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In this paper a solution for a static spherically symmetric body is thor-
oughly considered in the framework of the Relativistic Theory of Gravitation.

By the comparison of this solution with the Schwarzschild solution in General
Relativity their substantial difference is established in the region close to the

Schwarzschild sphere. Just this difference excludes the possibility of collapse
to form “black holes”.

The given problem was considered for the first time in the Relativistic Theory of
Gravitation (RTG) in paper [1], where it was established that in vacuum the metric
coefficient g00 of the effective Riemannian space was not equal to zero on the Schwarzschild
sphere, whereas g11 had a pole. These changes which have arisen in the theory because
of the graviton mass result in a “bounce” effect of the falling particles and light from a
singularity on the Schwarzschild sphere, and consequently, in the absence of “black holes”.
Later in paper [2] an in-depth study of this problem in the RTG was conducted which

updated a number of points, but at the same time showed, that the “bounce” took place
close to the Schwarzschild sphere. In view of importance of this problem we again come
back to its analysis with the purpose of showing in a simpler and clearer way that in that
point in vacuum where the metric coefficient of effective Riemannian space g11 has a pole,
another metric coefficient g00 will not vanish.
In RTG [3] the gravitational field is considered as a physical field in the Minkowski

space. The source of this field is the universal conserved density of the energy-momentum
tensor of the entire matter including the gravitational field. This circumstance results in
the emerging of the effective Riemannian space because of the presence of the gravitational
field. The motion of matter in the Minkowski space under the influence of the gravitational
field proceeds in the same way as if it moved in the effective Riemannian space. The field
approach to gravitation with necessity requires the introduction of the graviton rest mass.
In RTG, as opposed to the General Relativity Theory (GRT), the inertial reference

frames are present and consequently the acceleration has an absolute meaning. The forces
of inertia and gravity are separated, as they are of completely different nature. The Special
Relativity Principle holds for all the physical fields, including the gravitational one. It
follows from this theory that gravitational forces in the Newtonian approximation are the
forces of attraction. Since a physical field can be described in one coordinate system, it
means, that the effective Riemannian space has a simple topology and is set in one chart.
In RTG the Mach Principle will be realized — an inertial reference frame is determined
by the distribution of matter. In this theory the Correspondence Principle takes place:
after switching off the gravitational field the curvature of space disappears, and we find
ourselves in the Minkowski space in the coordinate system prescribed earlier.
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The RTG equations look like

Rµν −
1

2
δµνR +

1

2

(
mc

h̄

)2 (
δµν + gµαγαν −

1

2
δµνg

αβγαβ

)
= κT µν , (1)

Dµg̃
µν = 0 . (2)

Here g̃µν =
√−ggµν , g = det gµν , Rµν is the Ricci tensor, κ =

8πG
c2

, G is the gravitational
constant, Dµ is the covariant derivative in the Minkowski space, γµν(x) is the metric
tensor of the Minkowski space in arbitrary curvilinear coordinates. Equations (1) and (2)
are covariant under arbitrary coordinate transformations with a nonzero Jacobian. They
are also Lorentz invariant under transformations from one inertial system in Galilean
coordinates to another. Equations (2) eliminate representations corresponding to spins 1
and 0′ for a tensor field, leaving only the representations with spins 2 and 0. The equations
of motion of matter are the consequents of equations (1) and (2).
Let us determine now the gravitational field created by a spherically-symmetric static

source. The general form of the interval of the effective Riemannian space for such source
looks like

ds2 = g00dt
2 + 2g01dtdr + g11dr

2 + g22dΘ
2 + g33dΦ

2. (3)

Let us introduce the notations

g00(r) = U(r), g01(r) = B(r), g11(r)=−
[
V (r) − B2(r)

U(r)

]
,

(4)
g22(r) = −W 2(r), g33(r,Θ)=−W 2(r) sin2Θ.

The components of the contravariant metric tensor are as follows:

g00(r) =
1

U

(
1− B2

UV

)
, g01(r)=− B

UV
, g11(r) = − 1

V
,

(5)

g22(r) = − 1

W 2
, g33(r,Θ)=− 1

W 2 sin2Θ
.

