here it appears in a particularly graphic and striking form. The part of the space-time
domain in S’ that may be observed from S is considered in detail below. Consider now
the time indicated by C_, at ¢t = 7, i.e. when C_, is at the origin of S. The space-time
points are:
S (=L,t') ; S : (0,7)

Hence, Eqns.(3.1),(3.2) give:

0 = y(-L+vt) (4.5)
,_BL
r = a2 (4.6)
with the solutions [ C_;(t = 7) ]:
, L
t = - (4.7)
!
SR (4.8)
v
so that
t' =1 (4.9)

The EC at the origin of S at ¢ = 7 indicates a later time than Cs i.e. it is apparently
running faster than Cs. This is an example of Time Contraction (TC). As shown below
TC is exhibited by the EC at any fized position in S. In fact, if the observer in S can see
the EC only when they are near to Cs he (or she) will inevitably conclude that the clocks
on the train run fast, not slow as in the classical TD effect (see below). Suppose that the
observer is sitting in a waiting room with the clock Cs and notices the time on the train
(the same as Cs) by looking at Cy as it passes the waiting room window. If he (or she)
then compares C_; as it passes the window with Cs it will be seen to be running fast
relative to the latter. In order to see the TD effect the observer would (as will now be
shown), have to note the time shown by, for example Cy, at time ¢t = 7 as recorded by Cs.
Indeed, to do this he would first have to correct his observation for the LPTD between
himself and Cy. At time ¢ = 7 at C's he would actually see C; as it appeared at an earlier
time to a nearby observer in S. Using Eqn.(4.8),Eqn.(4.3) may be written as [C; (¢ = 0)]:

(v =D

t'=—F%7r=—
Y

(4.10)

This is the formula for the apparent time reported in Table 5. Now consider Cj at time
t = 7. The space-time points are:

S (0,8) 5 S (x,7)

Hence, Eqns.(3.1),(3.2) give:

yut! (4.11)
= 9t (4.12)
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with the solutions [ Cy(t =7) ]

t = 1/y (4.13)
z = vr=L/y (4.14)
So the EC Cy at time t = T indicates an earlier time, and so is apparently running slower
than Cs. This is the classical Time Dilatation (TD) effect. It applies to observations of

all local clocks in S’,(i.e. those situated at a fixed value of z') as well as any other EC
that has the same value of z’.

As a last example consider the ‘Magic Clock’ Cy, shown in Fig 9a at time t = 7. With
the space-time points:

S (=L/A+7),t) ; S (z,7)

Eqns.(3.1),(3.2) give:

z = y[-L/(1+7)+vt] (4.15)
r o= ot =2y (416)

with the solutions [ Cps(t = 7) ]:

t = 1 (4.17)
z = yur/(l+7) (4.18)

where the relation L = yv7 from Eqn.(4.14) has been used. Thus C), indicates the same
time as Cs at t = 7. Similar ‘Magic Clocks’ can be defined that show the same time as Cg
at any chosen time ¢ in S. Such a clock is, in general, situated at z’ = —ct(y —1)/3y. All
of the other apparent times presented in Table 5 and shown in Figs. 9b, 10 are calculated
in a similar way to the above examples by choosing appropriate values of z’ and t.

It is straightforward to derive a general formula for the apparent time of any EC, C,,
after the passage of an arbitary number j of wagons past the clock Cs. Still neglecting
LPTD, the result is :

R e )
m,j v

(4.19)

A consequence of (4.19) is :
/

bl — t;n,j =7/ (4.20)
This is the general TD result for any local (z' = constant) EC C,,. Eqn.(4.19) may,
alternatively, be written in terms of (n, j) where the index n labels the position of an
EC in S rather than in S’. So the clocks at z = L/vy, 2L/y, ... (see Fig. 9b) have
n = 1,2,..,those with z = —L/y, — 2L/, ... have n = —1,-2,.... Using the general
relation :

n=m+j (4.21)
Eqn.(4.19) may be written as :
— N2 =
£ = l(n = );’ njr (4.22)
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so that
tnj41 = tng =T (4.23)

