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A review of a secret symmetry of the cold QCD realm is presented. The Regge trajectories of hadrons

prove to be related to infinite unitary multiplets of the SL(4, R) group. This group was suggested by

Ne’eman and Šijački for an exhaustive phenomenological classification of hadrons. We discuss exact

retarded solutions to the classical SU(N) Yang-Mills equations with the source composed of several

colored point particles. Relying on features of the solutions, it is shown that the color gauge group

of the background field generated by two- and three-quark clusters is just SL(4, R). The simultaneous

consideration of SU(N), SO(N), and Sp(N) as gauge groups offers a plausible explanation of the fact

that clusters containing two or three quarks are more stable than multiquark clusters.

By now, there are reasons to believe that the strongly interacting matter exists in two phases
which are referred to as the hadronic phase and the quark-gluon plasma phase (for a review, see

Meyer-Ortmanns, 1996). The phase transition is expected to occur at temperatures about 200
MeV or/and densities of some units of the normal nuclear density.

The phases differ energetically, but the most outstanding distinction resides in their sym-
metry properties. It is a common knowledge that the chiral symmetry broken in the hadronic

phase is regained above the critical point. However, the chirality criterion is unsound for distin-
guishing these phases since quarks have finite mass in both phases. Moreover, we deal actually

with two different phase transitions; the deconfinement is associated with large quark masses
while the chiral symmetry restoring transition is attributed to zero quark mass limit. It is not

yet clear whether these transitions persist for finite quark masses or whether they will occur
together (though lattice results indicate that both transitions occur at the same critical point).
One should, therefore, suggest another dissimilarity in symmetry.

At high temperatures, the asymptotical freedom dominates, hence the symmetry inherent
in the plasma phase must be nothing but the conventional color symmetry SU(3)c. One usually

consider SU(3)c to be unbroken in both phases. Should this be the case, what is the symmetry
of the hadronic phase?

The most striking feature of the hadronic phase is the clusterisation of quarks. Every quark
must be contained in some meson or barion. The hadronic world could be endowed with order

by means of the Regge trajectories shown as straight lines with a fixed slope on the Chew-
Frautschi plot of the mass squared M2 versus the angular momentum J; hadrons belonging to

some Regge trajectory are separated by intervals ∆J = 2. Besides, clusters containing more than
three quarks reveal themselves in nuclei (Baldin, 1977), being though less stable than hadrons.
On the other hand, a quark-gluon plasma lump is assumed to be color-neutral and, to a good

approximation, free of the cluster structure.
One usually think of the clusterisation as a dynamical effect. However, a more fundamental

standpoint is to examine the clusterisation as a manifestation of some symmetry. Let us begin
with the fact that Ne’eman and Šijački developed an exhaustive phenomenological classification

of hadrons where every Regge sequence is associated with an infinite multiplet of the SL(4, R)
group (Ne’eman and Šijački, 1988, 1993). This hints that SL(4, R) directly concerns with the

invariance properties of the hadronic phase. Where did this SL(4, R) come from? Dothan, Gell-
Mann and Ne’eman (Dothan et al., 1965) were the first to describe the Regge trajectories of
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mesons by infinite-dimensional unitary representations of SL(3, R). This group is generated by

the angular momentum operators Li and the quadrupole operators Tij with the commutation
relations

[Li , Lj ] = iεijk Lk, (1)

[Li , Tjk] = iεijl Tlk + iεikl Tjl, (2)

[Tij , Tkl] = −i (δikεjlm + δilεjkm + δjlεikm)Lm. (3)

The Lie algebra sl(3, R) represents the minimal scheme capable to explain two features of Regge
trajectories: The ∆J = 2 rule and the apparently infinite sequence of hadronic states. (We

mention in passing that the commutation relations of Li and Tij resemble those of the number
operator n and the creation and annihilation operators a and a+ in the harmonic oscillator

problem,
[n , a] = −a, [n , a+] = a+.

Just as a and a+ shift occupation numbers by one unite, so Tij raises or lowers eigenvalues of
the angular momentum squared by two units).

It was found (Dothan et al., 1965) that two infinite unitary representations belonging to the

ladder series

Dladd
SL(3,R)(0;R) : {J} = {0, 2, 4, . . .}, Dladd

SL(3,R)(1;R) : {J} = {1, 3, 5, . . .}

are associated with the π and ρ trajectories. In addition, there exists a unique spinorial ladder

representation related to the N trajectory

Dladd
SL(3,R)(

1

2
;R) : {J} = {1

2
,
5

2
,
9

2
, . . .}

while the representation starting with J = 3
2

belongs to the discrete series (Qgievetskii and
Sokachev, 1975).

