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1. Introduction

Canonical commutation relations (CCR) are the algebraic structure (Heisenberg
algebra) at the basis of quantum mechanics (QM) and quantum field theory (QFT).

They are of great interest not only from a physical point of view, but also as a
basic mathematical structure.

The Heisenberg algebra is the Lie algebra generated by the so-called canonical
variables qi, pi, i = 1, · · · n, satisfying the following relations:

[pi, qj] = −iδij. (1)

Foundations of QM rely on the analysis of the representations of such an algebra.
In the case of infinite numbers of degrees of freedom (n =∞) CCR play an important
role in the construction of QFT.

We start with the case of finite numbers of degrees of freedom. It is sufficient
to describe the simplest case n = 1 as the extension to arbitrary finite numbers
of degrees of freedom being straightforward. So we restrict our attention to the
relation:

[p, q] = −i. (2)
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2. The first results

In the beginning two realizations of CCR have been obtained: the Heisenberg [1]
and the Schrödinger [2] representations.

Heisenberg constructed the representation in the form of infinite matrices:

q =
1
√

2


0 1 0 0 . . .

1 0
√

2 0 . . .

0
√

2 0
√

3 . . .
. . .

 ,

(3)

p =
−i
√

2


0 1 0 0 . . .

−1 0
√

2 0 . . .

0 −
√

2 0
√

3 . . .
. . .

 .

The Schrödinger representation of CCR is the realization of CCR in the space
L2(−∞,∞), so in the space of all square-integrable functions ϕ(q) :

∫∞
−∞ |ϕ(q)|2 dq <

∞, where the integral is regarded as Lebesgue one. q is a multiplication operator
and p is a differentiation one: p = −i d

dq
.

Strictly speaking CCR are defined on some dense domain D of L2(−∞,∞) as q
and p are unbounded operators in this space. Let’s recall that in closed spaces (e.g.
in Hilbert space) unbounded operator can’t be defined in all space, but on some
dense domain only (this and other results of functional analysis used in this report
can be found in [3, 4]). This point is very important. In fact, as it has been proved
by Wintner [5], no realization of CCR with both bounded operators q and p exists.
Really, even more strong assertion is true [6] (see also [7, page 2]):

Proposition 1. In an arbitrary normalized space identical operator I cannot
be expressed as commutator of two bounded operators.

Proof. Suppose that
[A,B] = I, (4)

where A and B both are bounded.
From eq.(4) it follows directly that

(n+ 1)Bn = ABn+1 −Bn+1A; n ∈ ZZ+. (5)

Thus
(n + 1)||Bn|| ≤ 2||A|| ||Bn+1|| ≤ 2||A|| ||B|| ||Bn||,

and Bn = 0 at sufficiently large n. As it follows from eq.(5), the last condition
implies that Bn−1 = 0 as well, and so also Bn−2, . . .B = 0.
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Let’s point out that this Proposition is valid not only for Hilbert space, but for
more general spaces as well, e.g. for Krein space (see the definition in Section 7).

At first sight the Heisenberg representation and the Schrödinger one are quite
different. But really they are unitary equivalent, i.e. if p1, q1 form a Schrödinger
representation of CCR and p2, q2 form a Heisenberg one, then there exists unitary
operator V such that

p2 = V p1V
+, q2 = V q1V

+ . (6)

In fact, we can choose the basis in L2(−∞,∞) in such a way that matrix repre-
sentations of operators q and −id/dq in this space are given by matrices (3). Such
basis is formed by functions exp(−q2/2)Hn(q)/π

1/4
√

2nn!, where Hn(q) are Hermit
polynomials. The necessary result follows directly from well known recurrent prop-
erties of Hermit polynomials. In other words Heisenberg representation is the same
as Schrödinger one, but in space l2 - the space of all infinite converges sequences
x = (x1, x2, . . . xn, . . .),

∑∞
i=1 |xi|

2 < ∞. It is well known that space L2(−∞,∞)
is isomorphic to the space l2. Besides, if p, q form a representation of CCR then
p′ = V pV + and q′ = V qV + also form a representation of CCR, V is any unitary
operator.

