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Abstract

String models are designed to provide a covariant description of internal
space-time structure of relativistic particles. The string is a limiting case

of a series of massive beads like a pearl necklace. In the limit of infinite-
number of zero-mass beads, it becomes a field-theoretic string. Another

interesting limit is to keep only two pearls by eliminating all others, resulting
in a harmonic oscillator. The basic strength of the oscillator model is its

mathematical simplicity. This encourages us to construct two-pearl strings
for a covariant picture of relativistic extended particles. We achieve this goal

by transforming the oscillator model of Feynman et al. into a representation
of the Poincaré group. We then construct representations of the O(3)-like

little group for those oscillator states, which dictates their internal space-time
symmetry of massive particles. This simple mathematical procedure allows
us to explain what we observe in the world in terms of the fundamental

space-time symmetries, and the built-in covariance of the model allows us
to use the physics in the rest frame in order to explain what happens in

the infinite-momentum frame. It is thus possible to calculate the parton
distribution within the proton moving light-like speed in terms of the quark

wave function in its rest frame.

1. Introduction

Physicists are fond of building strings. In classical mechanics, we start with a discrete
set of particles joined together with a finite distance between two neighboring particles,
like a pearl necklace. We then take the limit of zero distance and infinite number of
particles, resulting in a continuous string. This is how we construct classical field theory
and then extend it to quantum field theory in the Lagrangian formalism. In this paper,
we consider the opposite limit by dropping all the particles except two.
In order to gain an insight into what we intend to in this report, let us note an example

in history. Debye’s treatment of specific heat is a classic example. Einstein’s oscillator
model of specific heat is a simplified case of the Debye model in the sense that it consists
only of two pearls. The Einstein model does not give an accurate description of the
specific heat in the zero-temperature limit, but it is accurate enough everywhere else to
be covered in textbooks. The basic strength of the oscillator model is its mathematical
simplicity. It produces the numbers and curves which can be checked experimentally,
without requiring from us too much mathematical labor.
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While one of the main purposes of the string models is to study the internal space-
time symmetries of relativistic particles, we can achieve this purpose by studying two-pearl
strings which should share the same symmetry property as all other string models. In
practice, the two-pearl string model consists of two constituents joined together by a
spring force. The only problem is to construct the oscillator model which can be Lorentz-
transformed. The problem then is to reduced to constructing a covariant harmonic oscil-
lator formalism. This subject has a long history [1, 2, 3, 4].
In Ref. [4], Feynman et al. attempted to construct a covariant model for hadrons

consisting of quarks joined together by an oscillator force. They indeed formulated a
Lorentz-invariant oscillator equation. They also worked out the degeneracies of the os-
cillator states which are consistent with observed mesonic and baryonic mass spectra.
However, their wave functions are not normalizable in the space-time coordinate system.
The authors of this paper never considered the question of covariance.
What is the relevant question on covariance within the framework of the oscillator

formalism? In 1969 [5], Feynman proposed his parton model for hadrons moving with
almost speed of light. Feynman observed that the hadron consists of collection of infinite
number of partons which are like free particles. The partons appear to have properties
which are quite different from those of the quarks. If the wave functions are to be covariant,
they should be able to translate the quark model for slow hadrons into the parton model
of fast hadrons. This is precisely the question we would like to address in the present
report.
We achieve this purpose by transforming the oscillator model of Feynman et al. into

a representation of the Poincaré group which governs the space-time symmetries of rela-
tivistic particles [6, 7]. In this formalism, the internal space-time symmetries are dictated
by the little groups. The little group is the maximal subgroup of the Lorentz group
whose transformations leave the four-momentum of a given particle invariant. The little
groups for massive and massless particles are known to be isomorphic to O(3) or the
three-dimensional rotation group and E(2) or the two-dimensional Euclidean group [6, 7].
In this paper, we can rewrite the wave functions of Feynman et al. as a representation of
the O(3)-like little group for a massive.
Let us go back to physics. When Einstein formulated E = mc2 in 1905, he was talking

about point particles. These days, particles have their own internal space-time structures.
In the case of hadrons, the particle has a space-time extension like the hydrogen atom.
In spite of these complications, we do not question the validity of the energy-momentum
relation given by E =

√
m2 + p2 for all relativistic particles. The problem is that each

particle has its own internal space-time variables. In addition to the energy and mo-
mentum, the massive particle has a package of variables including mass, spin, and quark
degrees of freedom. The massless particle has its helicity, gauge degrees of freedom, and
parton degrees of freedom.
The question is whether the two different packages of new variables for massive and

massless particles can be combined into a single covariant package as Einstein’s E = mc2

does for the energy-momentum relations for massive and massless particles. We shall
divide this question into two parts. First, we deal with the question of spin, helicity, and
gauge degrees of freedom. We can deal with this question without worrying about the
space-time extension of the particle. Second, we face the problem of space-time extensions
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using hadrons which are bound states of quarks obeying the laws of quantum mechanics.
In order to answer this question, we first have to construct a quantum mechanics of bound
states which can be Lorentz-boosted.
In Sec. 2, the above-mentioned problems are spelled out in detail. In Sec. 3, we present

