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Multidimensional geometric models of physical interactions of Kaluza-Klein’s type
are considered. In these models, (1) for additional coordinates the topology of n-
torus is used, (2) the additional coordinate dependence of the mixed components of
the multidimensional metric is introduced and (3) the reduction to a 4-dimensional
theory is carried out using the n-adic method in a gauge like the 4-dimensional
chronometric one. It is shown that (a) it is possible to unify general relativity
with the Weinberg-Salam theory of electroweak interactions in the framework of 7-
dimensional geometric model, (b) the unification of general relativity and classical
chromodynamics is possible in the framework of 8-dimensional geometric model.

1. Introduction

The gauge point of view on the nature of physical interactions is known to dominate in
the 20th century physics. However, physics may have geometrical way.

The development of the geometric approach to the physical interactions was begun by
A.Einstein, which suggected the geometric explanation of gravitation. In the 4-dimensional

space-time of general relativity the square of the interval between two neighbouring points is

ds2 = gµνdx
µdxν, (µ, ν = 0, 1, 2, 3). (1)

Einstein showed that the components of the metric tensor gµν replace Newton’s single gravita-

tional potential.
In 1919-1921, T.Kaluza [1] suggested a unified theory of gravitation and electromagnetism

on the basis of a 5-dimensional curved space-time, in which the square of the 5-dimensional
interval is

dI2 = GABdx
AdxB, (A,B = 0, 1, 2, 3, 5). (2)

In this theory the mixed components of the 5-dimensional metric tensor G5µ correspond to the
electromagnetic vector potential Aµ.

The research into 5-dimensional theory developed unevenly. The interest in this problem
rose and fell alternately. In the 1920s – 1930s, this theory was developed by H.Mandel, L. de

Broglie, A.Einstein [2], P.Bergmann and other physicists.
Another branch of the 5-dimensional geometric models was developed by O.Klein [3], V.A.

Fock [4], Yu.B.Rumer [5] and other physicists. Kaluza’s theory and Klein’s one deal with different
additional dimensions. Nevertheless, all the multidimensional geometric models are admitted to

be called Kaluza-Klein’s.
There were a set of difficulties in the 5-dimensional models, which prevented from its develop-

ment. The pioneer works of these trends proved to be premature. They revealed the problems

unsolvable promptly, whereas the standard approach was less conjectural and allowed one to
bypass acute problems. The situation changed in the 1970s when Weinberg-Salam’s model of

electroweak interactions was developed.
Physics could have advanced toward Kaluza-Klein’s type multidimensional geometrical mod-

els, as demonstrated by a renewed interest inspired in them since late seventies and lasting for
the last decades. The results of the gauge theories of physical interactions existing now may be

achieved in the framework of these models.
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In this article based on the our previous works [6, 7, 8, 9], it is shown that the geometric

analogy of Weinberg-Salam’s electroweak interaction model can be developed in the framework
of the 7-dimensional curved space-time. This theory unified Einstein’s theory of gravitation and

the known electroweak interaction model.
Einstein’s general relativity can be combined with the classical chromodynamics in the frame-

work of the 8-dimensional geometric model [9, 18] of Kaluza-Klein’s type.

2. Five-dimensional Kaluza’s theory

Kaluza postulated that at the foundations of every mathematical description of the
universe there is a curved five-dimensional world with one time and four spatial coordinates.

In such a manifold, the metric tensor GAB (each capital Latin index A, B, C, etc., can take
the values 0, 1, 2, 3, 5) has 15 components. They correspond to the ten components of the

4-dimensional metric tensor gµν , the four components of the electromagnetic vector potential
Aµ, and one more as yet unindentified component G55:

GAB =


G00 G01 G02 G03 G05

G10 G11 G12 G13 G15

G20 G21 G22 G23 G25

G30 G31 G32 G33 G35

G50 G51 G52 G53 G55

 ≡
(
Gµν Gµ5

G5µ G55

)
→
(
gµν Aµ
Aν G55

)
. (3)

The fifth dimension is different from the four classical ones. The space must be closed
(compacted) in the fifth coordinate. The wave functions of a charge particles depend on the
fifth coordinate as

Ψ = ψ(xµ) exp(iαε5x
5) ≡ ψ(xµ) exp

(
iecε5

2
√
kgh̄

x5

)
, (4)

where ψ(xµ) is the part of the quantity, which depends only on the classical coordinates, e is
the electrical charge of the electron, h̄ is Planck’s constant, kg is the Newtonian gravitational

constant, ε5 is a dimensionless parameter. The period

T =
2π

α
= 4π

√
h̄kg
c3
·
√
h̄c

e2
' 10−31cm (5)

of the dependence of Ψ on x5 is extremely short in comparison with the distance for which the
standard equations hold.

In Kaluza theory it is supposed that the components of 5-dimensional metric tensor are

indepent of the fifth coordinate:
∂GAB

∂x5
= 0. (6)

To express the 5-dimensional geometric quantities and expressions in terms of the conven-

tional 4-dimensional concepts, it is necessary to use a reduction of the theory to the 4-dimensional
space-time, i.e. to apply the 4+1 splitting procedure [2]. It is performed by means of the monad

method in special gauge like the chronometric gauge [10, 11] used in general relativity. The
monad method can be represented by 4 constituents: (a) an algebra of the monad method; (b)
specification of monad physico-geometric tensors; (c) definition of monad derivative operators;

(d) presentation of basic relations in the monad form, i.e., in terms of only 4-dimensionally
projected tensor quantities, monad physico-geometric tensors and monad derivative operators.
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(a) Algebra of the monad method. In a generally covariant form the 5-metric GAB is

presented as follows:
GAB = gAB − λAλB, (7)

where λA is the 5-dimensional vector (monad). It is orthogonal to the 4-dimensional metric

tensor gAB.
In the gauge like the chronometric one, the vector λA is directed along the x5 lines, i.e.

λA =
GA

5√
−G55

→ λB =
G5B√
−G55

; gµν = Gµν −
G5µG5ν

G55

. (8)

In this gauge, the following class of coordinate transformations is selected from the whole

set of admissible ones:

x′5 = x′5(x0, x1, x2, x3, x5); (9)

x′µ = x′µ(x0, x1, x2, x3). (10)

The physically interpreted quantities are those which are invariant under the transformations

(9) and covariant under the 4-dimensional transformations (10). These neighbours are satisfied
by the 4-dimensional metric tensor and 4-dimensionally projected quantities, as well as scalars

obtained by projection of tensor quantities onto the monad direction.
In such theory the electromagnetic vector potential is presented as follows:

Aµ =
c2

2
√
kg
λ5λµ ≡ −

c2

2
√
kg

G5µ

G55

→ G5µ =
2
√
kg

c2
Aµ, (11)

where we put G55 = −1; kg is Newtonian gravitational constant.

(b) In the most general case, there are three monad physico-geometric tensors. How-

ever, taking into account (6) and G55 = −1, we have only one nonzero tensor

F̃µν =
1

2

(
∂λν
∂xµ
− ∂λµ
∂xν

)
=

√
kg
c2

(
∂Aν
∂xµ

− ∂Aµ
∂xν

)
, (12)

which corresponds to the electromagnetic tensor strength.