Ddisc
SL(3,R)(

3

2
;R) : {J} = {3

2
,
5

2
,
72

2
,
92

2
,
112

2
. . .}.

Thus the SL(3, R) scheme, being usefully applied to the Regge trajectories of mesons, turns out
to be inadequate to account for those of baryons.

It was assumed (Ne’eman and Šijački, 1985) that matters can be improved by a simultaneous
application of sl(3, R) and so(1, 3). The commutation relations can be closed by embedding two
algebras in sl(4, R), a “relativistic generalization” of sl(3, R). With adopting this SL(4, R), one

can utilize SO(4), the maximal compact subgroup of SL(4, R) as a basis with JP content of some
(j1, j2) representation:

JP = (j1 + j2)
P , (j1 + j2 − 1)−P , . . . , (|j1− j2|)±P .

The operator Tij shifts SO(4) multiplets in (j1, j2) by ∆j1,2 = 2, and the structure of Regge
sequences is reproduced by such shifting. To put it differently, the SU(3)f octet states are

classified according to the Ddisc
SL(4,R)(

1
2
, 0)⊕Ddisc

SL(4,R)(0,
1
2
) representation while the symmetrized

product of this reducible representation and the finite-dimensional SL(4, R) representation ( 1
2
, 1

2
)

is used for the decuplet states. A remarkable fact is that we have arrived at all kinds of hadrons

with different total angular momenta J, the half-integer including. Although this scheme is
quite restrictive, it is in a good agreement with known data of hadronic spectroscopy (Ne’eman

and Šijački, 1988, 1993).
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Thus the symmetry of the hadronic phase proves to be SL(4, R) while that of the plasma

phase is SU(3)c. These groups differ greatly in mathematical properties. SL(4, R) is a non-
compact group with fifteen essential parameters. SU(3) is a compact group with six essential

parameters. SU(3) is not a subgroup of SL(4, R). Moreover, physically, these symmetries are
quite different. SU(3)c is a group of internal symmetry whereas SL(4, R) – in Ne’eman and Šijački
view – operates in spacetime. The situation is terrible: A spontaneous symmetry breakdown

scenario is inconceivable, any link between these symmetries is seemingly out of the question.
(To my best knowledge, Dothan and Gell-Mann never returned to this bizarre symmetry of the

hadronic realm).
It remains, however, to attempt tailoring SL(4, R) as the structure group to a fiber bundle

construction of the so-called strong gravity∗. There are two reasons for this. First, the mass
quadrupole operator of a K-particle cluster is

Qij =
K∑
I=1

mI (xIi xIj −
1

3
x2
I δij)

and its time derivative is

Q̇ij =
K∑
I=1

[xIi pIj + xIj pIi −
2

3
(xI · pI) δij],

where pIi = mI vIi . Thus Tij ≡ Q̇ij are just the above discussed quantities since their commuta-
tors, with taking into account the canonical commutation relations of xI and pI , give rise to the

sl(3, R) algebra, Eqs.(1)–(3), (Weaver and Biedenharn, 1970). This realization of the operator
Tij implies that the infinite unitary SL(3, R) multiplets are collections of excited hadron states

originating from appropriate ground states due to absorption of spin-2 quanta mediating strong
interactions.

Second, such an origin of Tij accounts for the possibility of classical radiation of a tensor

field in view of the well-known Einstein formula for the rate of gravitational energy emission,

dE

dt
=

k

45
(
...

Qij)
2.

The quadrupole excitations of hadrons cannot be produced by the conventional binding

mechanism attributed to the exchange of mesons of spin 0 or 1. Before the rise of QCD, an
ad hoc “strong gravity” hypothesis (Isham et al., 1971) was tried in which the f0 meson with

J = 2+ and the mass 1270 Mev was given a central role as the “strong graviton”. This idea was
left once it became clear that the mesons of spin 2 are usual quark-antiquark systems which,
being too massive, are not competitive with pions and other agents capable of producing a strong

coupling at low energy range.
Ne’eman and Šijački suggested a tensor operator

Gµν = tr (AµAν)

(with Aµ being the gluon field potential) for the role of an effective agent of strong interactions
in the infrared region (Ne’eman and Šijački, 1990, 1992). Gµν was intended to provide a color-
neutral two-gluon exchange between hadrons. This di-gluon construction represents a Riemanian

metric emulating gravity since it preserves the Lorentz group,

Dσ Gµν = 0.