Very important step in history of CCR is a determination of class of representa-
tions of CCR which are unitary equivalent to Schrödinger one. Below we call such
representations as regular. Further on we consider this point in detail. Now let’s
bring a simple example of the representation which is non-unitary equivalent to
the Schrödinger one. This example is a representation of CCR by operators of mul-
tiplication and differentiation (just as in Schrödinger one), but in space L2(0, 1).
Dense domain D, where CCR are fulfilled is a domain defined by the conditions
ϕ(1) = exp (iθ)ϕ(0). Evidently this representation is not unitary equivalent to
Schrödinger one as operator q is a bounded operator in L2(0, 1) and unbounded
one in L2(−∞,∞). Unboundedness of operators p and q (or at least of one of them)
gives rise nontrivial mathematical problems in investigation of CCR.

In fact, two distinguish possibilities exist:
1. to consider accurately the delicate domains questions in the standard form of
CCR;
2. to substitute CCR by analogous relations with bounded operators.

Both these possibilities were realized. Let’s start with the second one.

3. Weyl form of CCR

If we forget for a moment that p and q are unbounded, then we can carry out
the simple calculations given below. From eq.(2) it follows directly that

[p, qn] = inqn−1 = −i(qn)′ . (7)
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As exp (isq) =
∞∑
n=0

(isq)n

n!
, s ∈ IR, then

[p, eisq] = seisq (8)

or
e−isqpeisq = (p + sI), (8a)

where I is an identical operator.
Eq. (8a) implies that

e−isqpneisq = (p + sI)n . (8b)

So for function exp (itp), t ∈ IR we have finally:

exp (itp)exp (isq) = exp (its)exp (isq)exp (itp) (9)

This relation is CCR in a Weyl form [8] (briefly Weyl relations). Let’s stress that this
derivation is not rigorous as, in general, exp (isq) and exp (itp) can’t be represented
by Tailor’s series as q and p are not bounded (see e.g. [3, 4]). So at this stage we can
consider (9) only as relations independent from (2). The connection between Weyl
and standard form of CCR has been established in series of papers (see below).

The precise meaning of eq.(9) is the existence of two unitary groups: V (s) ≡
exp (isq) and U(t) ≡ exp (itp), s, t ∈ IR, which satisfy eq.(9). If the generators
q and p are self-adjoint operators, then these groups are strongly continuous in
accordance with Stone theorem [3, 4]. Such representations of CCR in Weyl form is
said to be regular (example of non regular representation is given in [9, page 7]).

Let’s point out that operators q and p = −id/dq, which form Schrödinger rep-
resentation in L2(−∞,∞), generate the following unitary groups: V (s)f(q) =
exp (isq)f(q), U(t)f(q) = f(q + t), f(q) ∈ L2(−∞,∞). It is easy to show that
these groups satisfy the Weyl relations.

Very important step in the classification of regular representations has been made
by Von Neumann [10].

4. Von Neumann’s uniqueness theorem

Below for simplicity we consider irreducible representations only. (In fact, any
regular representation of CCR in Hilbert space is a direct sum of regular irreducible
representations (see [7] or [9] for details).

Von Neumann’s uniqueness theorem If on a Hilbert space H self-adjoint
operators q and p are generators of the unitary groups V (s) = exp (isq) and U(t) =
exp (itp), satisfying the Weyl relations (9), then q and p satisfy a regular represen-
tation of CCR (see eq.(2)), i.e. representation, which is unitary equivalent to
Schrödinger one. (For proof see e.g. [7, page 65] or [9, page 5]).

252



Von Neumann’s theorem remains unsettled two important questions:
1. What kind of conditions (without relying to Weyl relations) have to satisfy p and
q in order that the corresponding representation of CCR be regular?
2. In what case a regular representation of CCR in usual form gives rise the
corresponding Weyl relations and vice versa.