(c) In the Kaluza theory a basic role is played by two monad differential operators:

∂
†
5 = λA

∂

∂xA
= λ5 ∂

∂x5
; (13)

∂†µ = gAµ
∂

∂xA
=

∂

∂xµ
+G5µ

∂

∂x5
. (14)

The operator (14) must be put into correspondence to the extended derivative in the standard
theory of the electromagnetic interactions:

∂†µΨ→
(
∂

∂xµ
+
ieQ

ch̄
Aµ

)
ψ. (15)

Taking into account (4), we must postulate that the electrical charge of a particle is characterized
by eigenvalue of the operator (13), i.e., the harmonics ε5 in the exponential dependence of

quantities on the fifth coordinate determines the value of the electric charge (in the units e):

Q = ε5. (16)
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(d) Presentation of basic relations in the monad form leads to important results.

We now enumerate the indoubtable successes (“Kaluza’s miracles”) of the 5-dimensional unified
theory:

(1) the fifteen 5-dimensional “Einstein equations” in vacuum decompose into the standard
system of the ten 4-dimensional equations of Einstein (of electrovacuum type), and system of
the four standard Maxwell equations without sources on the right-hand sides, and, in general,

one extra scalar equation;
(2) if the fifth coordinate is space-like, then we get a standard tensor for the energy-

momentum of the electromagnetic field (with an appropriate sign) on the right-hand side of
the 4-dimensional Einstein equations;

(3) four of the five geodesic equations are standard equations of motion for an electrically
charged particle in gravitational and an electromagnetic field;

(4) the gradient (gauge) transformations in standard electrodynamics A′µ → Aµ + ∂f/∂xµ

correspond to admissible transformations of the fifth coordinate, x′5 = x5 + f(x0, x1, x2, x3).

This variant of the 5-dimensional theory did not gain the trust of physicists for some fairly
reasons. They were enumerated in [6, 11].

3. Kaluza-Klein’s theory

3.1. 5-Dimensional Klein-Fock-Rumer’s theory

In another branch of 5-dimensional theory developed by O.Klein [3], V.A.Fock [4] and
Yu.B.Rumer [5], it is postulated another dependence of quantities on the additional coordinate

Ψ = ψ(xµ) exp(iβx4) ≡ ψ(xµ) exp

(
imc

h̄
x4

)
, (17)

where m is the mass of a particle, β is a small parameter, characterizing the compactification
period of the additional coordinate, noted as x4. In the branch of 5-dimensional theory, it is also

used the monad method. The physical meaning of the additional coordinate x4 is the classical
action.

As Rumer emphasized, the geometrization of the electromagnetic field was not a main in-

tention of this theory. With the help of the fifth coordinate the mass terms were introduced in
equations. However, it was temptation to introduce also the electromagnetic field with the help

of the same additional coordinate.
The failure of Rumer’s 5-dimensional theory was mainly due to the assumption that the

5-dimensional interval along the particle’s path was assumed to vanish. This meant that the
fifth component of five-velocity dξ/ds ≡ ξMdxM/ds was unity, and hence the electrical charge of

the particles could not be brought into the equations of motion. Rumer attemped to find a way
out of this situation by identifying extra components of the five-metric with electromagnetic

quantities, i.e.

G̃µ4 =
q

mc2
Aµ, (18)

where e is the particle’s electrical charge. However, space-time then became dependent upon the

properties of a concrete particle, that is, it became configurational (each particle had its own
space). Moreover, a universal space-time had also to be postulated beside the configurational

one. How to combine the two spaces was a question which defeated him (and it may even be
unanswerable in the framework of a 5-dimensional theory).
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3.2. 6-Dimensional Kaluza-Klein’s theory

If, however, Rumer’s work is generalized to a 6-dimensional theory with two additional
coordinates x4 and x5, the above-mentioned difficulties do not occur. In this theory quantities

should have the following dependence on the additional coordinates:

Ψ = ψ(xµ) exp(iβx4 + iαx5), (19)

where α and β corespond to ones in Eqs. (4) and (17).
In this model it is necessary to use a reduction of the theory to the 4-dimensional space-

time, i.e. to apply the 4+1+1 splitting procedure to the original 6-dimensional manifold. It is
performed by means of the dyad method in a special gauge like the twice chronometric gauge

used in general relativity. The metric tensor GMN of the 6-dimensional manofold may be written
as

GMN = gMN − ξMξN − λMλN , (20)

where gMN is the metric tensor of the classical space- time, ξM and λN are two 6-dimensional
space-like vectors (dyad).

The interaction of a particle is described by the dyadic differential operator

∂††µ =
∂

∂xµ
+ (ξ4ξµ + λ4λµ)

∂

∂x4
+ λ5λµ

∂

∂x5
, (21)

which is invariant under the permissible transformations of additional coordinates and covariant

under the 4-dimensional transformations (10).
The combination λ5λµ is identified, as (11), with the electromagnetic vector potential Aµ.

However, in this theory there is another combination ξ4ξµ + λ4λµ, which depends on the com-

ponents G4µ. What is its physical meaning? It is difficult to answer this question in the frame
of the geometrical paradigm. However, there are reasons [9] to assume that the combination

is also proportional to the electromagnetic potential Aµ. Then the corresponding term in (21)
means an additional small interactions of electromagnetic type.

4. 7-Dimensional geometric model of gravi-electroweak
interactions

4.1. Main ideas and methods of the 7-dimensional model

To construct a multidimensional geometric model of gravi-electroweak interactions, it is

necessary to solve the following problems:
1. Give an adequate geometric foundation of two quantized charges, namely, the hypercharge

Y and the isotopic spin projection T3.
2. Indicate a geometric image of four vector fields: Bµ and the triplet A(s)µ (where s=1, 2,

3), the carriers of the electroweak interactions in the Weinberg-Salam model.
3. Show that the nonlinear expressions for the tensors describing the vector field strengths,

corresponding to a non-Abelian nature of the SU(2) group, arise naturally in the geometric
model.

4. Show that the multidimensional scalar curvature makes it possible to obtain all the com-

ponents of the Lagrangian density of four vector fields, possessing the U(1)× SU(2) symmetry,
known from the Weinberg-Salam model.

5. Describe the fermion field doublet — the neitrino and the electron (for a single generation
of leptons).
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6. Show that the standard methods of describing spinors in curved space-time lead to the

known expressions in the Lagrangian density of interaction of the fermion doublet with the
intermediate vector bosons.

7. Indicate a geometric analogue of the known Higgs mechanism for the introduction of
particle rest masses.

To solve all these and other problems, it is suggested to use the following geometric ideas

and methods:
(i) It has proved to be necessary to increase the space-time dimension by two (plus one)

units. Specifically, this is dictated by solving the first of the above problems. In multidimensial
theory the charges are known to have up to constant factors, the meaning of momenta along the

additional coordinates.
(ii) The extra dimensions should be compactified, i.e., closed with a very small period. It

is suggested to use the simplest topology of a 3-torus. This requires a cyclic dependence of all
quantities on the additional coordinates:

Ψ = ψ(xµ) exp[iβx4 + iα(ε5x
5 + ε6x

6)], (22)

where ψ(xµ) is the part of quantities, both geometric and those introduced to the geometry

from outside, which depend only on the classical coordinates, β and α are small parameters of
dimension [cm−1], characterizing the extra-dimension compactification periods, ε5 and ε6 are

dimensionless parameters. This distinguishes the present approach from the majority of others
[12, 13] where the topology of a sphere was used (see also [14]).