∗The availability of the Lorentz group SO(1, 3), a subgroup of SL(4, R), in the fiber endows a formal resemblance
of this fibration to a gauge version of the standard gravitation.
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It behaves like graviton; it will stay massless because of Lorentz invariance, conservation of the

energy-momentum tensor and Einstein covariance relating to pseudo-diffeomorphisms, the local
SU(3)c transformations. The idea was to show that the quantum algebra of the operators Gµν

Lontains sl(4, R) as a subalgebra.
Unfortunately, this enterprise remained incomplete. Ne’eman and Šijački failed to establish

the ground state invariant under SL(4, R). But it is just this issue which is crucial for the

justification of the strong gravity as a whole.
Indeed, it has long been known that the invariance of the vacuum is the invariance of world

(Coleman, 1966): Once the ground state of a quantum-mechanical system is invariant under
some group of symmetry, both Hamiltonian and commutation relations of this system reveal

such invariance. However, this remarkable theorem does not tell us what is the invariance of
vacuum by itself.

This point became more clear only in the mid-70th when the attention of field theorists was
attracted to soliton-like solutions of classical field equations, and methods of the semiclassical

quantization about a nontrivial classical background were sufficiently elaborated (Rajaraman,
1982). The vacuum of a given field was shown to be related to some kind of the Bose condensate
of this field, quasi-particle excitations about it revealing themselves as field quanta. One may

also imagine vacuum as a state with no quantum excitation of the given field, yet filled with its
classical background. This led us to recognize that the invariance of the vacuum is nothing but

the invariance of the classical background. Thus the responsibility for the SL(4, R) symmetry
rests with the background described by some solution of the QCD equations in the classical

limit. It is the classical background generated by quarks in hadrons that provides the SL(4, R)
relief for gluon excitations.

Now I would like to present some results of the quest of the SL(4, R) gluon vacuum. An
important observation was that the classical limit of QCD is in line with the limit of infinite

number of colors (Yaffe, 1982; Das, 1987). In order to find the classical background, one should
substitute SU(3)c by SU(N )c and derive the QCD field equations in the large N limit. This is a
challenging task which is still unsolved. However, one may reasonably assume that the classical

SU(N ) Yang-Mills theory with large N is intimately related to the classical limit of QCD.
It should be point out that, given a theory with the action S invariant under SU(N ), this

automatically entails the invariance of S under SL(N,C). If we have no prior knowledge of the
symmetry, it can be identified by the structure constants fabc which appear in S. The specific

values of fabc entering into the action imply that S is invariant under SU(N ). However, for any
simple complex Lie algebra, there exists a basis, referred to as the Cartan basis, such that the

structure constants are found to be real, antisymmetric and identical to the structure constants
of the real compact form of this Lie algebra (see, e. g., Barut and Ra̧czka, 1977). The basis of

su(N ) is simultaneously the Cartan basis of its complexification sl(N,C). Thus the presence of
the structure constants of SU(N ) in S needs not be the evidence for that the symmetry of S is
SU(N ); allowing for the complex-valued field variables, we enlarge the symmetry up to SL(N,C).

There are two classes of exact retarded solutions to the classical Yang-Mills equations (for

a review and references, see Kosyakov, 1998). Solutions of either class are real valued and
invariant under SU(N ). By contrast, solutions of other class are complex valued with respect

to the Cartan basis of su(N ), but it is possible to convert them to the real form; in doing so the
solutions would be invariant under SL(N,R) or its subgroups. In particular, the background

generated by any three-quark cluster proves to be invariant under SL(4, R), and that generated
by any two-quark cluster is invariant under SL(3, R). Since SL(3, R) is a subgroup of SL(4, R),
the background field of every hadron is specified by the gauge group SL(4, R). This symmetry

is independent of N and is retained in the limit N →∞.
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Let us consider these findings in more detail. We are interesting in retarded solutions to the

classical SU(N ) Yang-Mills equations

DµFµν = 4πjµ, (4)

where the source

jµ(x) =
K∑
I=1

∫
dτI QI(τI) v

I
µ(τI) δ

4[x− zI(τI)]

is composed of K classical point particles, “quarks”, moving along timelike world lines zµI (τI)
parametrized by the proper times τI , v

I
µ ≡ dzIµ/dτI is the four-velocity of Ith particle. Each

particle is assigned a color charge QI = Qa
I Ta transforming as the adjoint representation of

SU(N ).