a brief history of applications of the little groups of the Poincaré to internal space-time
symmetries of relativistic particles. In Sec. 4, we construct representations of the little
group using harmonic oscillator wave functions. In Sec. 5, it is shown that the Lorentz-
boosted oscillator wave functions exhibit the peculiarities Feynman’s parton model in the
infinite-momentum limit.
Much of the concept of Lorentz-squeezed wave function is derived from elliptic defor-

mations of a sphere resulting in a mathematical technique group called contractions [8].
In Appendix A, we discuss the contraction of the three-dimensional rotation group to the
two-dimensional Euclidean group. In Appendix B, we discuss the little group for a mass-
less particle as the infinite-momentum/zero-mass limit of the little group for a massive
particle.

2. Statement of the Problem

The Lorentz-invariant differential equation of Feynman, Kislinger, and Ravndal is
a linear partial differential equation [4] . It can therefore generate many different sets
of solutions depending on boundary conditions. In their paper, Feynman et al. choose
Lorentz-invariant solutions. But their solutions are not normalizable and cannot therefore
be interpreted within the framework of the existing rules of quantum mechanics. In this
report, we point out there are other sets of solutions. We choose here normalizable
wave functions. They are not Lorentz-invariant, but they are Lorentz-covariant. These
covariant solutions form a representations of the Poincaré group [6, 7].
The Lorentz-invariant wave function takes the same form in every Lorentz frame,

but the covariant wave function takes different forms. However, in the covariant for-
mulation, the wave function in one frame can be transformed to the wave function in a
different frame by Lorentz transformation. In particular, the wave function in the infinite-
momentum frame is quite different from the wave function at the rest frame. Thus, it
may be possible to obtain Feynman’s parton picture by Lorentz-boosting the quark wave
function constructed from the rest frame.
In spite of the mathematical difficulties, the original paper of Feynman et al. contains

the following radical departures from the conventional viewpoint.

• For relativistic bound state, we should use harmonic oscillators instead of Feynman
diagrams.

• We should us harmonic oscillators instead of Regge trajectories to study degeneracies
in the hadronic spectra.

These views sound radical, but they are quite consistent with the existing forms of
quantum mechanics and quantum field theory. In quantum field theory, Feynman dia-
grams are only for scattering states where the external lines correspond free particles in
asymptotic states. The oscillator eigenvalues are proportional to the highest values of the
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angular momentum. This is often known as the linear Regge trajectory. Between the
Regge trajectory and the three-dimensional oscillator, which one is closer to the funda-
mental laws of quantum mechanics. Therefore, the above-mentioned radical departures
mean that we are coming back to common sense in physics.
On the other hand, there is one important point Feynman et al. failed to see in their

oscillator paper [4]. Two years before the publication of this oscillator paper, Feynman
proposed his parton model [5]. However, in their oscillator paper, they do not mention
the possibility of obtaining the parton picture from the quantum mechanics of bound-
state quarks in a hadron in its rest frame. It is probably because their wave functions are
Lorentz-invariant but not covariant.
However, the covariant formalism forces us to raise this question. This is precisely the

purpose of the present report.

3. Poincaré Symmetry of Relativistic Particles

The Poincaré group is the group of inhomogeneous Lorentz transformations, namely
Lorentz transformations preceded or followed by space-time translations. In order to study
this group, we have to understand first the group of Lorentz transformations, the group
of translations, and how these two groups are combined to form the Poincaré group. The
Poincaré group is a semi-direct product of the Lorentz and translation groups. The two
Casimir operators of this group correspond to the (mass)2 and (spin)2 of a given particle.
Indeed, the particle mass and its spin magnitude are Lorentz-invariant quantities.
The question then is how to construct the representations of the Lorentz group which

are relevant to physics. For this purpose, Wigner in 1939 studied the subgroups of the
Lorentz group whose transformations leave the four-momentum of a given free particle [6].
The maximal subgroup of the Lorentz group which leaves the four-momentum invariant
is called the little group. Since the little group leaves the four-momentum invariant,
it governs the internal space-time symmetries of relativistic particles. Wigner shows in
his paper that the internal space-time symmetries of massive and massless particles are
dictated by the O(3)-like and E(2)-like little groups respectively.
The O(3)-like little group is locally isomorphic to the three-dimensional rotation group,

which is very familiar to us. For instance, the group SU(2) for the electron spin is an
O(3)-like little group. The group E(2) is the Euclidean group in a two-dimensional space,
consisting of translations and rotations on a flat surface. We are performing these trans-
formations everyday on ourselves when we move from home to school. The mathematics
of these Euclidean transformations are also simple. However, the group of these transfor-
mations are not well known to us. In Appendix A, we give a matrix representation of the
E(2) group.
The group of Lorentz transformations consists of three boosts and three rotations.

