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Abstract

In the present publication a covariant approach to the SRT allowing arbi-

trary, including non-inertial, frames of reference (FR) in the plane Minkowski
space-time is developed. It was shown that the coordinate transformations

of the FR of a moving mass (for the uniform motion — the generalized
Galilee transformations) do not coincide with the symmetry group transfor-

mations — the generalized Lorentz-Poincare group. In particular, the time
coordinate transformation may be arbitrary and has nothing to do with the

Lorentz transformations. However the proper time is the Minkowski space
invariant and does not depend on this arbitrariness. The proper time of a

particle moving in an initial inertial Galilee FR I (connected with the galactic
background) always runs slower than in the FR I, i. e. the time deceleration
effect is absolute, but not relative. Upon comparison of the proper time of

the particle and a laboratory, both moving in the Galilee FR I, the absolute
velocity of the laboratory appears explicitly (for the Earth experiments it is

the Sun velocity with respect to the Galaxy center). Thus this velocity may
be experimentally detected by comparison of the tempos of two atom clocks

moving in different directions in the experiments using a satellite.

1. Introduction. A covariant formulation of the SRT

The present paper is a direct (an immediate) continuation of our previous work [1]
based on a covariant approach to the SRT formulated in the monograph [2] and is devoted
to the further development of that approach. Some questions considered here are described
in our paper [3] in a more detailed way. Certain aspects of the SRT covariant formulations
had been considered earlier in [4–6], but a successive covariant construction of the theory
is given only in [1–3]. Let us remind the basic postulates and some conclusions of [1].

The essence of the SRT, its basic and actually unique postulate can be formulated
in the following way: “all physical processes run in the unit Minkowski time-space, the
geometry of which is pseudo-Euclidean”. In other words, we postulate that in the whole
space there is a physical frame of reference (FR) called an inertial (Galilee) one in which
the interval between events of this space is written as

ds2 = c2dT 2 − dX2 − dY 2 − dZ2. (1)

In general, in the Minkowski space-time any FR in which the interval 1 has the general
form

ds2 = gikdx
idxk (2)

and which satisfies the allowance conditions g00 > 0; gαβdx
αdxβ < 0 is allowed.
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The curvature tensor becomes zero identically: Riklm = 0 in any FR of the Minkowski
space, including non-inertial (accelerated) one. The transformations connecting FR’s of
the real moving bodies (particles of matter) with the initial inertial Galilee FR 1 can be
either linear or non-linear ones. The first ones (which are always non-orthogonal ones [3]
for the real bodies and, therefore, not coinciding with the Lorentz transformations!) form
a so-called generalized inertial FR (with non-orthogonal axes t, x) the metrics of which has
the off-diagonal part g0i �= 0, the second ones give in turn the non-inertial (accelerated)
FR’s (also with a nondiagonal metrics). The particular case of the generalized inertial
FR is the FR connected with the inertial one 1 by the classic Galilee transformation:
X = x + V t; t = T , and corresponding to rotation of the axis T with fixed orientation
of the axis X. The properties of the generalized inertial FR’s are explicitly considered
in [1–3].

Let us pass from Galilee’s coordinates Xi = (X, Y, Z, T ) with the metric 1 to coordi-
nates xi = (x, y, z, t) by arbitrary linear transformation. This transformation is equivalent
up to a space axis rotation to a transformation in plane X, T :

X = ax+ bt; T = qx+ pt; Y = y; Z = z. (3)

Substituting (3) in (1), in coordinates xi the metric gets the form:

ds2 = c2g00dt
2 + 2cg01dtdx+ g11dx

2 − dy2 − dz2, (4)

where g00 = p2−b2/c2; g01 = c(pq−ab/c2); g11 = c2q2−a2. The transformation 3 describes
the rotation of the axes x, t in the plane X, T , with after the rotation the axis x can be
not orthogonal to the axis t, i.e. x and t rotate on angles, which may differ. The metric
4 gives a generalized inertial frame of reference in the SRT. The Lorentz transformations
are a particular case of the general linear transformations 3, corresponding to the choice
g00 = 1, g01 = 0, g11 = −1 in 4. Hence, the metric 4, in contrast to (1), is not forminvariant
with respect to the Lorentz transformations.

Let us consider a rotation of axis t without changing of the x orientation as particular
case of the transformation 3. It is the classic Galilee transformation:

X = x+ v0t; T = t, (5)

corresponding to the choice of parameters in 3 as R = a = 1; q = 0; b = v0. Thus, the
metric 4 get the form:

ds2 =

(
1− v20

c2

)
c2 dt2 − 2v0 dt dx − dx2 − dy2 − dz2. (6)

The metrics of the inertial (Galilee) FR 1 is forminvariant with respect to the classic
Lorentz-Poincare transformation group Lim. The metrics of the generalized inertial FR is
that with respect to the so-called generalized inertial Lorentz-Poincare group [1] connected
with the classic one by the relation

L̂nkx
k =

[
Bni L

i
m(B

−1)mk
]
xk. (7)
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where Bik is the matrix of the linear (non-orthogonal) transformations forming the gen-
eralized inertial FR xi = BikX

k. The transformations (7) are orthogonal [3] but connect
the number of non-orthogonal FR’s with the same nondiagonal metrics.

In the particular case of the Galilee transformation with metric 6 the group of trans-
formations, keeping the metric 6 forminvariant, takes the form:

xN =
1√

1− V 2/c2

{(
1 +

uV

c2

)
xS +

(
1− u2

c2

)
V tS

}

tN =
1√

1− V 2/c2

{
V

c2
xS +

(
1− V u

c2

)
tS

}
.

(8)

At u = 0 8 coincides with the Lorentz transformation, naturally.
Finally, the metrics of any noninertial FR is forminvariant with respect to the gener-

alized noninertial Lorentz-Poincare group [1] having the form in symbols

Ln(xk) = fn
[
Lim(f

−1)m(xk)
]
, (9)

where fn are non-linear functions of a transformation forming a noninertial FR.
Therefore the transformations leaving some metrics (2) forminvariant are also those of

symmetry (invariance) group of all physical laws written in this metrics. These transfor-
mations of the symmetry group cannot be associated with the real body motion, they are
only realized as transformations of abstract 4-motions (changing of the point arithmetiza-
tion) in the Minkowski space with a fixed physical body as the origin [3]. Particularly, in
the generalized inertial FR the parameter V of the symmetry group (7) (of the generalized
inertial Lorentz one) is not connected with the velocity V0 of the uniform motion of the
real body in the inertial Galilee FR (see fig. 1). In spite of this the physical manifestation
of this generalized Lorentz symmetry of the space-time and all the laws of nature are
universal and fundamental — it accounts for all known relativistic effects and relations
for physically measurable values in any FR, as well as the conservation laws.