We begin with a retarded solution to the SU(2) Yang-Mills equations (4) in the single-quark
case (Kosyakov, 1991),

Aaµ = ∓ i

g
σa3

vµ
ρ

+ κ (σa1 ± iσa2 )Rµ. (5)

Here, g is the Yang-Mills coupling constant, σn Pauli matrices, κ arbitrary nonzero integration
constant. The lightlike vector Rµ ≡ xµ − zret

µ is drawn from the point of emission zret
µ to the

point of observation xµ, and ρ ≡ R · v the invariant distance between these points.
Note that Pauli matrices span the Cartan basis of su(2). Setting a new color basis

T1 ≡ iσ1, T2 ≡ σ2, T3 ≡ iσ3,

and considering the parameter κ to be imaginary, one rearranges the potential (5) to the form

Aµ = Aaµ Ta with real valued Aaµ. Elements of the new basis are traceless imaginary valued 2×2
matrices satisfying the commutation relations of the Lie algebra sl(2, R).

For κ = 0, the Yang-Mills equations (4) linearize, and one gets an Abelian solution

Aaµ = e3 σ
a
3

vµ
ρ
, (6)

(1’) with e3 being an arbitrary real constant.

Thus we get the retarded solutions (5) and (6) describing the single-quark background of
two different phases. The first phase is specified by the gauge group SL(2, R) while the second

by the gauge group SU(2).
The extension to SU(N ) offers no significant changes in the single-quark potential: In addi-

tion to a non-Abelian term [of the type of Eq.(5)] built out of a triplet of color vectors which
span the basis of the Lie algebra su(2), a subalgebra of su(N ), there is an Abelian term decou-
pled from the remainder of the solution in that they commute. he adequacy of the initial gauge

group SU(2) in the single-quark case is thus confirmed.
It is no great surprise that SL(2, C) stands out against SL(N,C), N > 2, in the single-quark

case. The metrical structure of the base embodied in the Lorentz group SL(2, C) is all that
should be mapped by the future light cone into the fiber, so that the color space SL(2, C) is the

only exact image. Proceeding from SO(N ) or Sp(N ) rather than SU(N ), one reaches the same
single-quark solution due to the isomorphisms

su(2) ∼ so(3) ∼ sp(1) and sl(2, R) ∼ su(1, 1) ∼ so(2, 1) ∼ sp(1, R),

or, more generally,

sl(2, C) ∼ so(2, C) ∼ sp(1, C).
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Next, turn to the two-quark case (Kosyakov, 1993, 1994). We adopt SU(3), the minimal

group whereby the retarded field generated by two bound quarks is constructed. The point is
that the field of a bound quark occupies individually some “elementary” SL(2, R) cell of the

color space while SL(3, C), the complexification of SU(3), contains two such cells.
One usually realizes su(3) with the aid of the Gell-Mann matrices Ta = λa/2. However, it

is more convenient for our purposes to use an overcomplete color basis spanned by the nonet of

3× 3 matrices including three diagonal matrices

H1 ≡
1

2
(λ3 +

λ8√
3
) =

1

3

 2 0 0
0 −1 0

0 0 −1

 , H2 ≡ −
1

2
(λ3−

λ8√
3
) =

1

3

−1 0 0
0 2 0

0 0 −1

 ,

H3 ≡ −
λ8√
3

=
1

3

−1 0 0

0 −1 0
0 0 2

 , (7)

(H) which are related by
3∑

n=1

Hn = 0,

and six raising and lowering matrices

E+
12 ≡

1

2
(λ1 + iλ2) =

 0 1 0
0 0 0

0 0 0

 , E−12 ≡ E+
21 ≡

1

2
(λ1 − iλ2) =

 0 0 0
1 0 0

0 0 0

 ,

E+
13 ≡

1

2
(λ4 + iλ5) =

 0 0 1
0 0 0

0 0 0

 , E−13 ≡ E+
31 ≡

1

2
(λ4 − iλ5) =

 0 0 0
0 0 0

1 0 0

 ,

E+
23 ≡

1

2
(λ6 + iλ7) =

 0 0 0

0 0 1
0 0 0

 , E−23 ≡ E+
32 ≡

1

2
(λ6 − iλ7) =

 0 0 0

0 0 0
0 1 0

 . (8)