The first problem has been solved in papers of Rellich [11] and Dixmier [12], the
second - in papers of Foias, Gehér and Sz-Nagy [13] (the generalization of the last
result has been done by Kato [14]).

5. Regularity conditions

Let’s formulate necessary and sufficient conditions for regularity of a representa-
tion of CCR (Rellich-Dixmier conditions).

Proposition 2. p and q form regular representation of CCR if:
1. there exists dense domain D ∈ Dp ∩ Dq invariant under the action of p and q
such that CCR hold on D;
2. Operator p2 + q2 is essentially self-adjoint on D.

The proof see in [7].
Let’s point out the importance of condition (2). Fuglede [15] has constructed

interesting example of non-regular representation of CCR, where condition (1) is
fulfilled and moreover p and q are essentially self-adjoint on D.

We see that rather general conditions on p and q determine regular representation
of CCR. So it is natural to admit Rellich-Dixmier conditions as a definition of regu-
larity of representation of CCR. From this point of view Schrödinger representation
is regular as it satisfies Rellich-Dixmier conditions.

The conditions of regularity can be formulated in a different way. To this end
let’s construct ”annihilation” a and ”creation” a+ operators:

a =
q + ip
√

2
; a+ =

q − ip
√

2
. (10)

It is evident that a and a+ are conjugated operators as p and q are self-adjoint.
From (2) and (10) it follows immediately that

[a, a+] = 1. (11)

Strictly speaking the unboundedness of operators p and q leads to necessity of a
careful check of the equivalence of eqs. (2) and (11), for details see [7, page 70]).

It is easy to check that in the Schrödinger representation there exists ”vacuum”
vector ψ0 satisfying the condition

aψ0 = 0. (12)

Actually, a = 1√
2
(q + d

dq
) and ψ0 = const exp (− q2

2
).
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All other eigenvectors of operator N = a+a in the Schrödinger representation
are obtained by the action of operators (a+)n on ψ0 and the corresponding space is
a span of these vectors. So ψ0 is a cyclic vector of the algebra in question. This
property of ψ0 and condition (12) were regarded in paper of Dubin and Hennings
as definition of ”s-class” of representation [16]. Such definition is equivalent to our
definition of regularity.

Under sufficiently general conditions Tillmann [17] and Putnam [18] have proved
that operator N has district spectrum and this spectrum is IN. Precisely it is neces-
sary to suppose that a is a closed, densely defined operator, D(aa+) = D(a+a) and
relation (11) is hold on this set. Then N is a self-adjoint operator and spectrum
N = IN. Thus, vacuum vector exists in such a representation. (For proof see [7,
page 68].) All mentioned conditions of regularity are equivalent as all they deter-
mine the same class of representations of CCR. Let’s stress that specifically these
representations are relevant to QM.

6. The connection between regular representations

of CCR in standard and Weyl form

As was already mentioned the advantage of Weyl form of CCR (9) relates with
boundedness of the unitary operators V (s) and U(t). But in QM or QFT it is more
convenient to work directly with operators a and a+.

In paper of Foias, Gehér and Sz-Nagy [13] the conditions on p and q under which
corresponding groups U(t) and V (s) satisfy Weyl relations (9) were found. It means
that in accordance with Von Neumann’s theorem (Section 4) p and q belong to the
regular representation of CCR. It is interesting that formally these conditions are
quite different from Rellich-Dixmier conditions.

Proposition 3. Representation of CCR is regular if p and q are self-adjoint
operators and there exists a linear set D, contained in Dpq−qp, such that
1. (p + iI)(q+ iI)D or (q + iI)(p+ iI)D be dense in H;
2. CCR are hold on D.

In accordance with the results of Foias, Gehér and Sz-Nagy any regular repre-
sentation of CCR gives rise regular representation of Weyl relations. The proof also
see in [7].