Figure 1: The geometrical sense of the transformations of the generalized inertial Lorentz group

(7) for the case when Bik is classic Galilee transformations. The axis t turns by “angle” BLB−1,
the axis X does only by “angle” L, axes t′, X ′ remain non-orthogonal, and the parameter V of

the Lorentz rotation L is arbitrary.
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From this viewpoint it is naturally to generalize the symmetry groups on the super-
luminal domain V > c (because V is the velocity of abstract 4-motions, but not of real
particles motion of any kind) manifesting itself as the charge or mirror space symmetry
(concerning this see [9] and bibliography listed there).

The existence of the metric forminvariance group in any allowed FR (inertial or not)
expresses the generalized relativity principle [1, 2].

As far as the Minkowski space-time geometry doesn’t vary under any FR transforma-
tion allowed and remains a plane pseudo-Euclidean one, in the noninertial FR there is a
group of the coordinate transformations leaving forminvariant the metric tensor. Thus, in
the pseudo-Euclidean space-time a generalized relativity principle is valid (first formulated
in [2]; our formulation is almost the same):

“Any physical frame of reference, inertial (including generalized) or noniner-
tial one, being taken, one can always find the infinite number of other FR’s, in
which all physical processes run uniformly with the initial FR (i.e. absolutely
physically equivalent, identical to the initial one), so that no one have any
experimental possibility to find out, which FR from this infinite set we are in”.

This infinite set of FR’s we shall call an “equivalence class”. Let us emphasize that
any physical process allows to find simply out, weather we are in an inertial or noninertial
FR. But no any physical experiment can allow to do so for the FR’s from one equivalence
class.

Note yet a very important circumstance [6]. The absolute physical equivalence (iden-
tity) takes only place in the frame of one equivalence class of FR’s, i.e. connected by
the only transformation group (for example, the inertial Galilee FR’s connected by the
Lorentz group or the generalized inertial FR’s 4, done by one of the generalized group
7, with w ik being chosen). If the groups are different (i.e. the equivalence classes differ),
there is no absolute physical equivalence (identity) of such FR’s, even if the two are iner-
tial. In this case the relativity principle of inertial motions is not applicable in its usual
sense (i.e. in that of indistinguishableness of the inertial FR’s). For instance, although
the Galilee 1 and generalized 6 FR’s are inertial (i.e. all physical laws expressed in terms
of the physically measurable values have the same form), they are not identical to each
other, and this has an important significance (see below par. 7). About relativity of the
inertial motions at all one can speak in the sense of the law form coincidence in all inertial
FR’s, and not in that of their indistinguishableness or identity.

This principle states [1] the absolute physical equivalence (identity) of the FR’s inside
an equivalence class, i. e. those connected by a symmetry group. Upon any motion
of a real physical body, which for certain, had accelerated for some time in the initial
inertial Galilee FR, the equivalence class connected with the body inevitably undergoes
modification, even in the body goes on moving uniformly after all. Thus the generalized
inertial FR’s are not already physically identical to the initial inertial Galilee FR, because
they belong to another than Lorentz equivalence class (although all physical laws expressed
by measurable values have the same form like in the Galilee FR). The proper time (the
invariant of the Minkowski 4-space — the length of a world line!) runs in such FR’s
slower than in the initial Galilee FR, i.e. the time deceleration effect is absolute, but not
relative [1].
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2. Uniformly accelerated frames of reference and the time trans-

formation

Let a relativistic uniformly accelerated FR with the coordinates (x, t) move without
initial velocity along the axis X of an inertial Galilee FR with the coordinates (h ,t ) and
at t = 0 their origins coincide. Then the coordinate transformation formulas x have the
form [1, 2]:

x = X − c2

w



√
1 +

w2T 2

c2
− 1


 . (10)

The motion law, i. e. the transformation to FR stringently connected with a uniformly
accelerated moving body, is already defined, it means that the space coordinate transfor-
mation is already fixed (up to rotations and shifts). The covariance of the SRT description
finds here its manifestation in arbitrariness of the dependence t = t(T,X) of the time co-
ordinate (if only it doesn’t violate the allowance conditions of arbitrary metrics (2).

In [1] we considered the simplest possible dependence t = T . In this case, substituting
(10) and t = T into the metrics (1) gives the expression of the metrics of a uniformly
accelerated FR

ds2 =
c2 dt2

1 + w2t2/c2
− 2wt dt dx√

1 + w2t2/c2
− dx2 − dy2 − dz2. (11)

In [1] from the general expression of the noninertial Lorentz-Poincare group (9) an explicit
form of this group transformations for (10) and t = T was obtained. Now we consider
another time transformation

t =
c

w
Arsh

wT

c
. (12)

The transformation (12) is single out by the fact that the right part of (12) coincides with
the proper time of a uniformly accelerated moving particle

τ =

T∫
0

dT
√
1− v2/c2 =

c

w
Arsh

wT

c
. (13)

Let us remind that expression in integral (13) follows not from the Lorentz transforma-
tions, but from the Galilee interval form (1) written for any moving particle [1]. It is the
Minkowski 4-space invariant.

The inverse transformation to (10), (12) has obviously the form

X = x+
c2

w

[
ch

wt

c
− 1

]
; T =

c

w
sh

wt

c
. (14)

Substituting (14) in (1), we find the metrics of the noninertial FR connected with a
uniformly accelerated moving body by the (10), (12):

ds2 = c2dt − 2c sh
(
wt

c

)
dxdt − dx2 − dy2 − dz2. (15)
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At t = 0 the metrics (15) naturally coincides with the Galilee one. Note that in (15), in
spite of (11), we have g00 = 1. The time coordinate in (12) was defined so as to make the
dependence on t vanishe.