This is the general TC effect for an EC at fixed n (z = constant). Eqn.(4.22) may also
be used to calculate the apparent time delay between the EC on successive wagons at a
fixed time in S :

'

n+1,j t;z,j = ‘7[327' (4.24)

The effects of LPTD on the apparent times indicated by the clocks on the moving
train will now be taken into account. Only propagation times parallel to the train are
considered and it is assumed that the clocks are orientated in such away that they can be
seen by an observer placed beside Cs. Consider the clock C, at the time At before the
passage of the jth wagon past Cg (Fig.11). If the clock m is at the position z,, in S at
this time then the inverse of the LT Eqn.(3.1) gives:

mL = [z, —v(jT — At)] (4.25)
The corresponding time shown by C,,, t:,?, ; 1s, using the inverse of the LT Eqn.(3.2):

. T
t;,,’{j = q[jT — At — ﬂ—c—] (4.26)

There are now two cases to consider:

(i) zm > 0, Cy, receding from the observer;

(i) zm < 0, C,, approaching the observer;

If |zn| = cAt the observer beside Cg in S will see the time t;,? ; indicated by the clock C,
at time j7. Since At is, by definition, positive then in case (i) above z,, in (4.25) and
(4.26) is replaced by cA¢. Eliminating At between the equations, after this replacement,
gives for the apparent time:

tmi =i(1 = B) = Bmlr (2 > 0) (4.27)
In case (ii) z,, in Eqns.(4.25),(4.26) is replaced by —cAt, giving the solution:
tmg = i1+ B) + Bm]r  (zm < 0) (4.28)
so that
' 1-— IB
tmis1 =ty = \[1357 @n>0) (4.29)
, 1+4
trgt ~ tmg =5 (zm < 0) (4.30)

Comparing Eqns(4.29),(4.30) with (4.20) it can be seen that, when the LPTD are taken
into account the TD formula for a local clock is replaced by the Relativistic Doppler
Effect formulae Eqns(4.29),(4.30). Actually, for z,, < 0 the clock appears to run fast,
not slow. Just, as pointed out in Refs.[2,3,4], a moving sphere does not appear flattened
by the LFC effect, Eqns.(4.29) and (4.30) demonstrate that a moving local clock does



not show the TD effect. Weinstein [5] considered length measurements (for example the
distance between successive clocks on the train in the present example) under the same
conditions as the time measurements decscribed by Eqns.(4.29), (4.30) where a single
observer is close to a moving object. If ly, [ denote the lengths of an object viewed in
S’, S then the relation between /o and [ is given by the replacements 7 — lp, At' =1 in
Eqns.(4.29),(4.30). Thus an approaching clock (apparently running fast) appears more
distant than a receding clock which is apparently running slow. Neither the LFC nor the
TD effects are directly observed when LPTD are taken into account.

It is interesting to note the identity of Eqns.(4.29),(4.30) with the usual Relativistic
Doppler Shift formulae which, following Ref.[1] are usually derived by considering the LT
properties of Electromagnetic Waves. Here they have been derived purely from consider-
ations of space-time geometry.

Writing Eqns.(4.27),(4.28) in terms of (n, j) gives the equations:

tP = qlj-Bnjr (n>0) (4.31)
t = Ali+Bnjr (n<0) (4.32)

Both Eqns.(4.31) and (4.32) yield the result:
R (4.33)

Thus the TC effect of Eqn(4.23) is unchanged by LPTD corrections (they must clearly
be the same at fixed n or z). The apparent time delay between the clocks on successive
wagons is, including the effect of LPTD :

o —tny = =BT (n>0) (4.34)
th,;—tD = ypr (n<0) (4.35)

Comparing with Eqn.(4.24) it can be seen that the LPTD increases the absolute size of
the delay and, for n < 0 ( EC approaching the observer ) changes the sign of the effect.