The determinant of the metric tensor gµν is equal to

g = detgµν = −UVW 4 sin2Θ . (6)

For the solution having a physical sense, the following condition should be satisfied:

g < 0 . (7)

For spherical coordinates g can be equal to zero only at a point r = 0. On the base of (5)
and (6) we obtain the components of the metric tensor density

g̃µν =
√
−ggµν . (8)

They have the form

g̃00 =
W 2

√
UV

(
V − B2

U

)
sinΘ, g̃01 = −BW 2

√
UV

sinΘ, g̃11 = −
√
U

V
W 2 sinΘ, (9)
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g̃22 = −
√
UV sinΘ, g̃33 = −

√
UV

sinΘ
. (9′)

All the consideration will be provided for an inertial system in spherical coordinates.
The interval of the Minkowski space looks like

dσ2 = dt2 − dr2 − r2(dΘ2 + sin2ΘdΦ2) . (10)

Nonzero Christoffel symbols of the Minkowski space defined by the following formula

γλµν =
1

2
γλσ(∂µγσν + ∂νγσµ − ∂σγµν) (11)

are equal to

γ122 = −r, γ133 = −r sin2Θ, γ212 = γ313 =
1

r
, γ233 = − sinΘ cosΘ, γ323 = cotΘ . (12)

Let us write equations (2) in the extended form

Dµg̃
µν = ∂µg̃

µν + γνλσ g̃
λσ = 0 . (13)

In Galilean coordinates of the Minkowski space they look like

∂µg̃
µν = 0 . (14)

In the case of a static gravitational field we have from (14)

∂ig̃
iν = 0, i = 1, 2, 3 . (15)

By using the tensor transformation law it is possible to express components g̃i0 in
Cartesian coordinates through components in spherical coordinates

g̃i0 = −BW 2

√
UV
· x
i

r3
,
√
−g = 1

r2

√
UV W 2. (16)

Here xi are spatial Cartesian coordinates. Supposing in (15) ν = 0 and integrating over
a spherical volume after applying the Gauss-Ostrogradskii theorem, we get the integral
over a spherical surface

∮
g̃i0dsi = −

BW 2

r3
√
UV

∮
(�xd�s) = 0 . (17)

Taking into consideration the equality∮
(�xd�s) = 4πr3, (18)

we get
BW 2

√
UV

= 0 . (19)
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As equation (14) is fair both inside matter, and outside of it equation (19) should be
true for any value of r. But as due to equation (7) U, V and W cannot be equal to zero
everywhere, it follows from (19) that

B = 0 . (20)

Interval (3) of the effective Riemannian spaces becomes

ds2 = Udt2 − V dr2 −W 2(dΘ2 + sin2ΘdΦ2) . (21)

From equation (20) it follows, that there is no static solution for the Hilbert-Einstein
equations in harmonic coordinates which would have in the interval expression the term
like

B(r)dtdr . (22)

The energy-momentum tensor of matter looks like

T µν =
(
ρ +

p

c2

)
vµvν − δµν ·

p

c2
. (23)

In expression (23) ρ is the mass density of matter, p is the isotropic pressure, and

vµ =
dxµ

ds
(24)

is 4-velocity that meets the condition

gµνv
µvν = 1 . (25)

From equations (1) and (2) it follows

∇µT µν = 0 , (26)

where ∇µ is the covariant derivative in the effective Riemannian space with a metric
tensor gµν . In case of a static body

vi = 0, i = 1, 2, 3; v0 =
1√
U

, (27)

and consequently

T 00 = ρ(r), T 11 = T 22 = T 33 = −
p(r)

c2
, T µν = 0, µ �= ν . (28)

For interval (21) the nonzero Christoffel symbols are

Γ001 =
1

2U

dU

dr
, Γ100 =

1

2V

dU

dr
, Γ111=

1

2V

dV

dr
, Γ122 = −

W

V

dW

dr
, Γ133 = sin

2Θ · Γ122,
(29)

Γ212 = Γ
3
13 =

1

W

dW

dr
, Γ233=− sinΘ cosΘ , Γ323 = cotΘ.
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By using the following expression for the Ricci tensor

Rµν = ∂σΓ
σ
µν − ∂νΓ

σ
µσ + Γ

σ
µνΓ

λ
σλ − ΓσµλΓλσν , Rµν = gµλRλν (30)

and substituting into it the expressions for the Christoffel symbols from (29), it is possible
to reduce equations (1) for functions U, V and W to the following form:

1

W 2
− 1

VW 2

(
dW

dr

)2
− 2

V W

d2W

dr2
− 1

W

dW

dr

d

dr

(
1

V

)
+

(31)

+
1

2

(
mc

h̄

)2 [
1 +

1

2

(
1

U
− 1

V

)
− r2

W 2

]
= κρ ,

1

W 2
− 1

VW 2

(
dW

dr

)2
− 1

UV W

dW

dr
· dU
dr
+

(32)

+
1

2

(
mc

h̄

)2 [
1− 1

2

(
1

U
− 1

V

)
− r2

W 2

]
=−κ p

c2
,

− 1

VW
W ′′ − 1

2UV
U ′′+

1

2WV 2
W ′V ′ +

1

4V U2
(U ′)2 +

(33)

+
1

4UV 2
U ′V ′ − 1

2UV W
W ′U ′+

1

2

(
mc

h̄

)2 [
1− 1

2

(
1

U
+
1

V

)]
= −κ p

c2
.

Equation (13) after taking into account (12), (9) and (20) is as follows:

d

dr



√
U

V
W 2


 = 2r√UV . (34)

Let us remark that by virtue of the Bianchi identity and equation (2) one of equations
(31)-(33) is a consequent of the others. Further we shall take equations (31), (32) and
(34) as independent.
We shall write equation (26) in the extended form as

∇µT µν ≡ ∂µT
µ
ν + Γ

µ
αµT

α
ν − ΓαµνT µα = 0 . (35)

By using expressions (28) and (29) we obtain

1

c2
· dp
dr
= −ρ+ p

c2

2U
· dU
dr

. (36)

Taking into consideration identity

1

W 2
(
dW
dr

) · d

dr
·

W
V

(
dW

dr

)2 = 1

V W 2

(
dW

dr

)2
+

2

VW
· d
2W

dr2
+
1

W

dW

dr

d

dr

(
1

V

)
, (37)
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equation (31) can be written in the following form

1− d

dW


 W

V
(
dr
dW

)2

+ 1

2

(
mc

h̄

)2 [
W 2 − r2 +

W 2

2

(
1

U
− 1

V

)]
= κW 2ρ . (38)

Similarly we transform equation (32):

1− W

V
(
dr
dW

)2 · d

dW
ln(UW ) +

1

2

(
mc

h̄

)2 [
W 2 − r2 − 1

2

(
1

U
− 1

V

)]
= −κW

2p

c2
. (39)

We shall write Eqs. (34) and (36) as follows:

d

dW


W 2

√
U

V


 = 2r√UV

dr

dW
. (40)

1

c2
· dp

dW
= −

(
ρ+

p

c2

)
1

2U
· dU
dW

. (41)

Let us proceed to dimensionless variables in equations (38) – (41). Let l be the Schwarzshild
radius of the source which has mass M

l =
2GM

c2
. (42)

Let us introduce new variables x and z which are equal to

W = lx, r = lz. (43)

Equations (38)-(41) become

1− d

dx


 x

V
(
dz
dx

)2

+ ε

[
x2 − z2 +

1

2
x2
(
1

U
− 1

V

)]
= κ̃x2ρ(x), (38′)

1− x

V
(
dz
dx

)2 d

dx
ln(xU) + ε

[
x2 − z2 − x2

2

(
1

U
− 1

V

)]
= −κ̃x

2p(x)

c2
, (39′)

d

dx


x2

√
U

V


 = 2z dz

dx

√
UV , (40′)

1

c2
dp

dx
=
(
ρ+

p

c2

)
1

2U

dU

dx
. (41′)

Here ε is a numerical constant which is equal to

ε =
1

2

(
2GMm

h̄c

)2
, κ̃ = κl2. (44)
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The sum and difference of equations (38′) and (39′) are

2− d

dx


 x

V
(
dz
dx

)2

− x

V
(
dz
dx

)2 d

dx
ln(xU) + 2ε(x2 − z2) = κ̃x2

(
ρ − p

c2

)
, (45)

d

dx


 x

V
(
dz
dx

)2

− x

V
(
dz
dx

)2 d

dx
ln(xU)− εx2

(
1

U
− 1

V

)
= −κ̃x2

(
ρ+

p

c2

)
. (46)

Let us introduce new functions A and η:

U =
1

xηA
, V =

x

A
(
dz
dx

)2 . (47)