Let us find the explicit form of the generalized noninertial Lorentz group (9) transfor-
mations leaving the metric (15) forminvariant. Using (10), (12), (14) we obtain from (9) [3]:

tN =
c

w
Arsh



w

c

[
c

w
sh

wtc

c
− v

c2

(
xc +

c2

w

(
ch

wtc

c
− 1

))]
√
1− v2/c2



. (16)

As in the case t = T and metric (11) [1], the formulas (16) for the case t = τ (12) were
first obtained in [2], but in a much more complicated way — by solving a system of
partial differential equations. We in turn obtained (16) from the elementary and obvious
expression of the noninertial Lorentz group (9), from which its connection with the classic
Lorentz group is immediately seen. Therefore the transformations (16) leaving the metrics
(15) forminvariant are those of all physical laws written in this metrics. As was noted
above (par. 1), the symmetry group transformations (in this case (16)) cannot connect
the moving mass FR’s, they are only abstract 4-motion transformations in the Minkowski
space. The group parameter V in (16) which by the very sense of derivation of (16) from
(9) is the Lorentz group parameter in the inertial Galilee FR is not also the velocity of
any moving body which the number of FR’s are connected with. This is the velocity
of abstract motions in the FR equivalence class (16) with a fixed reference body which
moves in turn in the inertial Galilee FR (1) in a definite way, in this case it is uniformly
accelerated.

3. The invariance of the proper time and the arbitrariness of the

time coordinate

Just as we considered the “clock paradox” in [1] (see also [2, 3]), we will consider the
clock II motion in an inertial Galilee FR (fig. 2) within two periods—the initial one 1 of
the uniformly accelerated motion and the consequent inertial one 2. In [1], following [2],
for the period 1 we used the simplest time transformation t = T . There we also noted that
using of another time transformation, for example (12), would not change the result [3].
In view of a great significance of this example for understanding of the covariant essence
of the SRT we will show it here explicitly.

We suppose that the FR II coordinate transformations at the part 1 are given by the
formulas (10), (12), (14). To begin, let us consider the clock I motion in the FR II. This
clock is at the point X = 0 (FR I), and from (14) we immediately obtain its motion law in
the FR II (of cause it can be obtained formally from the equation of geodesic motion in the

metrics (15)): xI =
c2

w

[
1− ch wt

c

]
. In the FR II the clock I moves uniformly accelerated

in the negative direction. Thus, for the proper time (the world line length) of the clock I
at the noninertial part 1, moving in the FR II according to the law of geodesic motion,
we find from the general formula (see [1]) the expressions for the metrics (15):
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dτ = dt


g00 + 2

c
g01

(
dx

dt

)
− 1

c2

(
dx

dt

)2
1/2

= dt · ch
(
wt

c

)
. (17)

From (17) with regard to (14) we have τ1 =
c

w
sh
(
wt1

c

)
= T1; i. e. the clock I proper

time at the part 1, calculated in the FR II either upon dependence t = T [1] or upon t = τ
(12), is the same (and coincides with its value in the FR I), as it should be in accordance
with the general property of the interval invariance.

Fig. 2. Fig. 3.

The clock II reposes in the metrics (15) and its proper time at the part 1 equals

τ ′1 =

t1∫
0

√
g00 dt = t1 =

c

w
Arsh

wT1

c
. (18)

The expression (18) coincides both with the result for the dependence t = T and with
the proper time (13) calculated in the FR I. Formally, changing of the time dependence
in (15) as compared with (11) means just changing of variables in the integral τ =

∫
dτ ,

that always gives the same final result.
Investigation of the part 2 of the clock I inertial motion is more rich in content. At

the moment T = T1 (by the clock I), or t = t1 = (c/w)Arsh (wT1/c) (by the clock II)
the clock II begins to move uniformly with the velocity (in the FR I) v0 =

wT1√
1+w2T 21 /c

2
.

At the same moment the noninertial metrics (15) has the only component not coinciding
with the Galilee one (1):

g01(t1) = − sh
wt1

c
= −wT1

c
= − v0/c√

1− v20/c
2
. (19)

Thus, because of the metric continuity in time [1], from (19) we obtain that on the part of
the clock II inertial motion the FR II metrics has also the form differing from the Galilee
one (1):

ds2 = c2dt2 − 2v0 dtdx√
1− v20/c

2
− dx2 − dy2 − dz2. (20)
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The metrics (20) belongs to another (than the Lorentz one) class of equivalence [1], namely
to that of generalized inertial metrics forminvariant with respect to the generalized inertial
Lorentz-Poincare group (7). The FR on the inertial part with metrics (20) is connected
with the Galilee one (1) by some linear transformation (3).

In the case of the simplest dependence t = T at the part 1 the transformation (3)
could be easily found — it coincides with the classic Galilee transformation X = x+ v0t;
t = T . For the chosen dependence t = τ (12) at the part 1 we need to use a more formal
method of the transformation (3) determination. Using expressions [1] for the generalized
inertial metric components (here it is (20)) through the transformation (3) coefficients,
gives the following equation system for their definition




g00 = p2 − b2

c2
= 1; g11 = c2q2 − a2 = −1;

g01 = c

(
pq − ab

c2

)
= − v0/c√

1− v20/c
2
.

(21)

For the unambiguous solution of (21) one more equation is needed. It should express the
fact of uniform (inertial) motion of the reference body of the FR II (at the point x = 0)
with the velocity v0 in the FR I. It is easy to see that the required equation has the
form [3] b/p = v0. The solution of (21) corresponding to codirectedness of the axes X and
x, T and t is

x = X − v0T ; t = T
√
1− v20/c

2. (22)

The transformation of the type (22) could be called a “generalized Galilee one”, in
contrast to the usual classic one (in which t = T ) the dependence between t and T in (22)
changed. Choose we on the noninertial part 1 another (than t = T , or t = τ (12)) time
coordinate transformation, the dependence between t and T in (22) would also change.