Besides it has been proved in paper [13] that if groups V (s) and U(t) satisfy Weyl
relations with necessary continuity properties, then the generators of these groups
belong to a regular representation of CCR. So, if groups U(t) and V (s) are strongly
continuous, then their generators necessarily form regular representation of CCR
and thus these continuity properties define regular representation of CCR. Let’s
stress that for regular representations Weyl relations are equivalent to standard
CCR. In paper of Kato [14] similar results have been obtained for the Banach space.
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7. CCR in an indefinite metric space

All previous results concern CCR in Hilbert space H, but in gauge quantum field
theory (GQFT) more general spaces, namely the spaces where inner product
< x, x > may not be positive, are widely used, especially under rigorous treatment
(see [19, 20, 21] and references herein, properties of indefinite metric spaces are
described in [22, 23]). The quantization in indefinite metric spaces has been proposed
by Dirac [24] and Pauli [25]. Such spaces crucially enter in the local formulation
of GQFT’s, where locality and covariance of the gauge fields are incompatible with
positivity of the inner product [19, 20, 21].

Regular representations in an indefinite metric space have been described in
paper of Mnatsakanova, Morchio, Strocchi and Vernov [26], (see also [27]). On the
basis of these papers here we consider regular representations in Hilbert and in Krein
spaces in unique way (in fact all results remain valid in any weakly completed space).
Let’s recall that Krein space K can be represented as a direct sum of Hilbert and
Anti-Hilbert spaces [22, 23]:

K = K+ ⊕+K−, K+ ⊥ K− . (13)

So any x ∈ K is:
x = x+ + x−, x± ∈ K± x+ ⊥ x− . (14)

In Krein space Hilbert scalar product (x, y) can be introduced as well as indefinite
one < x, y >, namely

(x, y) =< x+, y+ > − < x−, y− > . (15)

As K± are completed spaces, K is completed as well and Krein norm ||x|| can be

defined as (x, x)
1
2 .

If we introduce operator J (metric operator):

J(x+ + x−) = x+ − x−,

then it is easy to check that

(x, y) =< x, Jy >, < x, y >= (x, Jy). (16)

Let’s also point out that K is a non-degenerate space, that is: if x ⊥ K, then x = 0.
The first step in studying CCR in Krein space is a suitable notion of regularity

(for simplicity we use slightly less general form than necessary). We define repre-
sentation as regular if:
1. There exists dense domain D stable under the action of a and a+ such that CCR
are fulfilled on D;
2. There exists operator U(s), s ∈ IR, satisfying the following conditions on D:

U(s)D ∈ D ; (17)
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U(s)U(t) = U(s+ t) ; (18)

3.

lim
�→0

U(∆)− I

∆
ψ = iNψ . (19)

Here ”lim” means the strong limit, i.e. the limit by Krein norm ‖ · ‖.
From eq.(2) it follows that on D:

aN = (N + 1)a,

(20)

a+N = (N − 1)a+ .

Conditions (17) and (19) imply that

d

ds
U(s)ψ = iNU(s)ψ, ∀s ∈ IR and ψ ∈ D . (21)

In accordance with (20):

d

ds
(U(s)aU(−s)) = iU(s)[a+a, a]U(−s) = −iU(s)aU(−s) . (22)

So
U(s)aU(−s) = eisa; U(s)a∗U(−s) = e−isa∗ on D. (23)

Owing to eq.(23)

[U(2πn), a] = [U(2πn), a+] = 0; n ∈ ZZ . (24)

Now let’s introduce the proper notion of irreducibility. As it is well known the
concept of irreducibility is delicate in the case of algebras of unbounded operators
(detailed analysis of this problem for the algebra in question has been done in [26]).

Here we say that representation is irreducible if any closed operator which leaves
D invariant and commutes with operators of the algebra, i.e. with a and a+, is a
multiple of the identity. One can show [26] that under this definition of irreducibility
K does not contain any closed subspace invariant under the algebra in question.