In these new variables equation (45) becomes

A
d ln η

dx
+ 2 + 2ε(x2 − z2) = κ̃x2

(
ρ− p

c2

)
. (48)

Equation (38′) can be written in the following form:

dA

dx
= 1 + ε(x2 − z2) + ε

x2

2

(
1

U
− 1

V

)
− κ̃ · x2ρ(x) . (49)

According to the causality condition (see Appendix L)

γµνU
µUν = 0 , (50)

gµνU
µUν ≤ 0 , (50′)

it is easy to establish the following inequality:

U ≤ V . (51)

In our problem it is possible to limit ourselves by values x and z from the following interval
only:

0 ≤ x� 1√
2ε

, 0 ≤ z � 1√
2ε

. (52)

These inequalities limit r,W from above by the value

r,W � h̄

mc
. (53)

Under such a limitation equation (49) becomes

dA

dx
= 1 + ε

x2

2

(
1

U
− 1

V

)
− κ̃x2ρ(x) . (54)

Outside of the matter we have

dA

dx
= 1 + ε

x2

2

(
1

U
− 1

V

)
. (55)
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By virtue of the causality condition (51) the following inequality takes place outside of
matter

dA

dx
≥ 1. (56)

Integrating (54) in an interval (0, x) we get

A(x) = x+
ε

2

x∫
0

x
′2
(
1

U
− 1

V

)
dx′ − κ̃

x∫
0

x
′2ρ(x′)dx′. (57)

In (57) A(0) is trusted to be equal to zero, as if it was distinct from zero, the function
V (x) would become zero when x tends to zero, that is physically forbidden. On the
base of relation (56) function A(x) monotonically increases with x outside of matter, and
therefore it can have only one root

A(x1) = 0, x1 > x0. (58)

On the base of relation (57) we have

x1 = 1−
ε

2

x1∫
0

x
′2
(
1

U
− 1

V

)
dx′. (59)

Here we take into account that by selecting l equal to (42)

κ̃

x0∫
0

x
′2ρ(x′)dx′ = 1.

The matter is concentrated in the sphere 0 ≤ x ≤ x0.
Because of a graviton mass, zero point of function A is shifted inside the Schwarzshild

sphere. As at x tending to x1, V (x) is tending to infinity, since A(x) is going to zero,
there will be such neighborhood of a point x1

x1(1− λ1) ≤ x ≤ x1(1 + λ2), λ1 > 0, λ2 > 0 , (60)

( λ1 and λ2 receive small fixed values), in which the following inequality will take place

1

U

 1

V
. (61)

In this approximation we obtain

A(x) = x− x1 +
ε

2

x∫
x1

dx′x
′2 1

U
. (62)

Substituting U in the form given by relation (47) into this expression, we shall discover

A(x) = x− x1 +
ε

2

x∫
x1

dx′x
′3η(x′)A(x′). (63)
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If a range of x is in interval (60), then in the integrand it is possible to change x3 for x31:

A(x) = x− x1 +
ε

2
x31

x∫
x1

η(x′)A(x′)dx′. (64)

From here we get
dA

dx
= 1 +

ε

2
x31η(x)A(x). (65)

In the approximation considered (52) equation (48) becomes

A
d ln η

dx
+ 2 = 0 . (66)

Let us introduce a new function

f(x) =
x31
2
η(x)A(x) . (67)

Equation (65) becomes
dA

dx
= 1 + εf(x) , (68)

and equation (66) takes the following form

A

f
· df
dx
− dA

dx
= −2 . (69)

From equations (68) and (69) we find

A(x) = −(1− εf)f(
df
dx

) . (70)

From expression (67) we get

η(x) = −
2 df
dx

x31(1− εf)
. (71)

Substituting (70) and (71) into (47) we discover

U =
x31
2xf

, V = −
x df
dx

f(1− εf)
(
dz
dx

)2 . (72)

By using these expressions the determinant g can be written in the following form

g =
x31
df
dx
x4

2f2
(
dz
dx

)2
(1− εf)

sin2Θ < 0 . (73)

For fulfilment of condition (7) it is necessary that expressions df
dx
and (1 − εf) have

opposite signs. Substituting (70) into (68) we get

d

dx
ln

∣∣∣∣∣ dfdx
∣∣∣∣∣− d

dx
ln |f(1− εf)| = 1 + εf

f(1− εf)
· df
dx

. (74)