(E) Given this color basis, three retarded solutions are

A(1)
µ = ∓2i

g
(H1

v1
µ

ρ1

+H2

v2
µ

ρ2

) + κ (E±13R
1
µ + E±23R

2
µ) δ(R

1 · R2). (9)

(2.1)

A(2)
µ = ∓2i

g
(H3

v1
µ

ρ1

+H1

v2
µ

ρ2

) + κ (E±32R
1
µ + E±12R

2
µ) δ(R

1 · R2). (10)

(2.2)

A(3)
µ = ∓2i

g
(H2

v1
µ

ρ1

+H3

v2
µ

ρ2

) + κ (E±21R
1
µ + E±31R

2
µ) δ(R

1 · R2). (11)

(2.3) They represent actually the same Yang-Mills field being related by gauge transformations.
The solutions (9)–(11) become real-valued with respect to the color basis

T1 ≡ i
λ1

2
, T2 ≡

λ2

2
, T3 ≡ i

λ3

2
, T4 ≡ i

λ4

2
,
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T5 ≡
λ5

2
, T6 ≡ i

λ6

2
, T7 ≡

λ7

2
, T8 ≡ i

λ8

2
,

or else

Hn ≡ i Hn, E±mn ≡ i E±mn.

With reference to the explicit form of Hn and E±mn, Eqs.(7)–(8), one finds that Hn and E±mn as

well as Tn are traceless imaginary 3×3 matrices satisfying the commutation relations of the Lie
algebra sl(3, R). hus the gauge symmetry of the solutions (9)–(11) is SL(3, R).

For κ = 0, a retarded solution is a superposition of two single-quark potentials (6),

Aµ =
2∑

I=1

3∑
n=1

eInHn

vIµ
ρI
. (12)

The gauge group of this solution is SU(3).

Thus we have the solutions (9)–(11) and (12) describing the two-quark backgrounds of two
different phases. The first phase is specified by the gauge group SL(3, R) containing two “ele-

mentary” color cells SL(2, R), while the second by the gauge group SU(3).
Starting from SO(N ) or Sp(N ) in the two-quark case, one arrives at other results as opposed

to SU(N ). Both the so(4, C) and so(5, C) color spaces are suitable for an accommodation of two
“elementary” color cells so(3, C) ∼ sl(2, C). But so(4, C) is not semisimple, and the Cartan-
Killing metric is singular here. As for so(5, C), it is isomorphic to sp(2, C), and we envisage

two alternatives in the description of the color space in the two-quark case, either sl(3, C) or
so(5, C) ∼ sp(2, C).

The discussion of solutions to Eq.(4) with the source composed of K quarks echoes in many
respects that in the two-quark case (Kosyakov, 1998). Starting from the gauge group SU(N ), one

obtains two types of solutions corresponding to two phases of the strongly interacting matter.
One can show that solutions with the noncompact gauge group SL(K + 1, R) correspond to the

background generated by K bound quarks in the cold phase, while solutions invariant under
the initial compact gauge group SU(N ) describe the background generated by quarks forming

a plasma lump in the hot phase.
The emergence of a classical solution invariant under a noncompact gauge group different

from the initial one is a new field-theoretic phenomenon named “spontaneous symmetry de-

formation” (Kosyakov, 1994, 1998). This phenomenon contrasts with the famous spontaneous
symmetry breakdown in three aspects.

First, we have no solution invariant under a subgroup of the initial gauge group; we deal
instead with solutions invariant under two different real forms of the complexification of the

initial group.
Second, both solutions are now stable against small disturbances despite the solution with

a noncompact symmetry group is more advantageous energetically than that with the compact
symmetry group. Third, the critical point κ = 0 is independent of parameters appearing in the

action, as opposed to the Yang-Mills-Higgs theory where the spontaneous symmetry breakdown
is directly related to parameters controlling the convexity of the Higgs potential.

A close look at the background generated by two-quark clusters, Eqs.(9)–(11), shows that, in

the cold phase, the background of each quark individually occupies some “elementary” sl(2, R)
cell. Neither of two backgrounds generated by different quarks may be contained in the same

sl(2, R). This is similar to the Pauli blocking principle. Just as a cell of volume h3 in the phase
space might be occupied by at most one fermion with a definite spin polarization, so any sl(2, R)

cell is intended for a background of only one quark. Choosing SO(N ) or Sp(N ) rather than
SU(N ), one singles out the same color sell so(2, 1)∼ sp(1, R) ∼ sl(2, R).
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On the other hand, in the hot phase, assuming the total color charge of quarks in a given

plasma lump to be zero, the parameters eIn in the solution like that of Eq.(12) are to be appro-
priately fitted. Then the most advantageous field configuration is such that the color charges of

quarks are lined up into a fixed color direction, thereby reducing SU(N ) to SU(2). This bears
resemblance to the Bose-Einstein condensation in the color space.

