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Parameters of the QCD-motivated static potential and the quark masses

are calculated on the basis of the 1−− meson mass spectra in the framework
of the relativistic independent-quark model based on the Dirac equation.

The value of the confining potential parameter is found to be (0.20± 0.01)
GeV2 for interactions between quarks and antiquarks independently on their

flavors. The flavor independence of the confining potential is justified on the
5 · 10−2 accuracy level both for the heavy quarks and for the light ones. The

values of parameter αs which is a strength of the quasi-Coulombic potential
are consistent with the QCD-motivated decrease of αs at small interaction
range. The qq̄ separation inside light and heavy vector mesons V and the

ratios of V → e−e+ decay widths for heavy vector mesons are evaluated.

1. Introduction
The calculation of masses and decay widths of various hadronic states still remains

among the unsolved problems of quantum chromodynamics (QCD). Even if we restrict
ourselves only to consideration of qq̄ bound states, ignoring baryons and exotic multiquark
states, we, nevertheless, run into some technical and conceptual difficulties such as high
order perturbative calculations and the confinement phenomenon. Moreover, it seems
probable that within any constructive formulation of the bound-state problem in QCD,
only the simplest cases will be of a rigorous analysis. For instance, although recently a
considerable progress in lattice QCD was achieved (see, e.g. Ref. [1]), the calculations of
mass values for all hadrons (including the light ones) on the basis of the first principles of
QCD are not possible with precision compatible with existing data [2] and demand too
much computation time.

Mainly for these reasons a set of phenomenological hadron models is used now which
differ from each other both in basic assumptions and in a precision of calculations. Since
the phenomenological models involve adjustable assumptions they do not provide a con-
trolled approximation scheme for QCD but it seems that the model calculations are helpful
for understanding the unsolved theoretical problems (such as the confinement or the bound
state problem) as well as for the interpretation of data. For instance, the mass spectrum
of the J/Ψ quarkonia is known to be described for the first time in the framework of the
nonrelativistic potential quark model. This model is the simplest one among the phe-
nomenological models of hadrons and is suitable for the heavy quark hadrons. However
the consideration of mesons containing the light quarks is more complicated task, and it
demands the relativistic as well as nonpotential effects to be taken into account (see, e.g.
Refs. [3-10]).
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In the present paper we deal with a description of some characteristics of both the
light and heavy vector mesons in the framework of a phenomenological relativistic model
with independent quarks. It is well known that the principle of the independent motion
of each constituent in the mean steady-state field is the main statement of models of the
considered type. We use the Dirac equation with a static QCD-motivated potential to
describe the quark or antiquark motion in the mean field inside the meson. Our model
does not contradict first principles of QCD and allows one in a simple fashion to carry
out numerical calculations of the meson characteristics, such as masses and separations
between quarks and antiquarks. Moreover, it is known, that the independent quark model
is suitable for hadrons with any number of both fermion and boson constituents. It seems
that as the parton model is an adequate approximation for the perturbative QCD in hard
processes, so the independent-quark model is relevant to the QCD bound state problems
in the analogous manner. One of the translation invariant versions of this model was
presented in Ref. [9], where it was suggested on the basis of the data for hadron mass
spectra that the motion of each valent constituent obeyed phenomenological selection rules
with respect to their radial quantum numbers and angular moments. In the framework of
this model the generalizations of the Veneziano-Nambu and Chew-Frautchi formulae for
light mesons were obtained, as well as the flavor independence of the confining potential
was confirmed [8-10]. However, the value of the strong coupling constant αs was ‘frozen’ at
small interaction distances for all quark flavors and was equal approximately to 0.32. This
was caused by the fact that actually in Refs. [8-10] a phenomenological radial equation
was used with a simple potential which took into account the scalar confining and vector
quasi-Coulombic interactions. In the present paper we go on from the phenomenological
equation to the Dirac equation with a sum of the scalar linearly rising potential and
the vector quasi-Coulombic one, and we get a variation of αs which depends on the
quark flavor. This variation is consistent qualitatively with the QCD asymptotic freedom
phenomenon. Moreover, the coefficient for the confining part of the potential remains the
same for all quark flavors and its value is σ = (0.20 ± 0.01) GeV2. This result supports
the hypothesis of the universality of confinement for all color objects.