With regard to (22) in the generalized inertial metrics (20) the proper time of the
clock II (reposing in the FR II) is defined by the expression

τ ′2 =

t1+t2∫
t1

√
g00 dt = t(T )

∣∣∣T1+T2
T1

= T2
√
1− v20/c

2, (23)

i. e. we really obtained for τ ′2 the same formula as for the dependence t = T , which equals
to T ′2, i. e. to the clock II proper time in the Galilee FR I (the length of the world line is the
Minkowski space invariant). Comparing (22) with (23), we see that the time coordinate
transformation at the part 2 also can be shortly written as in (12), (13) in the form t = τ ,
where τ is the proper time.

Let us consider now the clock I movement in the FR II during the period of the clock II
uniform motion with the metrics (20). Supposing X = 0 (or X − X0 = 0) in (22) we
obtain the clock I motion law in the FR II (it is the motion along the geodesics of the
metrics (20)): xI(0, T ) = −v0T = − v0t√

1−v20/c2
. From this equation we have for the clock I

coordinate velocity in the FR II: dxI
dt

= − v0√
1−v20/c2

, i. e. for the dependence t = τ the

clock I coordinate velocity is not already equal to −v0, as it was for t = T . It can be
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arbitrarily great (not of the physical velocity—see below par. 4). With regard to (20) for
the clock I proper time in the FR II we find

τ2 =

t1+t2∫
t1

dt


g00 + 2

c
g01

(
dxI

dt

)
− 1

c2

(
dxI

dt

)2
1/2

=
t√

1− v20/c
2

∣∣∣t1+t2
t1

= T2. (24)

Thus, τ2 calculated in the FR II does coincide with the clock I proper time in the FR I,
as it should be.

So, a straightforward calculation showed that this or that choice of the time coordinate
transformation at the uniformly accelerated movement part of the trajectory (t = T in [1]
or t = τ in the present paper) leads both to the correspondent altering of the generalized
inertial metric (20) at the uniform motion part and to the change of the transformation
(22) connecting this FR with the Galilee one. However the proper time of the both clocks I
and II remains invariable (invariant) upon calculating in the FR’s I and II, according to
the general property of the world line length invariance in the Minkowski space [1, 3] with
respect to any allowed coordinate transformations∗.

Independent of the chosen time coordinate definition the proper time of the moving
clock II is always less than that of the clock reposing in the Galilee FR of the clock I at
both the noninertial and uniform (inertial) motion part of the clock II. Thus, the proper
time deceleration of the clock II undergone an acceleration at the part 1 (even if the part 1
arbitrarily short in comparison with the part 2) is an absolute effect, but not relative [1, 3],
and independent of the time coordinate definition.

4. Physical and coordinate values

As known [1, 2, 3], constructing the covariant SRT one should exactly distinguish
a coordinate (in some sense formal-mathematical) velocity dx/dt of a particle and its
physical (experimentally measurable) one. The latter is defined as the ratio of the physical
distance and time:

VΦ ≡ dl/dτ ; ds2 ≡ c2 dτ 2 − dl2, (25)

where
dτ =

√
g00 dt+ g0α dx

α/c
√
g00;

dl2 = (−gαβ + g0αg0β/g00)dx
αdxβ ≡ καβdx

αdxβ .
(26)

The coordinate and physical velocities always concur only in the inertial Galilee FR I
with the metrics (1).

Let us first consider the simplest dependence t = T at the part of the inertial motion.
In this case the metrics in the FR II connected with the FR I by the usual Galilee
transformation has the form [1, 3] (6).

∗Strictly speaking, our aim in [1, 3] was not so much to prove this invariance (as far as this fact is a
fundamental property of the Minkowski space) as to show with the help of the concrete instances how
the invariance and the noninertial part of trajectory inevitably change the FR equivalence class of the
clock II at this part. The FR of the clock II turns out to be connected at it with the initial Galilee
one (1) not by the Lorentz transformation, but the Galilee one. This is what provides the proper time
invariance.
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From (26), (6) we then have (for motion along the axis x):

dτ = dt
√
1− v20/c

2 − v0/c
2√

1− v20/c
2
dx; dl =

dx√
1− v20/c

2
. (27)

Substitution (27) in the definition (25) gives the dependence between the physical and
coordinate velocities of the particle in the metrics (6):

V xΦ =
dl

dτ
=

(dx/dt)

1− v20
c2
− v0

c2

(
dx

dt

) . (28)

The clock I coordinate velocity in the FR II is [1] dxI/dt = −v0 (it is the geodesic motion
in the metrics (6)). Substituting this value in (28) we find that the clock I physical velocity
VΦ turns also out to be equal to −v0. Therefore for the simplest dependence t = T the
clock I physical and coordinate velocities coincide in the FR II (although for any other
coordinate velocity differing from −v0 the physical (28) and coordinate velocities will not
do; particularly, for the light [2, 3] dl/dτ ≡ c, and |dx/dt| = c± v0 in the metric (6).

Let us now consider the dependence t = τ (12). As it was shown in [3] (dl/dτ )I = −v0,
what is equal to the clock I physical velocity at the last moment of the acceleration. Thus,
at this moment t1 in the FR II both physical and coordinate velocities of the clock I are
continuous (in spite of the erroneous statement in [8]), although they can differ from each
other (as, for example, upon dependence t = τ ). The continuity of both kinds of velocities
follows from that of the metric tensor at the moment t = t1.

Let us briefly consider now the law of the particle physical velocity composition (see [2,
3] for details). Let two particles uniformly move along the axis X in the initial inertial
Galilee FR I — the first one (connected with the FR II) with the velocity v0, another
one — with the velocity v1. As it was shown in [3] the generalized inertial FRs of the
particles 1 and 2 are connected with the Galilee one not by the Lorentz transformation,
but by the generalized Galilee one. Nevertheless the physical velocities of the particles
are subjected to the Lorentz law of the velocities composition. It is manifestation of the
pseudo-Euclidean structure of the Minkowski space-time, or, in the other words, of the
symmetry of the space-time and that of all laws of nature symmetry with respect to the
generalized Lorentz-Poincare group [1]. The coordinate transformations connecting the
FR I and II of the particles 1 and 2 have in turn no relation to the Lorentz ones (the
transformations of the law symmetry group and those of the moving real bodies FRs are
absolutely different concepts).