The rotations therefore constitute a subgroup of the Lorentz group. If a massive particle
is at rest, its four-momentum is invariant under rotations. Thus the little group for a
massive particle at rest is the three-dimensional rotation group. Then what is affected by
the rotation? The answer to this question is very simple. The particle in general has its
spin. The spin orientation is going to be affected by the rotation!
If the rest-particle is boosted along the z direction, it will pick up a non-zero momen-

tum component. The generators of the O(3) group will then be boosted. The boost will
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take the form of conjugation by the boost operator. This boost will not change the Lie
algebra of the rotation group, and the boosted little group will still leave the boosted four-
momentum invariant. We call this the O(3)-like little group. If we use the four-vector
coordinate (x, y, z, t), the four-momentum vector for the particle at rest is (0, 0, 0, m),
and the three-dimensional rotation group leaves this four-momentum invariant. This
little group is generated by

J1 =



0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


 , J2 =



0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0


 , (1)

and

J3 =



0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 , (2)

which satisfy the commutation relations:

[Ji, Jj] = iεijkJk. (3)

It is not possible to bring a massless particle to its rest frame. In his 1939 paper [6],
Wigner observed that the little group for a massless particle moving along the z axis is
generated by the rotation generator around the z axis, namely J3 of Eq.(2), and two other
generators which take the form

N1 =



0 0 −i i
0 0 0 0
i 0 0 0
i 0 0 0


 , N2 =



0 0 0 0
0 0 −i i

0 i 0 0
0 i 0 0


 . (4)

If we use Ki for the boost generator along the i-th axis, these matrices can be written as

N1 = K1 − J2, N2 = K2 + J1, (5)

with

K1 =



0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0


 , K2 =



0 0 0 0
0 0 0 i
0 0 0 0
0 i 0 0


 . (6)

The generators J3, N1 and N2 satisfy the following set of commutation relations.

[N1, N2] = 0, [J3, N1] = iN2, [J3, N2] = −iN1. (7)

In Appendix A, we discuss the generators of the E(2) group. They are J3 which generates
rotations around the z axis, and P1 and P2 which generate translations along the x
and y directions respectively. If we replace N1 and N2 by P1 and P2, the above set of
commutation relations becomes the set given for the E(2) group given in Eq.(34). This
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is the reason why we say the little group for massless particles is E(2)-like. Very clearly,
the matrices N1 and N2 generate Lorentz transformations.
It is not difficult to associate the rotation generator J3 with the helicity degree of

freedom of the massless particle. Then what physical variable is associated with the N1
and N2 generators? Indeed, Wigner was the one who discovered the existence of these
generators, but did not give any physical interpretation to these translation-like genera-
tors. For this reason, for many years, only those representations with the zero-eigenvalues
of the N operators were thought to be physically meaningful representations [9]. It was
not until 1971 when Janner and Janssen reported that the transformations generated
by these operators are gauge transformations [10, 11]. The role of this translation-like
transformation has also been studied for spin-1/2 particles, and it was concluded that the
polarization of neutrinos is due to gauge invariance [12, 13].
Another important development along this line of research is the application of group

contractions to the unifications of the two different little groups for massive and massless
particles. We always associate the three-dimensional rotation group with a spherical
surface. Let us consider a circular area of radius 1 kilometer centered on the north pole
of the earth. Since the radius of the earth is more than 6,450 times longer, the circular
region appears flat. Thus, within this region, we use the E(2) symmetry group for this
region. The validity of this approximation depends on the ratio of the two radii.

Table 1: Further contents of Einstein’s E = mc2. Massive and massless particles have different
energy-momentum relations. Einstein’s special relativity gives one relation for both. Wigner’s

little group unifies the internal space-time symmetries for massive and massless particles which
are locally isomorphic to O(3) and E(2) respectively. It is a great challenge for us to find another

unification. In this note, we present a unified picture of the quark and parton models which are
applicable to slow and ultra-fast hadrons respectively.

Massive, Slow COVARIANCE Massless, Fast

Energy- Einstein’s

Momentum E = p2/2m E = [p2 +m2]1/2 E = cp

Internal S3 S3
space-time Wigner’s
symmetry S1, S2 Little Group Gauge Transformations

Relativistic
Extended Quark Model Covariant Model of Hadrons Partons
Particles

In 1953, Inonu and Wigner formulated this problem as the contraction of O(3) to
E(2) [8]. How about then the little groups which are isomorphic to O(3) and E(2)? It is
reasonable to expect that the E(2)-like little group be obtained as a limiting case for of the
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O(3)-like little group for massless particles. In 1981, it was observed by Ferrara and Savoy
that this limiting process is the Lorentz boost [14]. In 1983, using the same limiting process
as that of Ferrara and Savoy, Han et al showed that transverse rotation generators become
the generators of gauge transformations in the limit of infinite momentum and/or zero
mass [15]. In 1987, Kim and Wigner showed that the little group for massless particles
is the cylindrical group which is isomorphic to the E(2) group [16]. This completes
the second raw in Table I, where Wigner’s little group unifies the internal space-time
symmetries of massive and massless particles.
We are now interested in constructing the third row in Table I. As we promised in

Sec. 1, we will be dealing with hadrons which are bound states of quarks with space-time
extensions. For this purpose, we need a set of covariant wave functions consistent with
the existing laws of quantum mechanics, including of course the uncertainty principle and
probability interpretation.
With these wave functions, we propose to solve the following problem in high-energy

physics. The quark model works well when hadrons are at rest or move slowly. However,
when they move with speed close to that of light, they appear as a collection of infinite-
number of partons [5]. As we stated above, we need a set of wave functions which can be
Lorentz-boosted. How can we then construct such a set? In constructing wave functions
for any purpose in quantum mechanics, the standard procedure is to try first harmonic
oscillator wave functions. In studying the Lorentz boost, the standard language is the
Lorentz group. Thus the first step to construct covariant wave functions is to work out
representations of the Lorentz group using harmonic oscillators [1, 2, 7].