Thus according to eq.(24)

U(2π) = e2πiθI ; 0 ≤ θ ≤ 1 (25)

if representation in question is irreducible. Below we consider such representations.
Proposition 4. If there exists operator U(s) satisfying the conditions (17) -

(19), then operator N has an eigenvector :

Nψλ = λψλ . (26)
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Proof. Let’s introduce operator W k(s) =
∫ s

0 V (s)e−iksψds, k ∈ ZZ, where
V (s) = U(s)e−isθ.

In accordance with (25) V (2π) = I .
The existence of this operator has been proved in [27].
Let’s prove that W k(2π)ψ is an eigenvector of V (s) at arbitrary s.
Indeed,

V (s)W k(2π)ψ =

2π∫
0

V (s)e−iks
0
V (s′)ψds′ =

2π∫
0

V (s+ s′)e−iks
0
ψds′ =

= eiks
2π+s∫
s

V (s′)e−iks
0
ψds′ = eiksW k(2π)ψ. (27)

In the last step we use eq.(25). So according to (27)

(V (s)− eiks)ψk = 0; ψk ≡ W k(2π)ψ. (28)

Eq.(28) implies that lim
�→0

U (�)−I
�

ψk exists, so owing to (19) lim
�→0

U (�)−I
�

ψk = iNψk.

Finally

Nψk = (k + θ)ψk. (26′)

It can be easily shown that owing to non-degeneracy of K, there exists such k0

that ψk0 6= 0. Indeed, in the opposite case ∀φ

< φ,W k(2π)ψ >=

2π∫
0

< φ, V (s)ψ > e−iksds = 0 ∀k.

Function T (s) ≡< φ, V (s)ψ > is a periodic function, since V (2π) = I . Condi-
tions

∫ 2π
0 e−iksT (s)ds = 0 imply T (s) ≡ 0. So < φ, ψ >= 0 ∀φ in contradiction

with the non-degeneracy of K. Eq.(26) is proved.
Proposition 5. If ψλ satisfies eq.(26) and eq.(2) holds, then SpN is discrete

and vectors anψλ and (a+)nψλ exhaust the set of eigenvectors of N .
Proof. As a+a = N, aa+ = N +1, and D(N) ⊂ D(a)∩D(a+),then there exist

vectors aψλ and a+ψλ. According to eq.(20) aNψλ = λaψλ = (N − 1)aψλ.
Thus

Nψλ−1 = (λ− 1)ψλ−1, ψλ−1 = aψλ. (29)

Similarly
Nψλ+1 = (λ+ 1)ψλ+1, ψλ+1 = a+ψλ. (30)

Continuing this process we obtain:

Nψλ−n = (λ− n)ψλ−n, ψλ−n = anψλ, (31)
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Nψλ+n = (λ + n)ψλ+n, ψλ+n = (a+)nψλ. (32)

In order to prove that this set of vectors exhausts the whole set of eigenvectors
of N it is sufficient to notice that

M(an, (a+)m)ψλ ∼ ψλ+m−n,

where M(an, (a+)m) is an arbitrary monomial of n operators a and m operators a+.
The proof is completed.

Remark 1. Let’s point out that Propositions 4 and 5 remain valid for more
general algebras then CCR. In fact, only what necessary for their proof are the
conditions (17) - (19) and (20). If algebra under consideration is algebra of CCR,
then eqs.(20) follow from eq.(2). But eqs.(20) are more general then CCR. Indeed,
we can consider an algebra of operators a and a+, defined by eqs.(20) and the
following conditions:

a+a = ϕ(N); aa+ = ϕ(N + 1), (33)

where ϕ(N) is some nonsingular function. CCR is the simplest case of such an
algebra: ϕ(N) = N .

Other well-known algebra of this type used in QM is the algebra of q-deformed
commutators:

aa+− qa+a = q−N q ∈ IR. (34)

It is easy to see that for this algebra

a+a =
CqN − q−N

q − q−1
C ∈ IR; q 6= −1,

a+a = (N + C)eiπ(N+1) C ∈ IR; q = −1.