Thus the “color Pauli principle” preventing a body of K + 1 color cells against shrinkages

witnesses that the large-N limit is a self-consistency condition in the cold world containing
many bound quarks. Meanwhile the “color Bose-Einstein condensation” suggests the sufficiency

of SU(2) for the hot phase. Although one fails to reduce SU(N )c to SU(3)c, this phenomenon
shows promise of regaining SU(3)c in a more realistic model.

Let us touch on the three-quark case. There is no need for writting out the corresponding
solutions explicitly. We only remark that, starting from SU(N ), one finds the minimal simple

complex group containing three “elementary” color cells to be SL(4, C). Trying SO(N ) as the
gauge group, one arrives at the same result since so(6, C) ∼ sl(4, C). Starting from Sp(N ), the

gauge symmetry of the background generated by a three-quark cluster turns out to be Sp(3, C).
The fact that the gluon vacuum in the presence of two and three bound quarks has the gauge

symmetry SL(4, R) is in agreement with the Ne’eman and Šijački findings. But, in the present

context, an additional degeneracy of Regge multiplets is the case. This is due to the existence
of alternative gauge symmetries of the gluon vacuum in the two-quark and three-quark cases,

SO(3, 2) ∼ Sp(2, R) and Sp(3, R), respectively.
Notice that SL(4, R) of Ne’eman and Šijački operates in spacetime while the present SL(4, R)

acts in the color space. However, it is conceivable that two arenas interweave; gluon excitations
about the background with the SL(4, R) color symmetry will manifest themselves as if their color

degrees of freedom were converted into spin degrees of freedom described by irreducible unitary
representations of the Lorentz group SO(1, 3), a subgroup of SL(4, R). A conversion of isospin

into spin in gauge theories discovered in the mid-70th (Jackiw and Rebbi, 1976; Hasenfratz and
’t Hooft, 1976) seems to be of the direct relevance to our discussion. This phenomenon has its
origin in a combination of some singular gauge field of magnetic type, such as the magnetic field

generated by a monopole, and an isospin-degenerate field which is the source of a Coulomb-like
electric field.

However, this similarity is not quite complete. An external color field with an appropriate
SL(4, R) degeneracy generating a long-range counterpart of the initial background field is hardly

adoptable to the present constructions. On the other hand, restricting the consideration to a
pure Yang-Mills system, one faces infrared divergences due to certain excitation modes.

We regard every K-quark cluster on the equal footing. It is well known, however, that
hadrons are much more stable than multiquark clusters. One may wonder what a plausible

explanation of this fact may be. We can envision consecutive constructions of the classical
Yang-Mills systems, with the color spaces SL(N,C), SO(N,C), and Sp(N,C). There is nothing
to decide between these alternatives; the “elementary” color cell is the same for any choosing.

Hence all should persist and interfere. Is there the largest color cell outside of which three classi-
cal pictures become quite different? Such a sell does correspond to the three-quark case. It should

be recognized that the interference of distinct color backgrounds is responsible for the splitting of
energetical levels, which leads to the decay of clusters. No interference occurs in the single-quark

case because sl(2, C) ∼ so(3, C) ∼ sp(1, C). In the two-quark and three-quark cases, two alterna-
tives interfere, respectively, sl(3, R) and so(3, 2) ∼ sp(2, R), and sp(3, R) and sl(4, R) ∼ so(3, 3).

Thus clusters with two or three quarks are moderately stable. For n > 4, there are no iso-
morphisms between members of the series sl(n, C), so(2n − 1, C), sp(n, C), and so(2n, C).

Therefore, the interference of three alternatives keeps multiquark clusters away from stability.
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These considerations based on the existence of only four classical Cartan series of simple
complex continuous groups, An, Bn, Cn, and Dn, or, in more usual physical notations, SL(N,C),

SO(2n+1, C), Sp(N,C), and SO(2n, C), are quite general. I do not know any other explanation
of the fact that only two-quark and three-quark clusters might be moderately stable.

Finally, I would like to thank the Organizing Committee of the Workshop for furnishing
the opportunity to give this review lecture. This work was supported in part by International
Science and Technology Center under Project No.208.
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