4. Covariant Harmonic Oscillators

If we construct a representation of the Lorentz group using normalizable harmonic
oscillator wave functions, the result is the covariant harmonic oscillator formalism [7].
The formalism constitutes a representation of Wigner’s O(3)-like little group for a massive
particle with internal space-time structure. This oscillator formalism has been shown to be
effective in explaining the basic phenomenological features of relativistic extended hadrons
observed in high-energy laboratories. In particular, the formalism shows that the quark
model and Feynman’s parton picture are two different manifestations of one covariant
entity [7, 17]. The essential feature of the covariant harmonic oscillator formalism is that
Lorentz boosts are squeeze transformations [18, 19]. In the light-cone coordinate system,
the boost transformation expands one coordinate while contracting the other so as to
preserve the product of these two coordinate remains constant. We shall show that the
parton picture emerges from this squeeze effect.
Let us consider a bound state of two particles. For convenience, we shall call the bound

state the hadron, and call its constituents quarks. Then there is a Bohr-like radius mea-
suring the space-like separation between the quarks. There is also a time-like separation
between the quarks, and this variable becomes mixed with the longitudinal spatial separa-
tion as the hadron moves with a relativistic speed. There are no quantum excitations along
the time-like direction. On the other hand, there is the time-energy uncertainty relation
which allows quantum transitions. It is possible to accommodate these aspect within the
framework of the present form of quantum mechanics. The uncertainty relation between
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the time and energy variables is the c-number relation [20], which does not allow excita-
tions along the time-like coordinate. We shall see that the covariant harmonic oscillator
formalism accommodates this narrow window in the present form of quantum mechanics.

For a hadron consisting of two quarks, we can consider their space-time positions xa
and xb, and use the variables

X = (xa + xb)/2, x = (xa − xb)/2
√
2. (8)

The four-vector X specifies where the hadron is located in space and time, while the
variable x measures the space-time separation between the quarks. In the convention of
Feynman et al. [4], the internal motion of the quarks bound by a harmonic oscillator
potential of unit strength can be described by the Lorentz-invariant equation

1

2

{
x2µ −

∂2

∂x2µ

}
ψ(x) = λψ(x). (9)

It is now possible to construct a representation of the Poincaré group from the solutions
of the above differential equation [7].
The coordinate X is associated with the overall hadronic four-momentum, and the

space-time separation variable x dictates the internal space-time symmetry or the O(3)-
like little group. Thus, we should construct the representation of the little group from
the solutions of the differential equation in Eq.(9). If the hadron is at rest, we can
separate the t variable from the equation. For this variable we can assign the ground-
state wave function to accommodate the c-number time-energy uncertainty relation [20].
For the three space-like variables, we can solve the oscillator equation in the spherical
coordinate system with usual orbital and radial excitations. This will indeed constitute
a representation of the O(3)-like little group for each value of the mass. The solution
should take the form

ψ(x, y, z, t) = ψ(x, y, z)
(
1

π

)1/4
exp
(
−t2/2

)
, (10)

where ψ(x, y, z) is the wave function for the three-dimensional oscillator with appropriate
angular momentum quantum numbers. Indeed, the above wave function constitutes a
representation of Wigner’s O(3)-like little group for a massive particle [7].
Since the three-dimensional oscillator differential equation is separable in both spher-

ical and Cartesian coordinate systems, ψ(x, y, z) consists of Hermite polynomials of x, y,
and z. If the Lorentz boost is made along the z direction, the x and y coordinates are
not affected, and can be temporarily dropped from the wave function. The wave function
of interest can be written as

ψn(z, t) =
(
1

π

)1/4
exp (−t2/2 )ψn(z), (11)

with

ψn(z) =
(

1

πn!2n

)1/2
Hn(z) exp(−z2/2), (12)
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where ψn(z) is for the n-th excited oscillator state. The full wave function ψn(z, t) is

ψn0 (z, t) =
(

1

πn!2n

)1/2
Hn(z) exp

{
−1
2

(
z2 + t2

)}
. (13)

The subscript 0 means that the wave function is for the hadron at rest. The above
expression is not Lorentz-invariant, and its localization undergoes a Lorentz squeeze as
the hadron moves along the z direction [7]. The above form of the wave function is
illustrated in Fig.1.