The necessity to differ the coordinate and physical values in the non-Galilee metric
concerns not only the velocity, but has an universal character. Namely, every coordinate
4-vector ai (4-tensor aik) is associated with a physical 4-vector A (4-tensor Ap) according
to the rule [2]:

A = λia
i; Ap = λiλ

p
ka
ik, (29)

where λi — 16-component value (tetrad) expressed via the metrics. In particular, the

expressions (25), (26) can be written in the form dX
j
= λidx

i, where dX
0 ≡ c dτ ;

dl2 = (dX
j
dX

k
)δik. Using (25), (26), it is easy to show [2] that the non-zero components

of the tetrad equal in this case:

λ0i =
g0i√
g00

; λ11 =
√
κ11; λ22 =

√
κ22; λ33 =

√
κ33. (30)
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For the generalized inertial FR with the metrics (6) we have in (30) λ11 = 1/
√
1− v20/c

2;

λ22 = λ33 = 1, and λ0i is given by (6).
To illustrate using of (29) let us obtain the transformation formulae for the light

frequency of a monochromatic flat wave upon the passing to the generalized inertial FR II
of the uniformly moving mass particle. It is connected with the initial inertial Galilee FR I
by the Galilee transformation: X = xII + v0t, t = t.

In the FR I the wave 4-vector components equal kiI =
(
ω0

c
;
ω0

c
n
)
, where n is a unity

vector normal to the wave front, ω0 — the light frequency of the source reposing in the
FR I. Upon the Galilee transformation the coordinate components of the 4-vector will
obviously be equal to

k0II = k0I ; k1II =
1

c

∂x

∂T
k0I +

∂x

∂X
k1I =

ω0

c

(
cosα− v0

c

)
, (31)

where α is the angle between n and v0 in the FR I with accordance to (29). The physical
components are KII = λik

i
II. In particular, for the zero-components by (6), (31), (32) we

have [3]∗

ω

c
= K0II = λ0i k

i
II =

g0i√
g00

kiII =
ω0

c

(
1− v0

c
cosα

)
√
1− v20/c

2
. (32)

Thus, for the physically measurable frequency in the FR II we obtained the well-known
relativistic formula for the Dopler effect. It was made on the basis of the Galilee, but
Lorentz, transformations, just as it was when we obtained Lorentz law of the physical
velocities composition [3].

5. The relative motion of two generalized inertial FR’s

Till now we considered the proper time deceleration of one particle moving in the
inertial Galilee FR I and showed that this deceleration is absolute and doesn’t depend
on the time coordinate definition at the inertial part of the trajectory. Let now there be
2 particles moving from a 4-point in the FR I with different velocities v0 and v1 (in the
FR I), i. e. there are three physical FR’s: the initial Galilee one (the FR I), the FR II
(of the clock II), moving with the velocity v0, and finally the FR III (of the clock III)
moving with the velocity v1. Which is the relation between the two clocks’ tempos? As
it was shown in [1] and in par. 3, the clock II and III accelerated part (inevitable for any
mass particle) is of principle importance, even if the length of the correspondent part of
the world lines is negligibly small compared to the inertial part length. The noninertial
parts change inevitably the metrics in the FR’s II and III. The metrics in them belongs
to another equivalence class differing from the Lorentz one — to that of the generalized
inertial metrics [1]. Is the simplest dependence t = T chosen, for the connection between
the FR II and III coordinates and the initial inertial FR I we have the classic Galilee
transformation, but not the Lorentz one: X = xII + v0T ; X = xIII + v1T , giving the

∗The expression for the physical x-component leads immediately to the relativistic formula for aber-

ration [3]:
w

c
cosα′ ≡ K1II = λ1i kiII, and from (30)–(32) we have: cosα′ = (cosα− v0/c)/(1− v0 cosα/c)
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metrics of type (6). Further we will neglect the length of the noninertial parts of the
clock II and III trajectories.

Let us consider the process, when the clock III in the FR II moves at first away from
the clock II, and then meets it again. In the inertial Galilee FR I such a process is drawn
as a triangle of the world lines (fig. 3) ABC and A′B ′C ′, depending on the clock III
motion direction with respect to the clock II. The clock II and III proper time decelerates
in comparison with the clock I (the deceleration effect is absolute, see [1] and par. 3), no
matter which velocities the clocks II and III ever move with. What is the relation between
them, but not with the clock I?

It is easy to see (fig. 3) that there are two possibilities: at the part AB = B ′C ′ the
clock III moves in the FR I slower (in the sense of the motion velocity) than the clock II
(0 < v1 < v0), and at the part BC = AB ′ — quicker than the clock II correspondingly
(v2 > v0, v2 is the clock III velocity in the FR I at the part BC). In accordance with this,

an absolute proper time deceleration (the clock rate) by
√
1− v2/c2 times∗ in comparison

with the clock I results at the part Aw(= B ′C) in the acceleration of its rate with
respect to the clock II (|AO| < |AB|), and at the part ws (= AB ′) — in the deceleration
(|OC| > |BC|) correspondingly. What would the comparison of the readings of the
clocks II and III at the meeting point C show? It is naturally to expect that amounting —
at the point C — we will always have the clock III proper time deceleration in comparison
with the clock II. It is confirmed by the following theorem.

Theorem 1 (on a triangle property in the Minkowski space-time) The sum of the
two time-like world lines AB and BC of a mass particle moving in the inertial Galilee
FR I with the velocities v1 and v2 correspondingly is always less than the straight world
line length AC of a particle moving with the velocity v0 (in the FR I) and linking the
beginning of the first world line (point A) and the end of the second one (point C).

Proof. See [3].
Next Theorem 2 follows directly from Theorem 1

Theorem 2 (About the straight line extremity in the Minkowski space-time)
a) The length of the time-like world straight line of the mass particle uniformly moving
in the inertial Galilee FR between arbitrary 4-points A and C is always greater than the
length of any curved world line ABC of a particle moving arbitrarily between the same
points.

b) Among the time-like world lines connecting the 4-points A and C the straight line
(in the inertial Galilee FR) has the maximal length.