As now conditions (20) are basic conditions which define algebra in question we
have to give the precise meaning of them. We assume that if for some vector ψ
vector aNψ exists, then vector N(a − 1)ψ exists as well and vice versa. According
to the first of eqs.(20) these vectors are equal.

Now let’s define K0 - the space of all finite sequences
∑
Ckψλ+k. It is evident

that K ⊇ K0.
Let’s point out that for a given K0 there exist different completions K̄0, corre-

sponding to different Hilbert structure on K0. But we can consider representations
of the algebra in question in all these spaces as equivalent if they coincide on dense
domain D0 (see discussion of the similar problem in [26, page 13]).

There exists a distinguished closure K̄0 (distinguished Krein structure on K0,
below we admit that K coincides with this closure of K0), which can be constructed
by the following way.
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Let’s introduce the set of normalized eigenvectors of N :

ψ̃λ+k =
ψλ+k

| < ψλ+k, ψλ+k > |
1
2

.

We exclude the possibility < ψλ+k0, ψλ+k0 >= 0 at some k0. We can do it as in the
opposite case (see below eqs.(36) and (38)) < ψλ+k, ψλ+k >= 0∀k in contradiction
with non-degeneracy of space K.

Dividing the whole set of normalized eigenvectors on the set of positive e+
k and

negative e−k vectors, < e±k , e
±
k >= ±1 (see below eqs.(37) and (39)), we see that

K0 = K+
0 ⊕K

−
0 ,

where K±0 is a space of all finite sequences
∑
C±k e

±
k .

If

x± =
∞∑
0

C±k e
±
k ,

then x± can belong to K only if |< x±, x± >|<∞, so if

∞∑
0

|C±k |
2 <∞. (35)

We construct K̄±0 by using intrinsic scalar product < ·, · > and define

K̄0 = K̄+
0 ⊕ K̄

−
0 .

In other words we introduce the following Hilbert product (·, ·) on K0:

(x, y) =< x+, y+ > − < x−, y− >,

if
x = x+ + x−, y = y+ + y−; x±, y± ∈ K±0

and complete K0 in accordance with this Hilbert structure on K0.
For such a choice of completion if x =

∑
Ckψ̃λ+k, then

x ∈ K̄0 iff x =
+∞∑
−∞

Ckψ̃λ+k; |Ck|
2 <∞. (35′)

It is easy to see that in this space eq.(2) is valid for x if
+∞∑
−∞
|Ck|2k2 < ∞. So

CCR is fulfilled for every x ∈ D(N). The domain D is a subset of D(N), stable
under the action of operators a and a+ and can be taken as all finite and rapidly
convergent sequences of ψ̃λ+k: |k|nCk → 0 at all n.

In the Hilbert space condition (35′) turns to a standard one.
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8. Classes of regular representations of CCR

Let’s describe all (up to unitary equivalent) regular (irreducible) representations
of CCR in Krein space.

To do this let’s notice that

< ψλ+n, ψλ+n >=< ψλ+n−1, aa
+ψλ+n−1 >= (λ + n) < ψλ+n−1, ψλ+n−1 > . (36)

So
< ψλ+n, ψλ+n >= (λ + n)(λ+ n − 1) . . . (λ+ 1) < ψλ, ψλ > . (37)

Similarly

< ψλ−n, ψλ−n >= (λ− n+ 1) < ψλ−n+1, ψλ−n+1 > (38)

and
< ψλ−n, ψλ−n >= (λ− n+ 1)(λ− n+ 2) . . . λ < ψλ, ψλ > . (39)

Without lost of generality we can always set < ψλ, ψλ >= ±1. Below we put
< ψλ, ψλ >= 1, as another case differs in evident manner.

Evidently λ ∈ IR as < aψλ, aψλ >∈ IR. From eqs.(36) and (38) it follows that if
< ψλ+k0, ψλ+k0 >= 0 at some k0, then all < ψλ+k, ψλ+k >= 0.