Dirac:  Uncertainty
without  Excitations 

Heisenberg:  Uncertainty
with  Excitations 

t

z

Figure 1: Present form of quantum mechanics. There are excitations along the space-like
dimensions, but there are no excitations along the time-like direction. However, there still

is a time-energy uncertainty relation. We call this Dirac’s c-number time-energy uncertainty
relation. It is very important to note that this space-time asymmetry is quite consistent with
the concept of covariance

It is convenient to use the light-cone variables to describe Lorentz boosts. The light-
cone coordinate variables are

u = (z + t)/
√
2, v = (z − t)/

√
2. (14)

In terms of these variables, the Lorentz boost along the z direction,(
z′

t′

)
=
(
cosh η sinh η
sinh η cosh η

)(
z
t

)
, (15)

takes the simple form
u′ = eηu, v′ = e−ηv, (16)

where η is the boost parameter and is tanh−1(v/c). Indeed, the u variable becomes
expanded while the v variable becomes contracted. This is the squeeze mechanism illus-
trated discussed extensively in the literature [18, 19]. This squeeze transformation is also
illustrated in Fig. 2.
The wave function of Eq.(13) can be written as

ψno (z, t) = ψn0 (z, t) =
(

1

πn!2n

)1/2
Hn
(
(u+ v)/

√
2
)
exp
{
−1
2
(u2 + v2)

}
. (17)
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If the system is boosted, the wave function becomes

ψnη (z, t) =
(

1

πn!2n

)1/2
Hn
(
(e−ηu+ eηv)/

√
2
)
× exp

{
−1
2

(
e−2ηu2 + e2ηv2

)}
. (18)

A=4u ′v ′

Area A

Area A

t

z

u

v

A=4uv

=2(t2–z2)

t

z

uv=   ( t2–z2)=1
2

A
4

Figure 2: Further contents of Lorentz boosts. In the light-cone coordinate system, the Lorentz

boost takes the form of the lower part of this figure. In terms of the longitudinal and time-like
variables, the transformation is illustrated in the upper portion of this figure.

In both Eqs. (17) and (18), the localization property of the wave function in the uv

plane is determined by the Gaussian factor, and it is sufficient to study the ground state
only for the essential feature of the boundary condition. The wave functions in Eq.(17)
and Eq.(18) then respectively become

ψ0(z, t) =
(
1

π

)1/2
exp
{
−1
2
(u2 + v2)

}
. (19)

If the system is boosted, the wave function becomes

ψη(z, t) =
(
1

π

)1/2
exp
{
−1
2

(
e−2ηu2 + e2ηv2

)}
. (20)
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We note here that the transition from Eq.(19) to Eq.(20) is a squeeze transformation.
The wave function of Eq.(19) is distributed within a circular region in the uv plane, and
thus in the zt plane. On the other hand, the wave function of Eq.(20) is distributed in
an elliptic region. This ellipse is a “squeezed” circle with the same area as the circle, as
is illustrated in Fig. 2.
For many years, we have been interested in combining quantum mechanics with special

relativity. One way to achieve this goal is to combine the quantum mechanics of Fig. 1
and the relativity of Fig. 2 to produce a covariant picture of Fig. 3. We are now ready to
exploit physical consequence of the Lorentz-squeezed quantum mechanics of Fig. 3.

β=0
z

t

β=0.8

Figure 3: Effect of the Lorentz boost on the space-time wave function. The circular space-time

distribution at the rest frame becomes Lorentz-squeezed to become an elliptic distribution.

5. Feynman’s Parton Picture

It is safe to believe that hadrons are quantum bound states of quarks having localized
probability distribution. As in all bound-state cases, this localization condition is respon-
sible for the existence of discrete mass spectra. The most convincing evidence for this
bound-state picture is the hadronic mass spectra which are observed in high-energy labo-
ratories [4, 7]. However, this picture of bound states is applicable only to observers in the
Lorentz frame in which the hadron is at rest. How would the hadrons appear to observers
in other Lorentz frames? More specifically, can we use the picture of Lorentz-squeezed
hadrons discussed in Sec. 4.
Proton’s radius is 10−5 of that of the hydrogen atom. Therefore, it is not unnatural

to assume that the proton has a point charge in atomic physics. However, while carrying
out experiments on electron scattering from proton targets, Hofstadter in 1955 observed
that the proton charge is spread out [21]. In this experiment, an electron emits a virtual
photon, which then interacts with the proton. If the proton consists of quarks distributed
within a finite space-time region, the virtual photon will interact with quarks which carry
fractional charges. The scattering amplitude will depend on the way in which quarks are
distributed within the proton. The portion of the scattering amplitude which describes
the interaction between the virtual photon and the proton is called the form factor.
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Although there have been many attempts to explain this phenomenon within the
framework of quantum field theory, it is quite natural to expect that the wave function
in the quark model will describe the charge distribution. In high-energy experiments, we
are dealing with the situation in which the momentum transfer in the scattering process
is large. Indeed, the Lorentz-squeezed wave functions lead to the correct behavior of the
hadronic form factor for large values of the momentum transfer [22].
While the form factor is the quantity which can be extracted from the elastic scattering,