(iii) In the 7-dimensional space with the considered signature (+−−−|−−−) spinors must

have 8 complex components [15]. In the theory under consideration this 8-component spinor
Ψ is presented in terms of the conventional 4-component spinors describing an electron and a

neitrino.
(iv) In accordance with the spirit of general relativity, the key (basic) expression is chosen

as a 7-dimensional Lagrangian hyperdensity, consisting of a geometric part and the contribution
of spinor matter:

L(7) =
√
G(7)

[ 7R

2æ̃c
+
ih̄c

2
ΨΓM∇MΨ + (h.c.)

]
, (23)

where h.c. means the Hermitian conjugate expression; G(7) is the determinant of the matrixGMN

of the 7-dimensional metric tensor; 7R is the 7-dimensional scalar curvature and the covariant
derivative is

∇MΨ =
∂Ψ

∂xM
− 1

4
∆M (NP )Γ(N )Γ(P )Ψ, (24)

where ∆M (NP ) are an 7-dimensional Ricci rotation coefficients. ΓM are 8 × 8 matrices which
satisfy

ΓMΓN + ΓNΓM = 2GMNI8 (25)

with the index M = 0, 1, 2, 3, 4, 5, 6.
(v) An essentially new feature of this theory as compared with general relativity and the 5-

dimensinal Kaluza theory is that it is allowed for some components of the metric to be complex.

An explanantion is that in this theory it is suggested to describe the charged vector W± bosons
(and the charged scalar Higgs bosons) in terms of metric components.

(vi) To introduce the particle rest masses, it is suggested to use a procedure similar to the
Higgs mechanism. Herewith, the scalar fields are assumed to be stipulated by a conformal

factor. This means a transition from the original 7-dimensional metric to a conformally corre-
sponding one, where the conformal factor is expressed in terms of one of the additional diagonal

components of the metric.
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(vii) To express the multidimensional geometric quantities and expressions in terms of the

conventional 4-dimensional concepts of the standard Weinberg-Salam model, it is necessary to
use a reduction of the theory to the 4-dimensional space-time, i.e. to apply the 4+1+1+1

splitting procedure to the original 7-dimensional manifold. It is performed by means of the triad
method in a special gauge like the thrice chronometric gauge used in general relativity.

Recall that the triad method, as well as the monad one, can be represented by 4 constituents.

(viii) The final expression for the 4-dimensional Lagrangian density of gravi-electroweak in-
teractions is obtained from the 7-dimensional hyperdensity (23) as a result of averaging over

the small periods of extra coordinate dependence. After integration of the Lagrangian hyper-
density in dx4, dx5 and dx6, all exponential terms like (22), which have not cancelled due to

multiplication of components, disappers, thus resulting in an expression that depends only on
the 4 classical coordinates.

4.2. The metric and the physico-geometric tensors

Using the ideas of the monad and dyad methods, let us expound the necessary informa-
tion on the triad method of 4+1+1+1 splitting. We will follow the ordinary scheme: algebra,
notation of physico-geometric tensors and the basic expressions in the tetrad form. The 7-

dimensional metric tensor in the above chosen signature has the following form in the triad
method:

GMN = gMN − ξMξN − λMλN − σMσN , (26)

where the triadic vectors ξM , λM and σM satisfy ortonormality conditions.

In a direct generalization of the 5-dimensional Kaluza theory, each new dimension will intro-
duce a new real vector field. In the 7-dimensional approach there are three such vectors, namely,

the 4-dimensional parts of three triadic 7-vectors, ξµ, λµ, σµ. However, in the Weinberg-Salam
model there are four vector fields: two neutral ones (Bµ and A(3)µ) and two charges ones (A(1)µ
and A(2)µ). Hence, in a direct generalization of Kaluza theory it is possible obtain only neutral
vector fields, and in order to introduce charged vector fields, it is necessary to go beyond the
frames of traditional Kaluza-Klein theory — to admit that the triadic vectors contain terms de-

pending in a cyclic manner on the additionsl coordinates. The coefficients by the corresponding
harmonics should be identified with new (charged) vector fields. As was shown in [8, 9], we must

put
ξα = C40Bα +C43A(3)α + C+

4 W
+
α exp[2iαx6] + C−4 W

−
α exp[−2iαx6]; (27)

λα = C50Bα + C53A(3)α + C+
5 W

+
α exp[2iαx6] +C−5 W

−
α exp[−2iαx6]; (28)

σα = C60Bα + C63A(3)α + C+
6 W

+
α exp[2iαx6] + C−6 W

−
α exp[−2iαx6], (29)

where C40, · · · are some constants, W+
α and W−

α , are connected with A(1)α and A(2)α by the
standard relations W±

α = (1/
√

2)(A(1)α ∓A(2)α).

We can construct a number of 4-dimensional tensors from the components of the 7-dimensional
metric tensor and their first-order derivatives. In the present case of greatest interest are three
second-rank antisymmetric tensors:

F
(4)
αβ =

1

2
gMα g

N
β (ξM,N − ξN,M ); F

(5)
αβ =

1

2
gMα g

N
β (λM,N − λN,M );

F
(6)
αβ =

1

2
gMα g

N
β (σM,N − σN,M ), (30)
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which correspond (but not directly) to two antisymmetric tensors of the Weinberg-Salam model:

F (B)µν =
∂Bν
∂xµ

− ∂Bµ
∂xν

; ~Fµν =
∂ ~Aν
∂xµ

− ∂ ~Aµ
∂xν

− ig2

h̄c
( ~Aµ ~Aν − ~Aν ~Aµ), (31)

where the arrows designate the matrix nature of the corresponding quantities. Thus ~Aµ contains
the triplet of vector fields A(s)µ according to the formula ~Aµ = (1/2)×∑3

s=1A(s)µσ(s), where

σ(s) are the three Pauli matrices.
Special attention should be paid to the nonlinear components in the right-hand side of (31),

connected with the non-Abelian nature of the gauge fields A(s)µ in the Weinberg-Salam model.
In the 7-dimensional theory the expressions (30) contain nonlinear terms of a similar type. To

assure this, it is sufficient to note that the components gMα have the form

gβα = Gβ
α = δβα; g6

α = σ6σα + λ6λα + ξ6ξα. (32)

Writing out the tensors (30), taking into account the extra coordinate dependence of the
triadic vectors and the coordinate transformation freedom (we can put λ6 ∼ σ4 ∼ σ5 ∼ 0), we

have:

F
(4)
αβ =

1

2

[
(ξα,β − ξβ,α) + σ6(σβξα,6 − σαξβ,6)

]
; (33)

F
(5)
αβ =

1

2

[
(λα,β − λβ,α) + σ6(σβλα,6 − σαλβ,6)

]
; (34)

F (6)
αβ =

1

2

[
(σα,β − σβ,α) + σ6(σβσα,6 − σασβ,6)

]
. (35)

In the triadic form the 7-dimensional scalar curvature is presented in the following way:

7R =4R+ F
(4)
αβ F

(4)αβ + F
(5)
αβ F

(5)αβ + F
(6)
αβ F

(6)αβ + · · · . (36)

Just the second, third and fourth terms on the right describe the contributions of the interme-
diate vector bosons to the Lagrangian hyperdensity.