The effect of LPTD corrections on the clock C,, may be calculated by taking the
difference between 2, given by Eqn.(4.27) or (4.28) and t,, ; given by Eqn.(4.19). The
results are:

A;,m = t:gj - t:w- = Lz2—(I—T;lu[m +j] (zm >0) (4.36)
A;-,m = t:f,j - t;n,j = D—Q—giryi)-——ll[m +j] (zm <0) (4.37)

The apparent times shown by the EC at ¢ = 0, ¢t = 7, taking into account LPTD are
presented in Table 6 and shown, for the special case = 0.6 in Fig 12. Included also in
Table 6 and Fig 12 is the ‘Magic Clock’ C) situated at z' = z,, where :

L —
th= =% [1 - ,/%] (4.38)

which indicates the same time as C's at ¢ = 7. Table 6 and Fig.12 show the perhaps
surprising result that the EC situated symmetrically in z relative to Cs at time ¢ = 0 and
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t = 7 apparently lag C's by identical times. This is because the time asymmetry between
positive and negative z produced by the LT (see Fig.10) is exactly compensated by the
LPTD. For example. at t = 7 the LT gives the result for § = 0.6 that Cj lags Cs by 0.27.
However, the longer time delay from C_, as compared to Cy (see Fig.11) means that after
correcting for LPTD, C_, appears also to lag Cs, by just the same amount as Cp, which
has a smaller LPTD correction.

Finally in this section the region of the space-time domain of S’; that is visible to
the observer in S is discussed. In particular the space-time observations which may be
made of the wagon holding the EC Cy during the period 0 < ¢ < 7 when it is passing
by the Standard Clock Cs will be considered. The situation is shown for the three cases:
B = 0.0, 0.6, 0.943 (y = 1.0, 1.25, 3.0) in Figs 13a),b),c) respectively. For 3 = 0 the
history of each part of the wagon may be observed in an unbiased manner over the whole
period. When the wagon is moving as in Fig 9b), late times at the front and early times
at the rear of the wagon are no longer observable. The observable region of the (z/, ct')
plane is only that between the lines L1, L2 (Fig 13b)) where:

L1 :ct' = —-p2 (4.39)
L2 ict = —ﬂx'+% (4.40)

As 3 approaches one (Fig 13c) the observable domain occupies only a narrow region
around the backward light cone of the origin of S’. So, although the wagons of the train
are more concentrated in the field of vision of an observer in S, due to the LFC, the
fraction of the total space-time area of S’ that may be observed becomes vanishingly
small. Note that the boundaries of the observable area in the space-time of S’ are easily
read off from the apparent time of the clocks C_;, Cy recorded in Table 5. Eqns.(4.41) and
(4.42) are derived from Eqn.(4.19) with j = 0, 1 respectively on making the replacements:
T — L/yv, m —= z'/L. The situation shown in Fig 13 Corresponds to the observation
of the train at a distance such that the angle subtended by the wagon between Cj and
C_, at the observer is small. In this case the effects of LPTD essentially cancel. It is
interesting to compare this with the case of an observer close to the train when the LPTD
of photons moving almost parallel to the train must be taken into account. The (', ct’)
domain seen by such an observer, for the same conditions as in Fig 13, is shown in Fig 14.
It is derived in a similar way as for Fig.13, starting from Eqn.(4.28) instead of Eqn.(4.19).
When the train is moving the observable range of ¢’ is always greater at the rear end
(position of C_) than at the front (position of Cy) of the wagon. As 3 — 1 the t' range
at C, vanishes and that at C_; approaches a constant —L/c < t' < L/c, corresponding
to the full region between the forward light cone (z’ = ct') and the backward light cone
(z' = —ct') of the origin of S’.
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5 Discussion

The different space-time effects (apparent distortions of space or time) in Special
Relativity that have been discussed above are summarised in Table 7. These are the
well-known LFC and TD effects, Space Dilatation (SD) introduced in Section 3 above,
and Time Contraction (TC) introduced in Section 4. Each effect is an observed difference
Aq (¢ = z,2',t,t") of two space or time coordinates (Aq = q; — ¢2) and corresponds to a
constant projection A§ = 0 (§ # ¢) in another of the four variables z, z’, ¢, ¢’ of the LT.
As shown in Table 7, the LFC, SD, TC and TD effects correspond, respectively, to the At,
At', Az and Az’ projections. After making this projection, the four LT equations give
two relations among the remaining three variables. One of these describes the ‘space-time
distortion’ relating At' and At or Az’ and Az while the other gives the equation shown
in the last column, (labelled ‘Complementary Effect’) in Table 7. These equations relate
either Az to At (for SD and TD) or Az’ to At’ (for LFC and TC). It can be seen from
the Complementary Effect relations that the two space-time points defining the effect (of
space-time distortion) are space-like separated for LFC and SD and time-like separated
for TC and TD.