The article is organized as follows. We briefly review the basic equations and the main
statements of the considered model in Section 2. Here the Dirac equation in the external
field, consisting of the Lorentz scalar and vector components, is transformed into a form
suitable for further numerical calculations. The method of the numerical calculations as
well as the calculated parameters of qq̄ interaction, masses, qq̄ separations inside vector
mesons and the ratios of V → e−e+ decay widths for heavy vector mesons V are presented
in Section 3. We discuss the obtained results in the last Section 4.

2. Basic model statements

According to the main statement of the independent-quark model the hadron is con-
sidered as a system composed of a few, let say N , non-interacting with each other directly,
valent constituents (quarks and antiquarks) having the coordinates ri, i = 1, ..., N , and
moving in some mean field. One supposes that this field is a white confining field which
is produced by the constituents and takes into account the effects of creation and annihi-
lation of a sea of qq̄ pairs as well. Furthermore, to simplify calculations it is assumed that
this external mean field is spherically symmetric and its motion in space is determined by
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motion of its center with the coordinate r0. In other words one treats the mean field as a
quasi-classical object possessing some energy ε0. Meantime each of N constituents inter-
acting with the spherical external field gets the state with a definite value of its energy
εi, so that the hadron mass can be evaluated as

Mh = ε0 + ε1 + ... + εN . (1)

In the equal-time approach the entire system, the hadron, is described by a stationary
wave function which in the so-called translation-invariant model can be represented as
follows:

ΨMh(r0, r1, ..., rN) ∝ ψ1(r1 − r0)...ψN(rN − r0). (2)

In order to keep out the ghost-motion states of the independent constituents center
of inertia, one usually associates the coordinate of the constituents center of mass with
the coordinate r0 of the mean field center. Thus, in this model any constituent turns
out to be coupled to the others via the common mean field which is moving together
with them. The wave function ψi(ri − r0) for any constituent is a solution of the single-
particle equation with the mean field static potential U(ri − r0) which is chosen to be
spherically symmetric. Angular dependence of the single-particle wave functions in a
stationary state may be separated in a well-known manner, and in order to evaluate
the spectroscopical hadron characteristics it is necessary to solve the radial equations
with the model potentials for each constituent. Note that it is impossible to evaluate ε0
without additional assumptions, and this quantity is a phenomenological parameter in
the considered model.

Hereafter we shall consider mesons as two-body hadrons consisting of a quark and
an antiquark. More precisely, the meson is considered as a bound system of the quark
(antiquark) q1 and the antiquark (quark) q2 in the n2S+1LJ state. On the phenomenolog-
ical ground the mass formula (1) for such the system can be presented in the following
form [9]:

M(n, JPC) = E1(n
r
1, j1) + E2(n

r
2, j2), (3)

where Ei(n
r
i , ji) , i = 1, 2, is called the energy spectral function or the mass term for

the quark (antiquark) qi and will be defined below. Note that each mass term contains
a part of the mean field energy ε0. The meson parity P = (−1)L+1 and the eigenvalue
C of charge conjugation for the neutral meson of qq̄ type is equal to (−1)L+S where the
total spin S = 0 or 1. In our notation mi are the quark (antiquark) masses and, for
convenience, we choose the ordering when m1 < m2, nri and ji are the radial quantum
numbers and the quantum numbers of the effective angular moments.

The main ansatz for evaluating the meson masses in the framework of our model is
the following phenomenological expression for the energy spectral function:

Ei(n
r
i , ji) = [λi + mi

2]1/2+ c[1 + (−1)L+ji+1/2]. (4)

The first term represents the relativistic effective energy of the constituent moving in
the mean field inside the meson, mi being a model parameter and λi being found as an
eigenvalue of the radial relativistic equation of the model. The second term in the formula
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(4) includes a part of energy of the mean field and is purely phenomenological with a
model parameter c = 0.035 GeV. It gives small corrections to the spectra of different
meson families. When one compares the evaluated meson masses with data it can be
found that the best agreement is achieved under condition that the quantum numbers nri
and ji obey the following selection rules [9]:

j1 = j2 + 1 = J + 1/2, J �= L + S,

j1 = j2 = J − 1/2, J = L + S,

nr1 = nr2 = n− 1. (5)