Recall that the gauge vector fields in the Weinberg-Salam model give the following contri-
bution to the Lagrangian density [16]:

Lv.f = − 1

16π
F (B)µνF (B)µν − 1

8π
Sp ~Fµν ~F

µν , (37)

where the last term is constructed according to (31).
The geometric contributions from the vector fields in the Lagrangian hyperdensity and the

contributions of vector fields (37) of the Weinberg-Salam model chould coincide, i.e.:

− 1

4æ

∫ [(
F

(4)
αβ F

(4)αβ + F
(5)
αβ F

(5)αβ + F
(6)
αβ F

(6)αβ
)]
dx6 = Lv.f . (38)

Expressing the geometric strength tensors in terms of triadic vectors according to the (30) and
averaging over the compactification period of extra dimensions, we obtain the 10 conditions
upon the coefficients of neutral and charged vector fields in (27) – (29).

There are two possibilities:

1)
4kg
c4
−
(

g2

2ασ6(h̄c)

)2

> 0; 2)
4kg
c4

=

(
g2

2ασ6(h̄c)

)2

. (39)
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Let us choose the second case. From the conditions we obtain the following expressions for

for the coefficients of neutral vector fields:

C60 = C43 = C53 = 0; C63 = ±2
√
kg

c2
; C2

40 + C2
50 =

4kg
c4

(40)

and the following conditions for the coefficients of the charged vector fields:

C+
6 C

−
6 = −2kg

c4
; (C+

4 C
−
6 + C−4 C

+
6 )2 + (C+

5 C
−
6 +C−5 C

+
6 )2 = 0; C+

4 C
−
4 +C+

5 C
−
5 =

6kg
c4
. (41)

4.3. Triadic differential operators and neutral vector fields

Let us consider another component of the triad method: specification of differential

operators in the gauge used. There are four such independent operators invariant under the
permissible transformations of the additional coordinates and covariant under the 4-dimensional
transformations:

∂
††
4 = ξN

∂

∂xN
= ξ4 ∂

∂x4
; (42)

∂
††
5 = λN

∂

∂xN
= λ5 ∂

∂x5
; (43)

∂
††
6 = σN

∂

∂xN
= σ6 ∂

∂x6
; (44)

∂††α = gNα
∂

∂xN
=

∂

∂xα
+ ξα∂

††
4 + λα∂

††
5 + σα∂

††
6 . (45)

The operator (45) can be put into correspondence to the extended derivative in the Weinberg-

Salam model

∂††α Ψ→
(
I2

∂

∂xα
− ig1

h̄c
I2

Y

2
Bα −

ig2

h̄c
T (s)A(s)α

)
ψ, (46)

where Ψ is an arbitrary field function. Hence it follows that the additional coordinate dependence
corresponds to the existence of a particle’s isotopic spin (T3) or hypercharge Y .

We postulate that the interaction with the neutral field Bα is characterized by the operator
(43). Hence the harmonic ε5 in exponential dependence of the quantities on the additional
coordinates determines the value of the hypercharge Y , i.e.

ε5 = Y. (47)

We postulate that the interaction with the triplet of vector fields A(s)α is characterized by
the operator (44). Consequently the factor ε6 inthe exponents is equal to twice the isotopic spin

value T3 in the Weinberg-Salam model:

ε6 = 2T3. (48)

Combining (43) and (44), we arrive at the universal formula for the electrical charge value
(in the units e) in the present 7-dimensional model

Q =
1

2
Y + T3 =

1

2
(ε5 + ε6), (49)

corresponding to the well-known formula in the Weinberg-Salam model.
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In the 7-dimensional model one can obtain geometric expressions for the electromagnetic

vector potential, the Z-boson, the electric charge and the Weinberg angle. To do so, we shall
indicate the extra coordinate dependence of the neutral Higgs boson (of geometric origin) in

accordance to (43) and (44). It is easy to show that mass vector field (Z-boson) and massles
vector field (electromagnetic field) are presented in the forms:

Zµ =
c2

2
√
kg

λ5λ̃µ − σ6σ̃µ√
(σ6)2 + (λ5)2

=
c2

2
√
kg

(λ̃µ sin θW − σ̃µ cos θW ); (50)

Aµ = − c2

2
√
kg

σ6λ̃µ + λ5σ̃µ√
(σ6)2 + (λ5)2

= − c2

2
√
kg

(λ̃µ cos θW + σ̃µ sin θW ), (51)

where we have introduced the angle θW which corresponds to the Weinberg angle:

sin θW =
λ5√

(σ6)2 + (λ5)2
; cos θW =

σ6√
(σ6)2 + (λ5)2

. (52)

In (50) and (51) the tilde marks only the neutral part of the triadic vectors.
A comparison of (45) and (46) leads to a geometric interpretation of the charges. Thus,

for the electrical charge e and the charge g determining interaction with the Z-boson, we have,

respectively,

e =
4
√
kg
c2

h̄c
αλ5σ6√

(λ5)2 + (σ6)2
; g =

4
√
kg

c2
h̄cα

√
(λ5)2 + (σ6)2. (53)

From these or other formulae it is possible to determine relations between the constants:

αλ5 =
c2g1

4
√
kgh̄c

; ασ6 =
c2g2

4
√
kgh̄c

; α−1 = 2
√

3
h̄
√
kg

ec
' 1, 7 · 10−31cm, (54)

where we put λ5 ' 1; σ6 '
√

3; λ6 = 0.

4.4. The fermion sector of the 7-dimensional model

In a consideration of fermions in the 7-dimensional theory, it is necessary to elucidate
the following issues:

1. The 7-hedron method. In 7-dimensional theory, spinors should be described using the

7-hedron method, such that the 7-dimensional metric tensor is presented in the form

Gµν =
∑
P

GM(P )GN(P ) =
∑
α

gM (α)gN(α)− ξMξN − λMλN − σMσN , (55)

where
GM(α) = gM(α); GM (4) = ξM ; GM (5) = λM ; GM (6) = σM (56)

with the corresponding orthonormality conditions.
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2. Representation of the matrices ΓM . In the 7-dimensional theory, the role of the Dirac

matrices is played by the 8-row matrices ΓM . However, by (25) they are coordinate dependent.
A direct generalization of the constant Dirac matrices is presented by projections of the matrices

ΓM onto a local set of orthogonal vectors of the 7-hedron Γ(P ) = ΓMG
M (P ). These constant

vectors (their coordinate dependence is transferred to the 7-hedron components) are generators
of the Clifford algebra C(1, 6) [15].