it is important to realize that in high-energy processes, many particles are produced in the
final state. They are called inelastic processes. While the elastic process is described by
the total energy and momentum transfer in the center-of-mass coordinate system, there
is, in addition, the energy transfer in inelastic scattering. Therefore, we would expect that
the scattering cross section would depend on the energy, momentum transfer, and energy
transfer. However, one prominent feature in inelastic scattering is that the cross section
remains nearly constant for a fixed value of the momentum-transfer/energy-transfer ratio.
This phenomenon is called “scaling” [23].
In order to explain the scaling behavior in inelastic scattering, Feynman in 1969 ob-

served that a fast-moving hadron can be regarded as a collection of many “partons” whose
properties do not appear to be identical to those of quarks [5]. For example, the number
of quarks inside a static proton is three, while the number of partons in a rapidly moving
proton appears to be infinite. The question then is how the proton looking like a bound
state of quarks to one observer can appear different to an observer in a different Lorentz
frame? Feynman made the following systematic observations.

a). The picture is valid only for hadrons moving with velocity close to that of light.

b). The interaction time between the quarks becomes dilated, and partons behave as
free independent particles.

c). The momentum distribution of partons becomes widespread as the hadron moves
very fast.

d). The number of partons seems to be infinite or much larger than that of quarks.

Because the hadron is believed to be a bound state of two or three quarks, each of the
above phenomena appears as a paradox, particularly b) and c) together. We would like
to resolve this paradox using the covariant harmonic oscillator formalism.
For this purpose, we need a momentum-energy wave function. If the quarks have the

four-momenta pa and pb, we can construct two independent four-momentum variables [4]

P = pa + pb, q =
√
2(pa − pb). (21)

The four-momentum P is the total four-momentum and is thus the hadronic four-momentum.
q measures the four-momentum separation between the quarks.
We expect to get the momentum-energy wave function by taking the Fourier transfor-

mation of Eq.(20):

φη(qz, q0) =
(
1

2π

) ∫
ψη(z, t) exp{−i(qzz − q0t)}dxdt. (22)
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Let us now define the momentum-energy variables in the light-cone coordinate system as

qu = (q0 − qz)/
√
2, qv = (q0 + qz)/

√
2. (23)

In terms of these variables, the Fourier transformation of Eq.(22) can be written as

φη(qz, q0) =
(
1

2π

) ∫
ψη(z, t) exp {−i(quu+ qvv)}dudv. (24)

The resulting momentum-energy wave function is

φη(qz, q0) =
(
1

π

)1/2
exp
{
−1
2

(
e−2ηq2u + e2ηq2v

)}
. (25)

Since we are using here the harmonic oscillator, the mathematical form of the above
momentum-energy wave function is identical to that of the space-time wave function. The
Lorentz squeeze properties of these wave functions are also the same, as are indicated in
Fig. 4.
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Figure 4: Lorentz-squeezed space-time and momentum-energy wave functions. As the hadron’s
speed approaches that of light, both wave functions become concentrated along their respective

positive light-cone axes. These light-cone concentrations lead to Feynman’s parton picture.
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When the hadron is at rest with η = 0, both wave functions behave like those for
the static bound state of quarks. As η increases, the wave functions become continuously
squeezed until they become concentrated along their respective positive light-cone axes.
Let us look at the z-axis projection of the space-time wave function. Indeed, the width
of the quark distribution increases as the hadronic speed approaches that of the speed of
light. The position of each quark appears widespread to the observer in the laboratory
frame, and the quarks appear like free particles.
Furthermore, interaction time of the quarks among themselves become dilated. Be-

cause the wave function becomes wide-spread, the distance between one end of the har-
monic oscillator well and the other end increases as is indicated in Fig. 4. This effect, first
noted by Feynman [5], is universally observed in high-energy hadronic experiments. The
period is oscillation is increases like eη. On the other hand, the interaction time with the
external signal, since it is moving in the direction opposite to the direction of the hadron,
it travels along the negative light-cone axis. If the hadron contracts along the negative
light-cone axis, the interaction time decreases by e−η. The ratio of the interaction time to
the oscillator period becomes e−2η. The energy of each proton coming out of the Fermilab
accelerator is 900GeV . This leads the ratio to 10−6. This is indeed a small number. The
external signal is not able to sense the interaction of the quarks among themselves inside
the hadron.
The momentum-energy wave function is just like the space-time wave function. The

longitudinal momentum distribution becomes wide-spread as the hadronic speed ap-
proaches the velocity of light. This is in contradiction with our expectation from non-
relativistic quantum mechanics that the width of the momentum distribution is inversely
proportional to that of the position wave function. Our expectation is that if the quarks
are free, they must have their sharply defined momenta, not a wide-spread distribution.
This apparent contradiction presents to us the following two fundamental questions:

a). If both the spatial and momentum distributions become widespread as the hadron
moves, and if we insist on Heisenberg’s uncertainty relation, is Planck’s constant
dependent on the hadronic velocity?

b). Is this apparent contradiction related to another apparent contradiction that the
number of partons is infinite while there are only two or three quarks inside the
hadron?