Within the scope of this model the wave function for any constituent (the quark/antiquark
orbital) is a solution of the single-particle equation with a static potential. We choose the
Dirac equation with the QCD-motivated potential V (r) for description of the interaction
of the quark or antiquark with the external mean field in order to determine the orbitals
inside the meson. This potential is spherically symmetrical and consists of the Lorentz
scalar and vector parts: V (r) = V0(r) + βV1(r). Hence the equation for a fermionic
constituent has the form

Eiψi(r) = [(αp) + β(mi + V0) + V1]ψi(r) (6)

with V0(r) = σr/2 and V1(r) = −2αs/3r, where the two model parameters σ and αs are
introduced and have got meanings of the string tension and the strong coupling constant
at small distances, correspondingly. It is well-known that the solutions of Eq. (6) with
the total angular momentum j and its projection m can be represented as

ψi(r) ∝
(

fi(r)Ωmjl (θ, ϕ)
−igi(r)(σn)Ωmjl (θ, ϕ)

)
, (7)

where n = r/r. If k = −ω(j + 1/2) where ω is an eigenvalue of the space-parity operator,
the system of the radial Dirac equations for the i-fermion in the mean field with the
definite energy sign and spin projection reads

(Ei − V0 − V1 −mi)fi = −k + 1

r
gi − g′i,

(Ei + V0 − V1 + mi)gi = −k − 1

r
fi + f ′i . (8)

Using Eqs. (8) one can derive the second order equation for the ‘large’ component
fi(r), and then making a substitution

ϕi(r) = rfi(r) [V0(r)− V1(r) + mi + Ei]
−1/2 (9)

one comes on to the equation for ϕi(r) in the following form:

ϕ
′′
i + λiϕi = [(mi + V0)

2 − (Ei − V1)
2 +

k(k − 1)

r2
+

3(V
′
0 − V

′
1 )
2

4(Ei − V1 + V0 + mi)2
−
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− k(V
′
0 − V

′
1 )

r(Ei − V1 + V0 + mi)
− (V

′′
0 − V

′′
1 )

2(Ei − V1 + V0 + mi)
]ϕi. (10)

Further on we restrict ourselves evaluating only characteristics of the radial excitations
of the S-wave 1−− mesons because they are described by the simplest version of model
and supported by the most extensive set of accurate data [2], especially for heavy mesons.
So, k = 1 and λi entering Eq.(4) can be calculated with the help of the S-wave radial
equation:

ϕ
′′

i + λiϕi ={− 4αs
√
λi + m2i

3r
−
(

2αs
3r

)2
+ miσr+

+
(

1

2
σr
)2
−
[

1

2
σr
(
mi +

√
λi + m2i

)
+
(

1

4
σr
)2

+
5

6
αsσ −

α2s
3r2

]}
[
2

3
αs + r

(
mi +

√
λi + m2i

)
+

1

2
σr2

]2}ϕi. (11)

The right-hand side of Eq. (11) has a singularity at the origin, and when r → 0 it
behaves as 3/4r2 − 4α2s/9r2. Therefore one should keep αs < 3/2 in order to prevent a
fall at the origin. At the infinity r →∞ the effective potential behaves as the oscillatory
one and tends to σ2r2/4 .

In the framework of our model the quantities mi, σ and αs are phenomenological
and to be determined as a result of calculations of meson spectra from Eq. (11) and a
comparison of them with experimental data.

3. Numerical evaluation of the strong interaction
parameters and the 1−− meson characteristics

The model equation (11) presented in the preceding section can be solved only by
numerical methods. In this section we present results on the numerical evaluation of mi,
σ and αs parameters , as well as some 1−− meson characteristics. For calculating the
eigenvalues of Eq. (11) a computer code has been worked out. The code algorithm is
based on the Numerov three point recurrent relation [11]:

yi−1 =

[
yi

(
2 +

5

6
F (ri, E)h2

)
− yi+1

(
1− F (ri+1, E)h2

12

)]
×

×
[
1− F (ri−1, E)h2

12

]−1
, (12)

where y′′ = F (r, E)y. For bound states one can put y(r) equal to zero for the values of
r ≥ rmax. We put rmax ≈ 10rcl where rcl is a classical radius of the bound state which
is determined from the equation U(rcl) = E and E is the initial energy of the considered
level. Then the value of E can be determined from the condition: y(0) = 0. However
the F (r, E) has a singularity at the origin. So when we calculate y(0) with the help of
formula (12) we use a regularization procedure which is analogous to the procedure which
was worked out, for instance, in Ref. [12].