Proof. See [3].
Note also, that upon the clock paradox analysis in [1] we have mentioned the obvious

fact that the straight world line length in the FR I is always greater than that of any
curve “because of the Minkowski space pseudo-Euclidean structure” [1]. But there we

∗Let us repeat that this deceleration is not the sequence of the Lorentz transformations to the FR’s II
and III (because these generalized inertial FR’s are connected with the Galilee one by the Galilee trans-
formation, but not by the Lorentz one!), but of the pseudo-Euclidean structure of the Minkowski space
[1], i. e. of the interval form (1).
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kept in mind the straight line coinciding with the axis St (in the FR I) — in this case the
mentioned property does follow from the interval expression in the FR I ds2 = c2dT 2−dX2.
However in Theorem 2 this property is proved for any straight line AC , not coinciding
with the axis St , and thus it isn’t so obvious as in the simplest case of the line St ∗. In the
standard, “inertial-Lorentz” constructing of the SRT ignoring a covariant essence of the
theory and the concept of the generalized inertial FR the strict consideration of Theorem 1
(although their sense is sometimes mentioned in literature) and 2 is impossible at all—any
world line triangle leads immediately to the clock paradox [1, 2] — the calculations in
the FR’s I and II is “relative” (symmetrical), and non-inertial FR’s are regarded already
outside of the SRT frame.

6. A moving one-dimensional oscillator

Let us once more consider the process drawn on fig. 4 and express the particle III
proper time at the parts AB and B via the physical velocity of the particle in the FR II.
We have:

τAO = T1
√
1− v20/c

2; τOC = T2
√
1− v20/c

2;

τAB = T1
√
1− v21/c

2; τBC = T2
√
1− v22/c

2.
(33)

The particle III velocity in the FR I (v1 and v2; let us remind, that in the inertial Galilee
FR I the coordinate and physical velocities always coincide—par. 4) is connected with
the particle II velocity in the FR I (v0) and the particle III physical one in the FR II
vΦ1 > 0, vΦ2 < 0 by the relativistic law of the velocity composition (30).

v1 =
v0 + vΦ1

1 +
v0v

Φ
1

c2

; v2 =
v0 − |vΦ2 |

1− v0|vΦ2 |
c2

. (34)

In the non-relativistic limit for the first order with respect to v2/c2 the expressions
(33), (34) have obviously the form (for simplicity we assume vΦ1 = |vΦ2 | = vΦ):

τAB = τAO − T1

(
v0v

Φ

c2
+
vΦ
2

2c2

)
,

τBC = τOC + T2

(
v0v

Φ

c2
− vΦ

2

2c2

)
,

(35)

where with the same accuracy τAO = T1(1− v20/2c
2), τOC = T2(1− v20/2c

2). It is obvious
that τAB < τAO for any v0, v

Φ
1 > 0 (i. e. at the part AB the deceleration of the clock III

in the FR II always takes place), and at the part BC both cases are possible — either
τBC > τOC (acceleration with respect to the clock II), or τBC < τOC (deceleration) —
according to the relation between v0 and vΦ2 . Deceleration is possible at BC too for the

∗As far as the FR I and II are connected by the Galilee transformation, but not the Lorentz one, and
have different metrics, we cannot reduce the case of an inclined (in the FR I) straight line to the case of
the line St by the simple transfer to the FR II, although in the FR II we will obtain St ′ (AC on fig. 4).
But because of the metric changing (existence of the non-diagonal part in (6)) the relation between the
straight and broken line lengths is not already obvious.
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physical velocity vΦ2 great enough in the FR II, when the particle III velocity in the FR I
is negative and more (by modulus) than v0 (the point B at fig. 6 will be to the right of C).

Fig. 4. Fig. 5.

Let us note that the conditions T1 = T2 = T0/2 and vΦ1 = |vΦ2 | in the FR II are
incompatible [3]: either T1 = T2, and then vΦ1 �= |vΦ2 |, or vΦ1 = |vΦ2 |, and in this case
T1 �= T2.

Let us note that upon the accepted assumption of the particle III physical velocity
equality in both directions in the FR II we have τAB = τBC, but T1 �= T2 already for the
first order with respect to v2/c2 and hence τAO �= τOC. It is easy to verify that for the
accepted accuracy T1 =

T0
2
(1 + v0v

Φ/c2), T2 =
T0
2
(1− v0v

Φ/c2), v1 + v2 = 2v0(1− vΦ2/c2),
τAO = T0

2
(1− v20/2c

2 + v0v
Φ/c2); τOC = T0

2
(1− v20/2c

2 − v0v
Φ/c2) [3].

For the clock III total proper time along the whole trajectory ABC we have from (35)
(in the second summand in (35) we can assume with the accepted accuracy T1 ∼= T2 ∼=
T0/2):

τABC = τAC − T0

(
vΦ
2

2c2

)
, (36)

where τAC = τAO + τOC = T0(1− v20/2c
2).

Let us call attention to the appearance of summands proportional to the product v0v
Φ

in (35). Thus, the clock III proper time at the parts AB and BC , expressed via their
physical velocities in the FR II and the proper time of the FR II, explicitly depends on
the velocity v0 of the FR II in the inertial Galilee FR I even in the first order of v2/c2.
In the expression for the whole proper time (36) this dependence on v0v

Φ vanishes (in
the first order over v2/c2), however at the parts AB and BC it inevitably takes place
(this corresponds to the deceleration or acceleration of the clock III in comparison with
the clock II on the both parts and to their total deceleration at ABC — see par. 4
and theorem 1). Note that (see fig. 6) if one expresses for example τAB in (35) via
τAOC/2 ≡ τ1/2 ≡ T0

2
(1−v20/2c2) ∼= τAO−(T0/2)(v0vΦ/c2), then τAB ∼= τ1/2−(T0/2)(vΦ

2
/2c2)

and the dependence on v0v
Φ disappears. But the above calculation corresponds to the

comparison of the clocks II and III readings not for the same moment of time T of the FR I,
i. e. it doesn’t to the clocks II and III proper time comparison at all. In fact, at the part
AB we should compare the tempos of the clocks II and III, and this is possible at any point
of this part [1] when the value τ1/2 is not defined. In other words we compare the values
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dτII = dT
√
1− v20/c

2 and dτIII = dT
√
1− (v0 + vΦ)2/c2, i. e. dτIII ∼= dτII−dT (v0v

Φ

c2
+ vΦ

2

2c2
)