We choose the following representation of the matrices:

Γ(α) = ΓNg
N(α) =

(
0 γ(α)

γ(α) 0

)
; (57)

Γ(4) = i

(
I4 0
0 −I4

)
; Γ(5) =

(
0 γ5

γ5 0

)
; Γ(6) =

(
0 −I4

I4 0

)
, (58)

where I4 is the 4-row unit matrix and γ(α) ≡ γα are the constant 4-row Dirac matrices.

3. The left and right components of spinors. According to the representation of the
Γ(M) matrices (57) – (58), the 8-component Ψ-function are naturally split into two 4-component

functions:

Ψ =

(
Ψ(1)
Ψ(2)

)
→ Ψ = Ψ†Γ(0) = (Ψ(2),Ψ(1)), (59)

where Ψ(s) = Ψ†(s)γ(0); s = 1, 2.

Let us decompose the 4-component functions into the left and right constituents by the
standard formulae:

ΨL(s) =
1

2
(1 + iγ5)Ψ(s)→ ΨL(s) =

1

2
Ψ(s)(1− iγ5);

ΨR(s) =
1

2
(1− iγ5)Ψ(s)→ ΨR(s) =

1

2
Ψ(s)(1 + iγ5), (60)

then we have for (59)

Ψ =

(
ΨL(1) + ΨR(1)

ΨL(2) + ΨR(2)

)
; Ψ = (ΨL(2) + ΨR(2); ΨL(1) + ΨR(1)). (61)

4. The dependence of the functions on the additional coordinates. In the Weinberg-

Salam model the left and right components of the leptons have different isotopic properties and
different hypercharges. According to Eqs. (22), (47) and (48), we introduce the x5 and x6

dependence of the spinor functions

ΨL(s) =
(
aLsνLe

iβx6

+ bLseLe
−iβx6

)
e−iαx

5

; ΨR(s) = aRsνR + bRseRe
−2iαx5

, (62)

where s = 1, 2; aLs, aRs, bLs, bRs are constant coefficients determined from normalization condi-

tions and correspondence with the standard relations of the Weinberg-Salam model.
The right component of neutrino can be excluded by putting aR1 = aR2 = 0 (it is massless),

and the right component of an electron can be considered as isoscalar, so that, in particular,
we can put bR1 = 1; bR2 = 0. Then the nonzero left components of the leptons in (62) have the

form of a 2-component spinor, consisting of νL and eL, in isotopic space.
The data on the x5 and x6 dependences of all the above quantities (in a coordinate frame

where λ6 = 0) are collected in Table 1.
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Particles x5 Hyper- x5 Isospin
dependence charge Y dependence projection T3

Isodoublet

νL exp(−iαx5) −1 exp(iαx6) +1/2

eL exp(−iαx5) −1 exp(−iαx6) −1/2

Singlets
νR exp(0) 0 exp(0) 0

eR exp(−2iαx5) −2 exp(0) 0

Bα exp(0) 0 exp(0) 0

Isotriplet
W+
α exp(0) 0 exp(2iαx6) +1

W−
α exp(0) 0 exp(−2iαx6) −1

A(3)α exp(0) 0 exp(0) 0

Isodoublet

ϕ0 exp(iαx5) 1 exp(−iαx6) −1/2

ϕ+ exp(iαx5) 1 exp(iαx6) +1/2

4.5. Higgs scalar fields and rest masses

In the 7-dimensional theory the doublet of the Higgs scalar fields arises from the con-

formal factor χ2 in

G̃MN = χ2GMN ;

√
G̃(7) = χ7

√
G(7), (63)

where G̃MN is the initial 7-dimensional metric tensor. In the above consideration we had deal

with the resulting metric tensor GMN . It is suggested to put χ2 = −G̃44.
Using the known formulae for conformal transformations, we obtain the geometric La-

grangian hyperdensity in the form

−
√
G̃(7)

2æ̃c
7R̃ = −

√
G(7)

2æ̃c
χ5

(
7R− 12GMN∇M∇Nχ

χ
− 18GMN χ,Mχ,N

χ2

)
. (64)

In the present case our point of interest is the terms described the scalar field. After the

4+1+1+1 splitting they have the following form

L̃χ = −3
√
G(7)

æ̃c
χ3{5gµν(∂††µ χ)∂††ν χ+

+ 2χ[∂
††2
4 χ+ ∂

††2
5 χ+ ∂

††2
6 χ] + 3[(∂

††
4 χ)2 + (∂

††
5 χ)2 + (∂

††
6 χ)2]}+ h.c. (65)

According to Eqs. (47) and (48), we introduce the x5 and x6 dependence of the conformal
factor

χ = 1 + b0

(
ϕ0 exp[iα(x5 − x6)]− ϕ?0 exp[−iα(x5 − x6)]

)
+

+ b+

(
ϕ+ exp[iα(x5 + x6)]− ϕ?+ exp[−iα(x5 + x6)]

)
, (66)

where b0, b+ are constants, ϕ0 I ϕ+ are complex scalar fields, which correspond to the neutral
and charged components of Higgs doublet. Let us put b0 6= 0; b+ = 0 in accordance with the
special (unitar) gauge of Weinberg-Salam’s model.
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Substituting (66) in (65) and averaging over compactification periods of extra dimensions,

we find the Lagrangian density of the Higgs neutral scalar field:

Lϕ =
30

æ

√
G(7)b2

0

{
gµν(∂††µ ϕ?0)∂††ν ϕ0 − α2[(λ5)2 + (σ6)2]ϕ?0ϕ0

}
+ O(b4

0). (67)

The Higgs mechanism corresponds to presentation of the ϕ0 in the form ϕ0 = η0 +φ0, where
η0 is a constant, φ0 is an effective scalar field.

In 7-dimensional theory, all particles are originally massless. Z- and W-boson rest masses
arise due to interactions with the scalar field ϕ0 via the mechanism like that of Higgs’s. In

particular, Z-boson rest mass is

mzc
2 =' 2(h̄c)(b0η0)

2α
√

(λ5)2 + (σ6)2. (68)

In our work [9] it was shown that the fermion rest masses have another nature. There are two
contributions to a fermion mass. First one arises from derivations of the fermion wave functions

upon the additional coordinates. The second contribution is conditioned by extra coordinate
derivations of the Higgs scalar field contained in the 7-dimensional Ricci rotation coefficients

∆M (NP ). These contributions are equal each other and have opposite signs. Therefore, to
obtain non-zero rest masses we must introduce the x4 dependence of fermion wave functions.

Then the fermion rest masses arise from x4 derivations of the fermions wave function (22).