In order to estimate the precision of the calculation algorithm the well-known test
with diminished spacing h is used. The obtained results allow us to disregard machine
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calculation errors as compared with systematic errors of the model. The accuracy criterion
for the fitted parameters was a limiting value of acceptable errors for evaluated hadron
masses as compared with typical experimental errors which we choose to be less than or
equal to 50 MeV. Thus, the parameter errors written below must be considered as our
estimation of systematic errors of the model.

When calculating the values of the model parameters we do not suppose a priori the
validity of the hypothesis of flavor independence for the confining potential. First of all
the model parameters mi, αs and σ for the bb̄ and cc̄ radial excitation of 1−− states
were found. The fit was carried out for each meson family independently. The existing
experimental data allowed to find these parameters as well as to prove the validity of the
model. In this manner it was found that the value of σ is the same for the bb̄ and cc̄ states
within the systematic errors of the model and equal to (0.20 ± 0.01) GeV2. Taking into
account that there are no well established data for the higher radial excitations of 1−−

light mesons, the obtained σ value was used for calculating mi and αs for light quarks.
Note that when doing the calculations we neglect the isotopic mass splitting of the u- and
d-quarks because it is beyond of the model accuracy.

With use of this procedure the following results were obtained. The coupling αs (quasi-
Coulombic potential constant) as well as the quark masses were evaluated for each family
of the 1−− mesons which are composed of the quark and antiquark with u-, d-, s-, c- or
b-flavors. Within the model accuracy all results for the well known experimental data on
the 1−− mesons are consistent with the following parameter values:

mu,d =
(
0.008+0.01−0.007

)
GeV, αs,ud = 0.6± 0.25,

ms = (0.16± 0.04) GeV, αs,s = 0.53± 0.15,
mc = (1.34± 0.05) GeV, αs,c = 0.31± 0.03,
mb = (4.65± 0.05) GeV, αs,b = 0.23± 0.02.

The input restriction of this model for quark mass values includes the inequality: mq > 0,
so the lower value of systematic error for mu,d is determined by this restriction. The
calculated vector meson masses are shown in Table 1 in comparison with the experimental
values. We also show the values for the qq̄ separations inside vector mesons Rn (n is a
number of the radial state) which have been numerically evaluated with the help of the
following formula:

R2n =
∫ {(En + m + σr/2 + 2αs/3r)ϕ2n(r)+

+(En+m+σr/2+2αs/3r)−1
[
ϕ
′
n +

(
σ/4− αs/3r2

En + m + σr/2 + 2αs/3r
− 1

r

)
ϕn

]2}r2dr. (13)

Moreover, we have managed to estimate the V → e+e− decay widths of the vector
mesons using the well-known nonrelativistic formula [3-5]:

Γ(V → e+e−) = 16πα2e2q
|Ψ(0)|2
M2
V

(
1− 16αs

3π

)2
. (14)
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In our case the square of the wave function at the origin in nonrelativistic approximation,
as it is seen from relation (2), is proportional to the product of the squared large compo-
nents fin(0). Thus, taking into account normalization factors of the meson wave function
we get

Γ(Vn → e+e−)/Γ(Vm → e+e−) =
M5
Vm

M5
V n

(
fn1(0)fn2(0)

fm1(0)fm1(0)

)2
. (15)

The results obtained for Rn and Γ(Vn → e+e−)/Γ(Vm → e+e−) are presented in Ta-
bles 1 and 2. In some cases one can see a disagreement between the calculated decay ratios
and the experimental values which might be caused by the fact that the values of fni(r)
are very sensitive to the behavior of the model potential at r ∼ 0, and a small variation
of αs brings to the considerable variation of decay widths. Note that the constants αs are
set the same for different radial states belonging to some meson family. We suppose to
clarify this problem in our future papers.