For example, for the LFC when t; = t, = ¢, the LT equations for the two space-time
points are:

i = q(z; —vt) (5.1)
Ty = Y(z2—vi) (5.2)
4= -2 (5.3)
4 = 2622 (5.4

Subtracting (5.1) from (5.2) and (5.3) from (5.4) gives:

Az = yAz (5.5)
At = —Zc—ﬂ-AI (5.6)

Eqn.(5.5) describes the LFC effect, while combining Eqns.(5.5) and (5.6) to eliminate Az
yields the equation for the Complementary Effect. By taking other projections the other
entries of Table 7 may be calculated in a similar fashion. It is interesting to note that the
TD effect can be derived directly from the LFC effect by using the symmetry of the LT
equations. Introducing the notation: s = ct, the LT may be written as:

? = (a1 - fs) (5.7)
§ = y(s— fa) (5.8)

These equations are invariant 5 under the following transformations:

Tl : z¢s 1 o4 (5.9)
T2 s zo 1, s, -8 (5.10)

SActually the transformation T'1 yields the inverse of the LT (5.7),(5.8). The inverse equations may
then be solved to recover (5.7) and (5.8)
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Writing out the LFC entries in the first row of Table 7, replacing ¢, ¢’ by s/c, s'/c ; gives

/ /
Az As=0 Ag;:A_x Ax’z_As
gl Y

Applying T'1 to each entry in this row results in:

/ /
AS Afl:zo AS:A—;- Aslz_Ax

5
Applying T2:
ASI A.’EIZO AS’:E As:~A_x
gl B

Replacing As, As' by cAt, cAt' yields the last row of Table 7 which describes the TD
effect. Similarly TC can be derived from SD (or vice versa) by successively applying the
transformations T'1, T2.

A remark on the ‘Observed Quantities’ in Table 7. For LFC, SD the observed quantity
is a length interval in the frame S. The space distortion occurs because this length differs
from the result of of a similar measurement made on the same object in its own rest
frame. Az’ is not directly measured at the time of observation of the LFC or SD. It is
otherwise with the time measurements TD, TC. Here the time interval indicated by a
moving clock (TD), or different equivalent clocks at the same position in S (TC) in their
own rest frame is supposed to be directly observed and compared with the time interval
At registered by an unmoving clock in the observer’s rest frame. Thus the effect refers to
two simultaneous observations by the same observer not to two separate observations by
two different observers as in the case of the LFC and SD.

Einstein’s great achievement in his first paper on Special Relativity [1] was, for the
first time, to clearly disentangle in Classical Electromagnetism, the purely geometrical
and kinematical effects embodied in the Lorentz Transformation from dynamics. In spite
of this, papers still appear from time to time in the literature claiming that moving objects
‘really’ contract [6] or that moving clocks ‘really’ run slow [7] for dynamical reasons, or
even that such dynamical effects are the true basis of Special Relativity and should be
taught as such [8]. As it has been shown above that a moving object can apparently shrink
or expand, and a moving clock can apparently run fast or slow, depending only on how
it is observed, it is clear that they cannot ‘really’ shrink, or run slow, respectively. If a
moving object actually shrinks for dynamical reasons it is hard to see how the same object,
viewed in a different way (in fact only illuminated differently in its own rest frame) can
be seen to expand. Certainly both effects cannot be dynamically explained. In fact the
Lorentz Transformation, as applied to space-time, describes only the appearence of space-
time events, a purely geometrical property. The apparent distortions are of geometrical
origin, the space-time analogues of the apparent distortions of objects in three dimensional
space, described by the laws of perspective, when they are linearly projected into a two
dimensional sub-space by a camera or the human eye. The Lorentz transformation has
nothing to say (in spite of the title of Ref.[1]) on the dynamics of physical objects, and
it is the Lorentz Transformation, not Classical Electrodynamics, that is the bedrock of
Special Relativity.