(or the integrals
∫
dτ at any part of trajectories AB and AO, corresponding to the same

time interval ∆T of the Galilee FR I).
Note, that the required comparison of the clocks II and III tempos at any point of

the part AB is possible by the two methods [1, 3]. At first, it is possible to compare
the clock III tempo with that of a number of “standard” clocks II “arranged” along the
clock III trajectory (in the real laboratory conditions it may be an aggregation of identical
atoms reposing in the FR II and emitting photons of the certain standard frequency) —
the so-called “atom clock method”. Secondly, the comparison of the clock II emitting
periodic signals, distanced far from clock III with the clock III (far in comparison with
the typical range of the clock III motion) along the axis Z from the hyperplane XT
containing the clock III world line (the method of “pulsar” or that of “plane wave” [1, 3]).
The intersection of the light cone of the clock II impulses with the hyperplane XT is (up
to the arbitrary required accuracy) the straight line t = const crossing any world line in
the plane XT at the same moment T of the Galilee FR I. The presence of a photon at
some point of the Minkowski 4-space is in turn the absolute fact independent of the FR
choice.

Let us consider now a one-dimensional oscillator the null point of which (it is the
FR II) moves uniformly along the oscillation direction with the velocity v0 
 c in the
inertial Galilee FR I (fig. 5). The particle III motion is assumed to be non-relativistic and
its oscillations in the FR II are harmonic. We will calculate the clock III proper time in
the inertial Galilee FR I. Since τ is the Minkowski space invariant, calculation in the gen-
eralized inertial FR II (of the oscillator null point) of non-inertial FR III (oscillating point)
give always the same result (see par. 4). In this case for the particle III velocity in the
FR I we can write the classic law of the velocity composition, i. e. v(T ) = v0+ΩA cos ΩT ,
where Ω is the frequency and A is the amplitude of the oscillations (for certainty we
assume ΩA < v0). Thus at the parts of the relative (to the clock II) deceleration (AB) or
acceleration (BC) of the clock III we have for the proper time differentials (clock tempo)
the expressions analogous to (35):

dτAB = dτ0 − dT

(
v0ΩA| cosΩT |

c2
+

Ω2A2 cos2ΩT

2c2

)
,

dτBC = dτ0 + dT

(
v0ΩA| cos ΩT |

c2
− Ω2A2 cos2ΩT

2c2

)
,

(37)

where dτ0 = dT (1− v20/2c
2) is the proper time of the oscillator null point (the FR II).

Integrating (37) and summarizing both expressions, gives that the terms linear with
respect to v0 vanish, as in the previous example. So, for the whole proper time of the
clock III at the part ABC (i. e. at the half-period) we have, as it was to expect, the
deceleration only:

τABC = τ0 −
π

Ω

(
Ω2A2

4c2

)
; τ0 =

π

Ω

(
1− v20

2c2

)
. (38)

Here τ0 is the proper time interval of the oscillator (the FR III) null point, corresponding
to the semiperiod of oscillation.
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However, as well as in the previous example, at the parts AB and BC separately
we have in (37) an unavoidable dependence on v0v

Φ, describing the deceleration and
acceleration of the clock III with respect to the FR II. To measure this variation of the
clock tempo one can use one of the above methods.

Let us consider three methods of the experimental verifying of the expressions (37).
The first method was already offered in [1,3] — precise measurements of the pulsar

impulse frequency. In this case ΩA in (37) equals 30 km/sec, and v0 is the Sun velocity
upon its rotation around the Galaxy center (v0 � 200 km/sec). So, we have the approx-
imation v0/ΩA ∼= 7; ε1 � 5 · 10−8, ε2 � 2 · 10−9. After all necessary corrections to the
measurable pulsar frequency are brought in (the linear Doppler effect, secular deceleration
of the pulsar etc.), one should expect a residual annual oscillation of the frequency with
the amplitude of range δν

ν
� 5 · 10−8 (the total deceleration of range 2 · 10−9 seems to be

out of the measurements accuracy).
The second (much more precise) method offered by us [3] can be executed using

an artificial satellite of the Earth. For the experiment a so-called stationary satellite at
the equatorial orbit (circulation time—24 hours exactly, altitude — h = 34000, circular
velocity — ∼ 3 km/sec) is required. For the amplitude of the frequency oscillations
registered at the satellite we have the estimation δν/ν ∼ v0ΩA/c

2 ∼ 5 · 10−9 and their
daily mean (total deceleration) is of δν/ν ∼ Ω2A2/2c2 ∼ 5 · 10−11. These are quite
measurable values (even during the data storage period of ∼ 102 sec) in optical, as well
as in SHF spectral band (the stability of the up-to-day quantum frequency standards is
of 10−13–10−14).
The third method [3] — one more experiment with the satellite — the simplest

one. In the experiment described above the difference of the emitter and receiver circular
velocities is used (3 km/sec for the satellite and a much smaller one (which is neglected
here for simplicity) ∼ 100–300 m/sec for a point on the Earth in dependence on the
typical latitude). However this value at different latitudes on Earth’ surface may be used
for detecting of the effect ∼ v0. The only reliable method of communication of two distant
clocks in this case — the usage of a stationary satellite being only a retranslator. For the
difference of the emitter and detector circular velocities ∆vΦ of 100 m/sec (the latitude
difference is of ∼ 40◦) we have the estimation of the daily frequency oscillation amplitude
δν/ν ∼ v0∆v

Φ/c2 ∼ 2 · 10−10, and their mean δν/ν ∼ ∆(v2
Φ
)/c2 ∼ 10−13 (if the detector is

southward with respect to the emitter then δν > 0, if northward — then δν < 0).
Note, that in this variant of the experiment the total gravitational frequency shift of

emitter photon upon its propagation to the satellite and back equals zero.

7. Conclusion. About the physical sense of the initial inertial Galilee FR

In the par. 2-4 on the basis of the covariant approach we have shown that the phys-
ical (proper) time does not depend on the coordinate choice — the choice of the time
coordinate — at the non-inertial part of the mass motion, as well as at the inertial one
of its uniform motion. This choice (different from that of the motion law specification) is
really a matter of agreement. The choice t = T [1] is singled by its simplicity — at the
inertial part of motion we have the classic Galilee transformation for the connection with
the initial inertial Galilee FR. The choice t = τ (where τ is the proper time, par. 2, 3)
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leads to the corresponding change of the connection between the time coordinates in the
common Galilee transformation (providing the so-called “generalized Galilee transforma-
tion” — par. 3). But all this is only “a hand position” or “a clock-face partition” of the
standard clock in the moving particle FR. The physical time tempo is of cause indepen-
dent of it — in the moving particle FR it is always slower than in the initial Galilee FR
(the absoluteness of the time deceleration effect).