5. The 8-dimensional geometrical model of gravi-strong
interactions

5.1. Main ideas and methods of the 8-dimensional model

To construct a multidimensional geometrical model of gravi-strong interactions, we
should solve the following problems:

1. It is necessary to describe 3 kinds of colour charges of chromodynamics [16, 17] by
geometric methods.

2. As in chromodynamics, the strong interactions are transfered by 8 kinds of gluons, it
is necessary to show the geometric image of these physical vector fields in a multidimensional

geometric model.
3. The gauge group SU(3) leads to essentially nonlinear expressions in the boson sector of

the Lagrangian. We should show that all these nonlinear terms can be described in the frames

of a multidimensional geometric model of Kaluza-Klein type.
4. We should demonstrate also that it is possible to describe the interaction of fermions with

gluons in accordance with the fermion sector of chromodynamics [9, 18].
To solve the above problems, the following ideas and methods were used:

(i) As has been previously shown [19], the 7th dimension is insufficient for solving the
above problems. It was suggested to use an 8-dimensional geometric model with the signature

(+− −− | − −− −). The main reason for introducing three additional dimensions (in addition
to the four classical coordinates and x4) is the necessity to describe three colour charges (to

solve the first problem from the above list). The charges in Kaluza-Klein theory are known to
correspond to additional momentum components. Three charges are the three new dimensions
(of momentum). We denote these three additional coordinates as x7, x8, x9 taking into account

that all previous numbers are occupied to describe the classical space-time and electro-weak
interactions.
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(ii) Three additional coordinates are chosen to be compact. It is suggested to use 3-torus

topology. It means all fields possessing colour charges should depend on the additional coordi-
nates in a cyclic manner. To describe the three colour states of quarks, it is suggested to use

their following dependence on the additional coordinates:

q1 ∼ exp(iγx7); q2 ∼ exp(iγx8); q3 ∼ exp(iγx9); (69)

where γ is some new constant determining a compactification radius of additional dimensions
characterizing the strong interactions. Due to the symmetry of all three charges in chromody-

namics, these constants are chosen equal for all dimensions.
(iii) To describe the 8 gluons, it is suggested to use a metric version of an 8-dimensional

theory, where all gluons are described by the multidimensional metric, as is the case in the
7-dimensional model of gravi-electroweak interactions.

Two of 8 gluons are known to be neutral in the sense of colour and six ones are charged.

According to (69), the charged gluons should have the following dependence on the additional
coordinates:

X±µ ∼ exp[∓iγ(x7− x8)]; Y ±µ ∼ exp[∓iγ(x7− x9)]; Z±µ ∼ exp[∓iγ(x8− x9)]. (70)

(iv) In the standard approach to the description of spinors using Clifford’s algebra over the
field of real numbers there is a close relation between the dimension and signature of the manifold

and the number of spinor components. For the dimension 8 we should use 16-component spinors.
(v) In accordance with the spirit of general relativity, the key expression is chosen as an

8-dimensional Lagrangian hyperdensity consisting of a geometric part and a spinor matter con-

tribution:

L(8) =
√
−G(8)

[−8R

2æ̃c
+
ih̄c

2
ΨΓM∇MΨ + (h.c.)

]
, (71)

where G(8) = det(G8), 8R is the 8-dimensional scalar curvature; ΓM are 16× 16 Dirac matrices
which satisfy (25) with the index M = 0, 1, 2, 3, 4, 7, 8, 9.

(vi) As in the other papers [7, 8, 19], it is suggested to use a generalization of the monad
method for 4 additional coordinates. In this case it is the tetrad method of 4+1+1+1+1 splitting.

(vii) To obtain the ultimate formulae, the 8-dimensional expression must be averaged (inte-
grated) over the additional coordinates.

5.2. The metric and the physico-geometric tensors

Using the ideas of the monad, dyad and triad methods, let us expound the necessary
information on the tetrad method of 4+1+1+1+1 splitting. The 8-dimensional metric tensor in

the above chosen signature has the following form in the tetrad method:

G
(8)
MN = gMN − ξMξN − ζMζN − ηMηN − ωMωN , (72)

where ξM , ζM , ηM , ωM are the four 8-dimensional tetradic vectors that satisfy to orthonormality
conditions. We will use a gauge like the 4-chronometric one in the general relativity, when the

tetradic vector components depend on the components of the 8-dimensional metric tensor in the
following way:

ξM =
GM

4√
−G44

; ωM =
ĜM

9√
−Ĝ99

; ηM =
G̃M

8√
−G̃88

; ζM =
˜̃G
M

7√
− ˜̃G77

, (73)
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where

ĜMN = 8GMN + ξMξN ; G̃MN = ĜMN + ωMωN ;
˜̃
GMN = G̃MN + ηMηN . (74)

The metric tensor components have much involved expressions in the tetrad method, therefore
we will not write them out here.

By analogy with the 7-dimensional geometric model of gravi-electroweak interactions, we
will suppose that the 4-dimensional components of the tetrad vectors depend in a cyclic manner

on the additional coordinates x7, x8, x9 and do not depend on x4:

ξα = C0{a4Aα + b4Bα + x+
4 X

+
α exp[−iβ(x7 − x8)] + x−4 X

−
α exp[iβ(x7− x8)]+

+y+
4 Y

+
α exp[−iβ(x7 − x9)] + y−4 Y

−
α exp[iβ(x7− x9)]+

+ z+
4 Z

+
α exp[−iβ(x8 − x9)] + z−4 Z

−
α exp[iβ(x8− x9)]}. (75)

Here C0 is some dimensional constant and as, bs, x
±
s , y±s , z±s are dimensionless constants which

should be determined from the correspondence with the bosonic sector of chromodynamics. The

vector fields Aα, Bα, X±α , Y ±α , Z±α represent the 8 gluon fields of standard chromodynamics. The
other tetrad vectors ζα, ηα, ωα have the same form (75) with the difference that the lower index

of the constants a4, b4, x
±
4 , y

±
4 , z

±
4 shuld be replaced by 7, 8, 9 for ζα, ηα, ωα, respectively.

In addition, we will be restricted to the case when the non-diagonal “scalar” components of

the tetrad vectors are zero:

ξ9 = ξ8 = ξ7 = ζ8 = ζ9 = η9 = 0. (76)

Therefore due to the symmetry it is natural to put

ξ4 = ζ7 = η8 = ω9. (77)

Using the tetrad method, a number of physico-geometric tensors are built from the compo-

nents of the metric tensor and their first-order derivatives. Let us write down four tensors only,
which correspond (but not directly) to the antisymmetric gluon fields tensors in chromodynam-

ics:

F
(4)
αβ =

1

2
[(ξα,β − ξβ,α) + ζ7(ζβξα,7 − ζαξβ,7) + η8(ηβξα,8 − ηαξβ,8) + ω9(ωβζα,9 − ωαζβ,9)]; (78)

F (7)
αβ =

1

2
[(ζα,β − ζβ,α) + ζ7(ζβζα,7 − ζαζβ,7) + η8(ηβζα,8 − ηαζβ,8) + ω9(ωβζα,9 − ωαζβ,9)]; (79)

F
(8)
αβ =

1

2
[(ηα,β − ηβ,α) + ζ7(ζβηα,7 − ζαηβ,7) + η8(ηβηα,8 − ηαηβ,8) + ω9(ωβηα,9 − ωαηβ,9)]; (80)

F
(9)
αβ =

1

2
[(ωα,β − ωβ,α) + ζ7(ζβωα,7− ζαωβ,7) + η8(ηβωα,8− ηαωβ,8) + ω9(ωβωα,9−ωαωβ,9)], (81)

where there is no dependence on x4 because the cylindricity condition with respect to x4 is used.
For our purpose, of greatest interest is the 8-dimensional scalar curvature 8R contained in

the Lagrangian hyperdensity (71). After the 4+1+1+1+1 splitting it has the following form:

8R = 4R+ F
(4)
αβ F

(4)αβ + F
(7)
αβ F

(7)αβ + F
(8)
αβ F

(8)αβ + F
(9)
αβ F

(9)αβ + . . . , (82)

where the dots replace other physico-geometric tensors describing the mass terms.
The boson sector of the 8-dimensional geometric model is described by the first part of the

Lagrangian hyperdensity (71), where the expression (82) for the 8-dimensional scalar curvature
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is used. The 4-dimensional scalar curvature 4R obviously describes the gravity, and the remain-

ing terms in (82) conform to the Lagrangian of vector boson fields in standard chromodynamics.
Below we will assume that the gravitational contribution is negligibly small and discuss only

the gluon contributions in the actually flat 4-dimensional space-time. Introducing in (82) the
representation (75) of the tetrad components in the form of physical gluon fields and exponen-
tial terms, we get, after averaging with respect to the additional coordinates, a 4-dimensional

geometric Lagrangian density. The expression is very long and we will not write it down here.

5.3. The boson sector of 8-dimensional geometric model

We must show that it is possible to choose the coefficients from (75) in such a way that
the boson geometric part will be equal to the boson part of standard chromodynamics.

Comparing the density of geometric Lagrangian density of the 8-dimensional model with
boson part of the correspondent density in standard chromodynamics, we obtain 46 conditions

(equations) for the 33 coefficients of resolution of tetrad vector fields of gluons and for one
constant C = βζ7C0/g0, where g0 is the constant of the SU(3) group in chromodynamics. It

should be noted that the set of equations that has been obtained is not overdetermined. Solving
it, we find:

a4 = 0; a7 = −a8 = ± 1√
2

; a9 = 0; (83)

b4 = 0; b7 = b8 = ± 1√
6

; b9 = ∓
√

2

3
; C = ± 1√

2
. (84)

In all these expressions the plus-minus signs correspond to one another. The point is that these
coefficients are contained in a number of expressions squared. It is of interest to note that the

solutions for two triplets of coefficients numbered 7, 8, 9 conform to two (diagonal) Gell-Mann’s
matrices λ3 and λ8.

Substituting these solutions into the remaining equations, we find solutions for the ”charged”
coefficients. Let us write out the coefficients with the indices ”4” separately:

x+
4 = x−4 = y+

4 = y−4 = z+
4 = z−4 = ±1. (85)

It is convenient to represent the remaining coefficients with indices “7, 8, 9” in a 3-dimensional
vector form: ~x± = (x±7 , x

±
8 , x

±
9 ). 8 pairs of solutions are found for them. We present them in the

form of a Table 2:

Variant 1 Variant 2 Variant 3 Variant 4

~x− (0,±1, 0) (±1, 0, 0) (0,±1, 0) (±1, 0, 0)
~x+ (±1, 0, 0) (0,±1, 0) (±1, 0, 0) (0,±1, 0)

~y− (0, 0,±1) (±1, 0, 0) (0, 0,∓1) (∓1, 0, 0)
~y+ (±1, 0, 0) (0, 0,±1) (∓1, 0, 0) (0, 0,∓1)

~z− (0, 0,±1) (0,±1, 0) (0, 0,∓1) (0,∓1, 0)
~z+ (0,±1, 0) (0, 0,±1) (0,∓1, 0) (0, 0,∓1)

Variant 5 Variant 6 Variant 7 Variant 8

~x− (0,∓1, 0) (∓1, 0, 0) (0,∓1, 0) (∓1, 0, 0)

~x+ (∓1, 0, 0) (0,∓1, 0) (∓1, 0, 0) (0,∓1, 0)
~y− (0, 0,±1) (±1, 0, 0) (0, 0,∓1) (∓1, 0, 0)

~y+ (±1, 0, 0) (0, 0,±1) (∓1, 0, 0) (0, 0,∓1)
~z− (0, 0,∓1) (0,∓1, 0) (0, 0,±1) (0,±1, 0)

~z+ (0,∓1, 0) (0, 0,∓1) (0,±1, 0) (0, 0,±1)
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The totality of this solutions is doubled due to the two signs before the coefficients with

index “4” in (85). It will be shown later on that the conditions following from correspondence
of fermion sectors of two theories single out the first variant of solutions. The form of this

solution conforms to the structure of three pairs of Gell-Mann’s non-diagonal matrices in the

Cartan-Weil basis if we construct 3× 3 matrices from the coefficients −→x
±
,−→y

±
,−→z

±
in a special

manner.

Let us write out the tetrad components (75) for the first variant of the solutions:

ξα = C0[X+
α exp[−iβ(x7 − x8)] +X−α exp[iβ(x7 − x8)] + Y +

α exp[−iβ(x7 − x9)]+

Y −α exp[iβ(x7 − x9)] + Z+
α exp[−iβ(x8 − x9)] + Z−α exp[iβ(x8 − x9)]]; (86)

ζα = C0[
1√
2
Aα +

1√
6
Bα + X+

α exp[−iβ(x7 − x8)] + Y +
α exp[−iβ(x7 − x9)]]; (87)

ηα = C0[− 1√
2
Aα +

1√
6
Bα +X−α exp[iβ(x7− x8)] + Z+

α exp[−iβ(x8 − x9)]]; (88)

ωα = C0

[
− 2√

6
Bα + Y −α exp[iβ(x7− x9)] + Z−α exp[iβ(x8− x9)]

]
. (89)

In the earlier version of a 7-dimensional model of gravi-strong interactions [19] the analogous
problem of finding the coefficients in the triad components (75) was solved. The same solutions
(83) – (84) for the “neutral” coefficients were found and for the “charged” ones other 8 pairs of

solutions were obtained.

5.4. The differential operators and the neutral vector fields

In the present geometrical model a basic role is played by tetrad differential operators:

∂?4 = ξM
∂

∂xM
⇒ ξ4 ∂

∂x4
; (90)

∂?7 = ζM
∂

∂xM
⇒ ζ7 ∂

∂x7
; (91)

∂?8 = ηM
∂

∂xM
⇒ η8 ∂

∂x8
; (92)

∂?9 = ωM
∂

∂xM
⇒ ω9 ∂

∂x9
; (93)

∂?µ = gMµ
∂

∂xM
=

∂

∂xµ
+ ξµ∂

?
4 + ζµ∂

?
7 + ηµ∂

?
8 + ωµ∂

?
9 . (94)

The action of all these operators depends neither on the rang nor on the covariance of

quantities to be differentiated. The last operator (94) conforms to the long derivative in chro-
modynamics. Assume that this operator acts to an arbitrary function Ψ with the following

dependence on the additional coordinates:

Ψ = ψ(xα) exp[iβx4 + iγ(ε7x
7 + ε8x

8 + ε9x
9)], (95)
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where ψ(xα) depends only on the four classical coordinates. Using the solutions (83) – (84) for

the coefficients before neutral vector fields, the following expression for the long derivative is
obtained:

∂?µΨ =

[
∂

∂xµ
+
√

2iγ̃Co
ε7 − ε8

2
Aµ +

√
2iγ̃Co

ε7 + ε8 − 2ε9

2
√

3
Bµ + · · ·

]
Ψ. (96)

Here the upper signs in the solutions (83) – (84) are chosen; γ̃ = γη7. Comparing the long

derivative of standard chromodynamics with that in (96) in the 8-dimensional model, one gets
the following relations:

Qa =
1

2
(ε7 − ε8); Qb =

1

2
√

3
(ε7 + ε8 − 2ε9). (97)

Using these formulas and above ones (69), (70) for the dependence on the additional coor-
dinates, let us write out the harmonics and the charges for all the relevant particles in the form

of a Table 3:

Particles ε7 ε8 ε9 Qa Qb Qc

q1 ≡ qR 1 0 0 1/2 1/2
√

3 1/3

Quarks q2 ≡ qY 0 1 0 −1/2 1/2
√

3 1/3

q3 ≡ qG 0 0 1 0 −1/
√

3 1/3

Aµ, Bµ 0 0 0 0 0 0
Gluons X+

µ −1 1 0 −1 0 0

Y +
µ −1 0 1 −1/2 −

√
3/2 0

Z+
µ 0 −1 1 1/2 0 −

√
3/2 0

All charges are given in the units g0.
Finally, let us show the physical meaning of the differential operators (91) – (93). The

eigenvalues of three combinations of these operators represent the above defined values of charges
multiplied by some coefficients:

1

2
(∂?7 − ∂?8 )Ψ = iγ̃QaΨ;

1

2
√

3
(∂?7 + ∂?8 − 2∂?9 )Ψ = iγ̃QbΨ;

1

3
(∂?7 + ∂?8 + ∂?9)Ψ = iγ̃QcΨ. (98)

The rest differential operator (90) should interpret as mass one.

5.5. The fermion sector of the 8-dimensional model

Let us turn to the discussion of the fermion sector in the 8-dimensional model of gravi-
strong interactions. If we neglect the gravitational interaction and exlude the mass terms, the

non-geometrical part of the Lagrangian hyperdensity takes the following form:

LFerm =

√−g
2

(ih̄cΨΓ̃µ∂∗µΨ + . . .) + (h.c.), (99)

where the long derivative operator is written in (94) and the 16 × 16 matrices generalizing the
Dirac matrices are projected onto the 4-dimensional direction: Γ̃µ = ΓMgµM .

Choose for the matrices Γ̃µ following representation in terms of the standard 4 × 4 Dirac
matrices γµ (in flat space-time):

Γ̃µ =


0 0 0 γµ

0 0 γµ 0

0 γµ 0 0
γµ 0 0 0

 . (100)
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In the 8-dimensional manifold with these Γ̃ -matrices we will use the 16-component complex

spinors:

Ψ =


Ψ(1)

Ψ(2)
Ψ(3)
Ψ(4)

⇒ Ψ = Ψ†Γ(0) = (Ψ(4),Ψ(3),Ψ(2),Ψ(1)), (101)

where Ψ(s) and Ψ(s) = Ψ†(s)γ(0) are 4-component complex spinors (s = 1, 2, 3, 4).
Taking into account the symmetry of the three quarks, it is suggestive to use the following

representation of the above spinors in terms of the quark wave functions:

Ψ(s) = cs[q1 exp(iβx7) + q2 exp(iβx8) + q3 exp(iβx9)], (102)

where, in accordance with (69), for three quark colours a cyclic dependence on the additional
coordinates is introduced; qi are the parts of quark wave functions depending only on the 4 co-

ordinates, cs are the four complex coefficients to be determined from the conformity to standard
chromodynamics.

Substituting (101), (102) into (99) and averaging with respect to periods of the additional
coordinates, one obtains a 4-dimensional form of the fermion part of Lagrangian density. Com-
paring it with the fermion sector of chromodynamics, one obtains a set of 9 independent algebraic

relations between the constants cs and the coefficients of the boson sector as, bs, x
±
s , y

±
s , z

±
s . As-

suming the coefficients cs to be equal, we obtain these conditions in a form:

a7 =
1

2C
; a8 = − 1

2C
; a9 = 0; b7 =

1

2
√

3C
; b8 =

1

2
√

3C
; b9 = − 1√

3C
; (103)

x+
7 + x−8 = y+

7 + y−9 = z+
8 + z−9 =

√
2

C
(104)

There is one more condition for the coefficients cs

c∗1c1 + c∗2c2 + c∗3c3 + c∗4c4 = 1. (105)

Using these relations in the first variant of the solutions for the coefficients as, bs, x
±
s , y±s , z±s

written in Table 2, we find that the relations (103) – (104) are satisfied identically. The condition
(105) is satisfied if we put

c1 = c2 = c3 = c4 =
1

2
. (106)

It should be noted that three more variants from Table 2 satisfy the above conditions unless
we put the coefficients cs to be equal.

Conclusion

Finishing the paper, we make some conclusions and remarks:

1. Based on Kaluza-Klein’s ideas, one manages to develop concrete versions of multidi-
mensional geometrical models unifying general relativity with theory of other interactions, in

particular:
(1) 5- and 6-dimensional geometrical models of the unified theory of gravitation and elec-

tromagnetism developing and generalizing Kaluza and Klein-Rumer’s versions of 5-dimensional
theories;
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(2) 7-dimensional version of the unified theory of gravitational and electroweak interactions

combining the patterns of Einstein’s general relativity and Weinberg-Salam’s electroweak inter-
action model (the latter is well embedded in the 7-dimensional theory);

(3) 8-dimensional geometrical model of gravitational and strong interactions unifying General
Relativity with classical chromodynamics.

2. A futher increase in dimensions up to ten allows one to construct the unified geometrical

theory of gravi-electroweak and strong interactions.
3. There are the set of the principal problems of Kaluza-Klein’s classical models, among

them including
(i) the additional dimension compactification problem;

(ii) the problem of number of using harmonics in the cyclic dependence of all quantities on
the additional coordinates;

(iii) the dimension number problem for multidimensional models;
(iv) the problem of physical meaning of solutions of Einstein’s multidimensional equations.

In author’s opinion, these and other problems should be solved beyond the geometrical
paradigm.

4. In our works [9, 20] it was developed another approach to the physical interacting, named

binary geometrophysics. The physical basis of this approach comprises ideas of three kinds:
1) a macroscopic nature of the classical space-time,

2) a direct interparticle action (Fokker-Feynman’s action-at-a-distance concept, an alterna-
tive to field theory),

3) Kaluza-Klein’s type multidimensional geometrical models of physical interactions.
A prototype of the multidimensional metric is derived from binary geometrophysics notions,

which justifies Kaluza-Klein’s type multidimensional geometrical models of physical interactions
and, in particular, the idea of additional dimensions in the microworld manifesting themselves

as electroweak and strong interactions.
A thorough analysis of multidimensional geometrical models from binary geometrophysics

viewpoint permitted us to revise the principal difficulties of the Kaluza-Klein’s classical models.
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