In conclusion the essential characteristics of the two ‘new’ space-time distortions dis-
cussed above are summarised :
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e Space Dilatation (SD): If a luminous object lying along the Ox’ axis in the frame
S’ has a short luminous lifetime in this frame, it will be observed from a frame
S, in uniform motion relative to S’ parallel to Ox’ at the velocity B¢, as a narrow
line, perpendicular to the x-axis moving with the velocity ¢/ in the same direc-
tion as the moving object. The total distance swept out along the z-axis by the
moving line during the time Bly/(cy/1 — 3?%), for which the moving line image ex-
ists, is lp/v/1 — 3% where l; is the length of the object as observed in S’. Thus the
apparent length of the object when viewed with a time resolution much larger than

Blo/(cy/1 = B2) is ly/+/T — B2. Any effects of LPTD are not taken into account.

e Time Contraction (TC): The equivalent clocks in the moving frame S’, viewed at
the same position in the stationary frame S, apparently run faster by a factor
1/4/1 — 32 relative to a clock at rest in S.
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Point on object | x’ t’ X t
P dy —%tana ydy(l—Btance) y%(8-tana)
Q 0 0 0 0
R -dy  Ltano  -ydi(1-Btana) -yL(8 - tana)

Table 1: Space-time points on the object Op, illuminated by a short light pulse from the
lamp L1 (Fig.2), as observed in the frames S’,S.

Point on object | x> t° x t
P dy 0 ydp 22
Q 0 0 O 0
R -dy 0 -vyd, -WC’T"‘

Table 2: Space-time points on the object Op, illuminated by a short light pulse from the
lamp L2 (Fig.2), as observed in the frames S’,S.

tana # +1 tana =1 tana = —1
6—1 | 8- -1 -1 | B—--1 —1 | f——-1
|dF!] 00 00 0 00 0 0
|AtEL 00 00 0 00 00 0
r ‘zfi(l"'%) _21(1'*'%?) _21(1+%12) _21(1'*'%) ‘2%(14'%:) ‘2%(1'*'%)

Table 3: The size |dF!|, time duration |At"!| and velocity parallel to Oz; 8F!, of images
of the object Op, illuminated by the lamp L1 for different values of tan « in the UR limit.
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o1 | B— -1
db? 00 00
Atl? 00 -00
oA+ 40+ P

Table 4: The size |d¥?|, time duration |At*?| and velocity parallel to Ox; BF?, of images
of the object Op, illuminated by the lamp L2 in the UR limit.

Cg C_s ] C_, | Cu l Co | Ci | Cy
@?=y,. -1 (=1 _@2-) . _9(P-))

0|2 T T T 0 T 2 —T

r gzvi—lz AT r ro- (727—2) r - (27:—3) r

Table 5: Apparent times of Equivalent Clocks on the moving train in Fig.9, at times ¢ =0
and t = 7 of the stationary standard clock Cs. Effects of the LT only.

Cs| Co | O | [ G | & | G
0| -298r —8r [J1-9/a+p)-1r 0 —yBr ~2y07
T | v1=-08)1 7T T Y1 =871 (1 -28)1 ~(1-36)T

Table 6: Definitions as for Table 5, except that the effects of LPTD for an observer close
to the train are also included.

Name Observed Quantity | Projection Effect Complementary Effect
Lorentz-Fitzgerald Az At=0 |Az= A7 Az’ = —ZAY
Contraction (LFC)

Space Dilatation Az At =0 | Az =yAZ Az = ;AL

(SD)

Time Contraction At Az =0 | At =+At Az = —cfAY
(TC)

Time Dilatation At Ar'=0 | At = %At Az = cBAL
(TD)

Table 7: The different apparent distortions of space-time in Special Relativity (see text).
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