It is important to emphasize that the noted arbitrariness of the time coordinate de-
termination changes only a concrete metric expression at the inertial part of the particle
motion, but not its class. The metric remains always in the generalized inertial (non-
diagonal) metric class, and in no way coincides with the initial Galilee one. Therefore
the metric is connected with it by the generalized Galilee transformation, but not the
Lorentz one. The generalized Lorentz-Poincare group transformations (either inertial or
noninertial ones — see [1] and par. 2) are those of the symmetry group of all physical laws,
i. e. those of the metric forminvariance group in the correspondent physical FR. But these
transformations cannot be connected with any real mass motion, they are only those of
abstract 4-motions (changing of the point arithmetization) in the Minkowski space. The
symmetry group transformations and the FR transformations of real moving masses are
completely different concepts∗.

The proper time in the generalized inertial FR of material bodies runs always slower
than in the Galilee FR. And if we compare the proper time tempos in these FR’s, we will
find the difference [1]. In the par. 6 we estimated several methods of the experimental
verification of the dependence of the proper time on the laboratory absolute velocity in
the inertial Galilee FR. All they are based on the comparison of some standard source
frequency in the FR II (laboratory) and the moving particle FR. Let us emphasize the
principle distinction of this situation from the unsuccessful attempts to find an abso-
lute laboratory velocity with respect to the light-bringing “ether” [8, 16]. All numerous
attempts to find the ether (modified experiments of Maikelson, Kennedy-Torndike etc.)
were executed under the assumption that in the only FR where the ether reposes the light
velocity equals c and motion with respect to the ether changes this velocity. From the
viewpoint of the covariant approach to the SRT all these experiments should give (and
give!) the negative answer. In fact, in all generalized inertial FR’s the physical velocity of
light (par. 4) (i. e. the very velocity which is observed or measured) is isotropic and equals
c globally [1–3]. The same is valid in any non-inertial FR (but for the local measurements).
Only comparing the proper time, i. e. the standard (atom) process frequencies (but not
the effects connected with the light velocity!) we can differ the generalized Galilee FR
from the Galilee one and so determine the laboratory absolute velocity in the Galilee
FR. Thus, all classical experiments do not violate the above ideas. By our opinion, the
satellite experiment (par. 6), in which the two atom clocks (moving with different veloci-
ties) frequencies are compared, could be the last test of the ideas. In this experiment the

∗A simple and intuitively understandable example: an abstract turn of a three dimensional coordinate
system (symmetry transformation) with the fixed origin is not identical to a real mass turn (which is
inevitably followed by the appearance of forces, accelerations etc.) the same concerns the generalized
Lorentz turn, involving the time axis. However the existence of the symmetry group in any FR has an
important significance — it leads to the existence of the conservation laws and to the known relativistic
relations for the physically measurable values. Ten parameters of the symmetry group — the generalized
Poincare one — correspond to 10 motion integrals [1, 2].
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straightforward chack of the clock proper time dependence on its absolute velocity in the
inertial Galilee FR is possible.

The existence of the initial (singled) inertial Galilee FR with the metric (1) has, to
our opinion the clear physical sense. All the inertial FR’s dealt with are obviously, such
only up to some accuracy degree: the Earth rotates around its axis and the Sun, the Sun
does around the Galaxy center, the relative motion of the Galaxies is possible also. But
if we connect a FR with the galactic background, i. e. with the Universe at whole, this
will be the initial inertial Galilee FR. It is clear that to say about the uniform motion
of the Universe is senseless — it is given to us in one exemplar. Thus the origin in this
FR is fixed (it has never accelerated), but the FR is not unique — it is determined up
to the abstract transformations of the Lorentz-Poincare symmetry group (i.e. up to the
three-dimensional rotations, shifts and Lorentz rotations).

The coordinate time T in this initial Galilee FR is the real (physical) time which can
be called “the world” one. The proper time of any mass moving arbitrarily in the initial
FR is always slower than the world one — it is a fundamental property of the space-
time. And we can therefore determine the body absolute velocity in this single FR, and
so determine the world time tempo. Is the concept accounted the return to an absolute
space concept? No, to say correctly, it is a concept of an absolute space-time. There is
no relativity of the uniform motions, as well as relativistic effects. All essence of the SRT
is in postulating of the pseudo-Euclidean space-time existence, the existence of the initial
inertial Galilee FR with the metrics (1).

In the conclusion the author makes an acknowledgements to A.A. Logunov, Yu.V. Bary-
shev and G.M.Telezhko for the discussion of a number of problems touched here and some
useful notes.
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[10] Mösbauer’s effect (collection of reports). M.: Foreign literature 1962. Atomizdat 1969
(in Russian).

[11] nay H., Schifer J., Cranshaw T., Egelstaff P. //Phys. Rev. Lett., V. 4 (1960), p. 165;
Kundig W. // Phys. Rev., V. 129 (1963), p. 2371.

[12] Logunov A.A., Chugreev Yu.V. // “Uspekhi Fizicheskikh Nauk” (“UFN”). v. 156,
iss. 1 (1988), pp. 137–143 (in Russian). English edition: “Physics-Uspekhi”.

[13] Einstein A. Ann. Phys. 1905, 17 P. 891-921.

[14] Gold T. The nature of pulsars, in: Contemporary Physics.— Trieste Symposium
1968 vol. 1. Hewish A. Pulsars, in: Annual Review of Astronimy and Astrophysics
M. 1970.

[15] Time and frequency (ed. D. Jespersen). M., 1973. Lekhotov V.S. // “UFN”, v. 48
1978, iss. 2, p. 199. (in Russian).

[16] Møller C. // Proc. Roy. Soc. 1962. V. A270, p. 306; Strahovsky G.M., Uspensky
A.V. // “UFN”. v. 86 (1965), P. 421 (in Russian).

160