There exist three different type of SpN :
1. SpN is bounded from below. In accordance with eqs. (36) and (39) in this

case λ = n. We can always put λ = 0, then aψ0 = 0 (Fock representation). It is
easy to see that this case is the usual Hilbert space case, SpN = IN.

2. SpN is bounded from above. In this case λ ∈ ZZ− and we can put λ = −1.
Evidently a+ψ−1 = 0(Anti-Fock representation). So SpN = ZZ−. Metric is indefinite

< ψ̃−n, ψ̃−n >= (−1)n+1. (40)

We recall that

ψ̃λ+k =
ψλ+k

| < ψλ+k, ψλ+k > |
1
2

.

Hilbert structure on K can be defined by metric operator J :

Jψ̃−1−n = (−1)nψ̃−1−n. (41)

3. SpN is unbounded (Dirac sea case). Here we can always choose λ in such
way that 0 < λ < 1, so λ = θ (see eq.(25)). According to eqs.(36) and (39)

< ψ̃λ+k, ψ̃λ+k >= (−1)
jkj−k

2 . (42)

In this case we can define:

Jψ̃λ+k = (−1)
jkj−k

2 ψ̃λ+k. (43)

260



It is easy to see that in all cases

[J,N ] = 0 . (44)

As all < ψλ+k, ψλ+k > are uniquely determined if SpN is fixed so all represen-
tations which correspond to given SpN are unitary equivalent. Indeed, if a1, a

+
1

and a2, a
+
2 are regular representations of CCR in spaces K1 and K2 respectively and

λ1 = λ2, then the correspondence between K1 and K2 can be realized by operator
V :

x2 = V x1, where xi =
∑
k

ckψ
i
λ+k; i = 1, 2.

As ψiλ+k form basis in Ki, then

< x1, y1 >=< x2, y2 > ∀xi, yi,

if
x2 = V x1, y2 = V y1.

Thus V is an isometric (really unitary) operator as correspondence between K1

and K2 is one-to-one. The equality a2 = V a1V
+ immediately follows from this

correspondence as a2x2 = V a1x1 if x2 = V x1.
Remark 2. If algebra under consideration is defined by conditions (33) then

eqs.(36)-(39) are changed by the evident way:

< ψλ+n, ψλ+n >= ϕ(λ + n) < ψλ+n−1, ψλ+n−1 >, (36′)

< ψλ+n, ψλ+n >= ϕ(λ+ 1)ϕ(λ + 2) · · ·ϕ(λ + n) < ψλ, ψλ >, (37′)

< ψλ−n, ψλ−n >= ϕ(λ− n+ 1) < ψλ−n+1, ψλ−n+1 >, (38′)

< ψλ−n, ψλ−n >= ϕ(λ)ϕ(λ− 1) · · ·ϕ(λ− n+ 1) < ψλ, ψλ > . (39′)

So for any given function ϕ(N) representation of such algebra is defined uniquely
(up to unitary equivalence) if SpN is fixed.

We have proved that if conditions (17) -(19) are fulfilled, then SpN is district
and consists of numbers λ+k, k ∈ ZZ. Now let’s show that if N has such a spectrum,
then operator U(s) with necessary properties really exists. For this it is sufficient
to determine U(s) on vectors ψλ+k as K is a span of these vectors. If we introduce
U(s)ψλ+k = exp (is(λ+k))ψλ+k, we can check that U(s) has all necessary properties
(for details see [27]).

Let’s stress that in Hilbert space conditions (17) - (19) are equivalent to Rellich-
Dixmier conditions of regularity.