Table 1. Evaluated masses of the 1−− mesons in comparison with
the data from Ref. [2] and the qq̄ separations inside vector

mesons in comparison with the results of Ref. [1].

Meson Mexp [MeV] Mth [MeV] Rthn [fm] R[1]n
ρ 769.9±0.8 760 0.68 -
ρ′ 1465±25 1455 1.06 -
φ 1019.413±0.008 1010 0.61 -
φ′ 1680±50 1690 1.0 -
J/ψ 3096.88±0.04 3100 0.41 0.43
ψ′ 3686.00±0.09 3670 0.76 0.85
ψ′′ 4040±10 4070 1.04 1.18
ψ′′′ 4415±6 4410 1.26 1.47
Υ 9460.37±0.21 9505 0.25 0.24
Υ′ 10023.3±0.3 9980 0.51 0.51
Υ′′ 10355.3±0.5 10310 0.72 0.73
Υ′′′ 10580±3.5 10590 0.90 0.93

Table 2. Evaluated ratios of the the V → e+e− decay widths in com-

parison with the data from Ref. [2].

Vi/Vj (Γi/Γj)
min
exp (Γi/Γj)

max
exp (Γi/Γj)

min
th (Γi/Γj)

max
th

ψ/ψ′ 2.08 2.92 2.21 2.98
ψ/ψ

′′
5.43 9.38 3.72 4.94

ψ/ψ′′′ 8.58 15.22 4.96 6.54
ψ′/ψ′′ 2.14 3.92 1.46 1.89
ψ′/ψ′′′ 3.39 6.35 1.96 2.51
ψ′′/ψ′′′ 1.05 2.43 1.18 1.49
Υ/Υ′ 2.30 2.81 2.92 3.23
Υ/Υ′′′ 4.55 6.31 6.05 6.69
Υ′/Υ′′′ 1.75 2.54 1.97 2.18
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4. Conclusions and discussion

In this paper we consider the relativistic hadron model with independent quarks and
evaluate parameters of the qq̄ model potential, as well as the masses and the qq̄ separation
inside the 1−− mesons. We find that the value of σ = (0.20 ± 0.01) GeV2 is the same
for u-, d-, s-, c- and b-quark flavors within the systematical errors of the model. It is the
main result of our paper which confirms the flavor independence of confining potential on
the 5 · 10−2 level of accuracy. If one uses as definitions of the characteristic confinement
scales the confinement length lc and mass mc so that [13]: σ = mc/lc, mclc = 1, then
one will obtain: mc = (0.447 ± 0.011) GeV, lc = (0.442 ± 0.011) fm. In addition, the
correspondence to the QCD asymptotic freedom phenomenon, or the decrease of αs at
shorter distances, is confirmed both for the light and heavy quarks in this model. Thus,
in the framework of the independent-quark model on the basis of existing data for the
1−− meson mass spectra we have shown the universality of the confining potential of
interaction between quarks and antiquarks and at the same time the diminishing of αs
with a quark mass growth. Within systematical errors of this model it is difficult to prove
the logarithmic dependence of αs on Q2, moreover, there are considerable nonperturbative
contributions in the ultraviolet region (see, e.g. Refs. [14,15])

The method presented allows one to calculate the spectroscopical meson characteristics
such as the qq̄ separations inside the light and heavy vector mesons and the ratios of the
V → e−e+ decay widths in a simple fashion. For instance, the values of qq̄ separations
for the heavy vector mesons are in agreement with those obtained in Ref. [1], where the
calculations were performed on the basis of lattice QCD, while the calculations of the
light meson characteristics lie now beyond possibilities of the lattice QCD approach. The
model parameters obtained in this work, such as mi, σ and αs, may be compared with the
values obtained by other methods and on the ground of the QCD first principles (see, e.g.
Refs. [1-7]). One can see that our parameters do not contradict to these values and lie in
the generally used range. Besides, the advantage of the presented method consists in its
applicability to composite systems with any number of constituents, such as baryons and
exotic multiquark mesons.
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