The answer to the first question is “No”, and that for the second question is “Yes”.
Let us answer the first question which is related to the Lorentz invariance of Planck’s
constant. If we take the product of the width of the longitudinal momentum distribution
and that of the spatial distribution, we end up with the relation

< z2 >< q2z >= (1/4)[cosh(2η)]
2. (26)

The right-hand side increases as the velocity parameter increases. This could lead us to
an erroneous conclusion that Planck’s constant becomes dependent on velocity. This is
not correct, because the longitudinal momentum variable qz is no longer conjugate to the
longitudinal position variable when the hadron moves.
In order to maintain the Lorentz-invariance of the uncertainty product, we have to

work with a conjugate pair of variables whose product does not depend on the velocity
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parameter. Let us go back to Eq.(23) and Eq.(24). It is quite clear that the light-cone
variable u and v are conjugate to qu and qv respectively. It is also clear that the distribution
along the qu axis shrinks as the u-axis distribution expands. The exact calculation leads
to

< u2 >< q2u >= 1/4, < v2 >< q2v >= 1/4. (27)

Planck’s constant is indeed Lorentz-invariant.
Let us next resolve the puzzle of why the number of partons appears to be infinite

while there are only a finite number of quarks inside the hadron. As the hadronic speed
approaches the speed of light, both the x and q distributions become concentrated along
the positive light-cone axis. This means that the quarks also move with velocity very
close to that of light. Quarks in this case behave like massless particles.
We then know from statistical mechanics that the number of massless particles is not

a conserved quantity. For instance, in black-body radiation, free light-like particles have
a widespread momentum distribution. However, this does not contradict the known prin-
ciples of quantum mechanics, because the massless photons can be divided into infinitely
many massless particles with a continuous momentum distribution.
Likewise, in the parton picture, massless free quarks have a wide-spread momentum

distribution. They can appear as a distribution of an infinite number of free particles.
These free massless particles are the partons. It is possible to measure this distribution in
high-energy laboratories, and it is also possible to calculate it using the covariant harmonic
oscillator formalism. We are thus forced to compare these two results. Indeed, accord-
ing to Hussar’s calculation [24], the Lorentz-boosted oscillator wave function produces a
reasonably accurate parton distribution, as indicated in Fig. 5.
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Figure 5: Parton distribution. It is possible to calculate the parton distribution from the

Lorentz-boosted oscillator wave function. This theoretical curve is compared with the experi-
mental curve.

Concluding Remarks

In this report, we have considered a string consisting only of two particles bounded
together by an oscillator potential. The essence of the problem was to construct a quantum
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mechanics of harmonic oscillators which can be Lorentz-transformed. We achieved this
purpose by remodeling the oscillator formalism of Feynman, Kislinger and Ravndal. Their
Lorentz-invariant equation has a covariant set of solutions which is consistent with the
existing principles of quantum mechanics and special relativity.
From these wave wave functions, it is possible to construct a representation of Wigner’s

O(3)-like little group governing the internal space-time symmetries of relativistic particles
with non-zero mass. In order to illustrate the difference between the little group for
massive particles from that for massless particles, we have given a comprehensive review of
the little groups for massive and massless particles. We have discussed also the contraction
procedure in which the E(2)-like little group for massless particles is obtained from the
O(3)-like little group for massive particles. We have given a comprehensive review of the
contents of Table I.
Let us go back to the issue of strings. As we noted earlier in this paper, the string

is a limiting case of discrete sets of mass points. We can consider two limiting cases,
namely the continuous string and two-particle string. There also is a possibility of strings
of discrete sets of particles, or “polymers of point-like constituents”[25]. These different
strings might take different mathematical forms, but they should all share the space-
time symmetry. Thus, the quickest way to study this symmetry is to use the simplest
mathematical technique which the two-pearl string provides.
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A Contraction of O(3) to E(2)

In this Appendix, we explain what the E(2) group is. We then explain how we can
obtain this group from the three-dimensional rotation group by making a flat-surface
or cylindrical approximation. This contraction procedure will give a clue to obtaining
the E(2)-like symmetry for massless particles from the O(3)-like symmetry for massive
particles by making the infinite-momentum limit.
The E(2) transformations consist of rotation and two translations on a flat plane. Let

us start with the rotation matrix applicable to the column vector (x, y, 1):

R(θ) =


 cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 . (28)

35



Let us then consider the translation matrix:

T (a, b) =


 1 0 a
0 1 b
0 0 1


 . (29)

If we take the product T (a, b)R(θ),

E(a, b, θ) = T (a, b)R(θ) =


 cos θ − sin θ a
sin θ cos θ b
0 0 1


 . (30)

This is the Euclidean transformation matrix applicable to the two-dimensional xy plane.
The matrices R(θ) and T (a, b) represent the rotation and translation subgroups respec-
tively. The above expression is not a direct product because R(θ) does not commute with
T (a, b). The translations constitute an Abelian invariant subgroup because two different
T matrices commute with each other, and because

R(θ)T (a, b)R−1(θ) = T (a′, b′). (31)

The rotation subgroup is not invariant because the conjugation

T (a, b)R(θ)T−1(a, b)

does not lead to another rotation.
We can write the above transformation matrix in terms of generators. The rotation is

generated by

J3 =


 0 −i 0

i 0 0
0 0 0


 . (32)