In the case of arbitrary finite numbers of degrees of freedom we suppose the
existence of operator Ui(s) with properties (17) - (19) for any i. Thus previous
consideration can be extended to the case of arbitrary n.
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9. CCR in case of infinite numbers of degrees of

freedom

The properties of CCR in the case of infinite numbers of degrees of freedom in
many respects differ from CCR properties in the case of finite numbers of degrees
of freedom. We describe this case briefly. The properties of Weyl relations are
described explicitly in books [9, 28, 29] and we don’t consider them. We point out
only that in GQFT non regular representations of Weyl relations are important as
well [30]. Let’s mention that in general the time evolution does not leave the Weyl
algebra stable [31]. Most of the standard treatment of QFT models deals with
the canonical variables directly, therefore we consider the problem of analyzing the
representations of the Heisenberg algebra directly. Let’s concentrate our attention
on the properties of operator N :

N =
∞∑
i=1

Ni Ni = a+
i ai. (45)

We admit that for any i usual regularity properties are satisfied.
Thus anyNi has the same spectrum as in case of finite numbers of degrees of freedom.
In fact it is sufficient to show that condition (25) is valid as before. Indeed it follows
from (1) and (24) that

[Ui(2π), aj] = 0; [Ui(2π), a+
j ] = 0 ∀i, j. (24′)

Condition (25) is the consequence of these equations and irreducibility of the repre-
sentation under consideration (see Section 7).

Let’s consider only a positive metric space case. It is evident that the existence of
operators Ni ≡ a

+
i ai , doesn’t automatically lead to the existence of N . The problem

of existence of operator N first were investigated in paper of Friedrichs [32]. Then
representations of CCR were studied by G̊arding and Wightman [33]. They found
that up to unitary equivalence there exists only one (Fock) representation, where
operator N exists (this statement has been proved in [34]).

It should be noted that rigorous consideration of the properties of N includes
subtle points as we deal with the infinite sequence of unbounded operators. These
problems were studied in papers of Dell’Antonio, Doplicher and Ruelle [35] and
Chaiken [36]. For example the existence of N depends on the notion of the con-
vergence. We avoid this problems by construction space H0, in which every vector
satisfies the following condition: Nix 6= 0 only for finite numbers of i. Thus sum
in (45) is a finite sum for every x ∈ H0 and operator N exists. Below we consider
CCR in this space.

For any operator Ni we have: SpNi = IN and thus SpN = IN. Moreover, it
follows directly from (1) and (20) that

Nai = ai(N − 1). (46)
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So, if
Nψ = nψ, (47)

then
Naiψ = (n− 1)aiψ. (48)

Continuing this process we obtain ψ0 such that

Nψ0 = 0. (49)

Eq.(49) implies that
aiψ0 = 0. ∀i (50)

Indeed, if aiψ0 6= 0, then in accordance with (48)

Naiψ0 = −aiψ0. (51)

But in positive metric space N has no negative eigenvalues.
In fact, if Nψ = −βψ, β > 0, then on the one hand < ψ,Nψ >= −β < ψ, ψ >,

on the other hand < ψ,Nψ >=
∞∑
i=1

< aiψ, aiψ >.

Thus the generalized condition (12) is fulfilled and there exists a cyclic vacuum
vector. Let’s point out that vectors (a+

i )m(a+
j )n . . . (a+

k )lψ0 form the basis in the
space H0.

In order to prove that all representations in which a cyclic vacuum vector ex-
ists are unitary equivalent it is sufficient to notice that all scalar products in H0

are fully determined by CCR. Thus the proof of the unitary equivalence of these
representations is the direct extension of the proof made in Section 8 for the case
n = 1.

Let’s point out that H0 is not a closed space. It is a pre-Hilbert space. By usual
way we can construct closure of this space, but this question is out of the scope of
this report.

In conclusion we turn our attention to the representations for which operator
N doesn’t exist. Roughly speaking it means that n = ∞ in eq.(47), so that every
state contains infinite number of particles. Evidently here we consider CCR in space
differing from H0. These representations are called strange. (Strictly speaking, as it
is pointed out in [36], strange representations can be also realized in spaces, where
operator N exists, but all vectors correspond the states with infinite numbers of
particles.) Strange representations can’t be avoid in QFT owing to their connection
with Haag’s theorem (see e.g. [37, 38]). The examples of such representations have
been described in [37, 36], see also the book of Segal [39].
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