The translations are generated by

P1 =


 0 0 i
0 0 0
0 0 0


 , P2 =


 0 0 0
0 0 i
0 0 0


 . (33)

These generators satisfy the commutation relations:

[P1, P2] = 0, [J3, P1] = iP2, [J3, P2] = −iP1. (34)

This E(2) group is not only convenient for illustrating the groups containing an Abelian
invariant subgroup, but also occupies an important place in constructing representations
for the little group for massless particles, since the little group for massless particles is
locally isomorphic to the above E(2) group.
The contraction of O(3) to E(2) is well known and is often called the Inonu-Wigner

contraction [8]. The question is whether the E(2)-like little group can be obtained from
the O(3)-like little group. In order to answer this question, let us closely look at the
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original form of the Inonu-Wigner contraction. We start with the generators of O(3).
The J3 matrix is given in Eq.(2), and

J2 =


 0 0 i

0 0 0
−i 0 0


 , J3 =


 0 −i 0

i 0 0
0 0 0


 . (35)

The Euclidean group E(2) is generated by J3, P1 and P2, and their Lie algebra has been
discussed in Sec. 1.
Let us transpose the Lie algebra of the E(2) group. Then P1 and P2 become Q1 and

Q2 respectively, where

Q1 =


 0 0 0
0 0 0
i 0 0


 , Q2 =


 0 0 0
0 0 0
0 i 0


 . (36)

Together with J3, these generators satisfy the same set of commutation relations as that
for J3, P1, and P2 given in Eq.(34):

[Q1, Q2] = 0, [J3, Q1] = iQ2, [J3, Q2] = −iQ1. (37)

These matrices generate transformations of a point on a circular cylinder. Rotations
around the cylindrical axis are generated by J3. The matrices Q1 and Q2 generate trans-
lations along the direction of z axis. The group generated by these three matrices is called
the cylindrical group [16, 26].
We can achieve the contractions to the Euclidean and cylindrical groups by taking the

large-radius limits of

P1 =
1

R
B−1J2B, P2 = −

1

R
B−1J1B, (38)

and

Q1 = −
1

R
BJ2B

−1, Q2 =
1

R
BJ1B

−1, (39)

where

B(R) =


 1 0 0
0 1 0
0 0 R


 . (40)

The vector spaces to which the above generators are applicable are (x, y, z/R) and (x, y, Rz)
for the Euclidean and cylindrical groups respectively. They can be regarded as the north-
pole and equatorial-belt approximations of the spherical surface respectively [16].

B Contraction of O(3)-like to E(2)-like Little Groups

Since P1(P2) commutes with Q2(Q1), we can consider the following combination of
generators.

F1 = P1 +Q1, F2 = P2 +Q2. (41)
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Then these operators also satisfy the commutation relations:

[F1, F2] = 0, [J3, F1] = iF2, [J3, F2] = −iF1. (42)

However, we cannot make this addition using the three-by-three matrices for Pi and Qi
to construct three-by-three matrices for F1 and F2, because the vector spaces are different
for the Pi and Qi representations. We can accommodate this difference by creating two
different z coordinates, one with a contracted z and the other with an expanded z, namely
(x, y, Rz, z/R). Then the generators become

P1 =



0 0 0 i
0 0 0 0
0 0 0 0
0 0 0 0


 , P2 =



0 0 0 0
0 0 0 i
0 0 0 0
0 0 0 0


 . (43)

Q1 =



0 0 0 0
0 0 0 0
i 0 0 0
0 0 0 0


 , Q2 =



0 0 0 0
0 0 0 0
0 i 0 0
0 0 0 0


 . (44)

Then F1 and F2 will take the form

F1 =



0 0 0 i

0 0 0 0
i 0 0 0
0 0 0 0


 , F2 =



0 0 0 0
0 0 0 i
0 i 0 0
0 0 0 0


 . (45)

The rotation generator J3 takes the form of Eq.(2). These four-by-four matrices satisfy
the E(2)-like commutation relations of Eq.(42).
Now the B matrix of Eq.(40), can be expanded to

B(R) =



1 0 0 0
0 1 0 0
0 0 R 0
0 0 0 1/R


 . (46)

If we make a similarity transformation on the above form using the matrix



1 0 0 0
0 1 0 0
0 0 1/

√
2 −1/

√
2

0 0 1/
√
2 1/

√
2


 , (47)

which performs a 45-degree rotation of the third and fourth coordinates, then this matrix
becomes 


1 0 0 0
0 1 0 0
0 0 cosh η sinh η
0 0 sinh η cosh η


 , (48)
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with R = eη. This form is the Lorentz boost matrix along the z direction. If we start with
the set of expanded rotation generators J3 of Eq.(2), and perform the same operation as
the original Inonu-Wigner contraction given in Eq.(38), the result is

N1 =
1

R
B−1J2B, N2 = −

1

R
B−1J1B, (49)

where N1 and N2 are given in Eq.(4). The generators N1 and N2 are the contracted J2
and J1 respectively in the infinite-momentum/zero-mass limit.
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