129



From here we find
d

dx
ln

∣∣∣∣∣(1− εf) df
dx

f2

∣∣∣∣∣ = 0 . (75)

Thus ∣∣∣∣∣(1− εf) df
dx

f2

∣∣∣∣∣ = C0 > 0 . (76)

Taking into account that the values (1− εf) and df
dx
should have opposite signs, we obtain

df

dx
= − C0f

2

(1− εf)
. (77)

Substituting this expression in (70) we find

A(x) =
(1− εf)2

C0f
, A(x1) = 0 under f =

1

ε
. (78)

By taking into account (78) expression (47) for function V becomes

V =
C0xf

(1− εf)2
(
dz
dx

)2 . (79)

Integrating (77) and allowing for (78) we get

C0 · (x− x1) =
1

f
+ ε ln ε|f | − ε . (80)

Relation (80) is obtained in a range of values x determined by inequalities (60), however,
it is also correct in the area where the influence of a graviton mass can be neglected.
According to (60) the range of C0(x− x1) is confined to limits

− C0x1λ1 ≤ C0(x− x1) ≤ C0x1λ2, (81)

if f is positive, it satisfies inequalities

C̃ ≤ f ≤ 1
ε
. (82)

By using (80) and according to (81) we have

1

f
+ ε ln εf − ε ≤ C0x1λ2.

From here it is possible to find C̃ :

1

C̃
+ ε ln εC̃ − ε = C0x1λ2. (83)

From expression (83) we can find an approximate value for C̃:

C̃ =
1

C0x1λ2
. (84)
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For negative values f to a point x = x1 corresponds the value |f |, determined from the
following equation

− 1

|f | + ε ln ε|f | − ε = 0 . (85)

From here we get

|f | = a

ε
, ln a =

1 + a

a
. (86)

According to (81) the following inequality should to be fulfilled

−C0x1λ1 ≤ −
1

|f | + ε ln ε|f | − ε . (87)

From here it is possible to find the lower limit for |f | = D

− C0x1λ1 = −
1

D
+ ε ln εD − ε . (88)

From expression (88) we discover an approximate value for D

D =
1

C0x1λ1
. (89)

It means, that the value of |f | fulfils the following inequality:

|f | ≥ D =
1

C0x1λ1
. (89′)

Let us establish now the form of dependence of variable z of x. Substituting (47) in
(40′) and allowing for (48), we get

A
d

dx

(
x
dz

dx

)
= 2z − x

dz

dx

[
1 + ε(x2 − z2)− 1

2
κ̃x2

(
ρ − p

c2

)]
. (90)

In approximation (52) outside of matter equation (90) becomes

A
d

dx

(
x
dz

dx

)
+ x

dz

dx
− 2z = 0 . (91)

It is necessary for us to find the regular solution z(x) of equation (91). In equation
(91) we shall proceed from variable x to f . By using relation (80)

x =
1

C0f
[C0x1f + 1− εf + εf ln ε|f |] , (92)

and allowing for (65), (66) and (83), equation (91) can be presented in the following form

d2z

df2
+

C0xf + εf − 1
C0f2x

· dz
df
− 2z

C0f3x
= 0 . (93)
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By a straightforward substitution we can establish that the expression

z =
x1
2
+

1

C0f
[1− εf + εf ln ε|f |] (94)

satisfies equation (93) up to the value

ε
(1− εf + ln ε|f |)

C20xf
3

, (95)

which is extremely small in the neighborhood of the point x1. From expressions (92) and
(94) we find

z = x− x1

2
. (96)

Allowing for this relation and also (79) and (72), we get

U =
x31
2xf

, V =
C0xf

(1− εf)2
. (97)

For negative values f the causality condition (51) becomes

(2x2C0 − ε2x31)− 2εx31|f | − x31 ≤ 0. (98)

Inequality (98) is not valid, as it does not fulfil inequality (89′). Thus, the Principle of
Causality is violated in the region of negative values of f . It means that in the area
x1(1− λ1) ≤ x < x1 the solution has no physical sense. At x0 < x1(1− λ1) the situation
arises, when the physical solution inside a body 0 ≤ x ≤ x0 cannot be sewed to the physical
solution in the region x > x1, as there is an intermediate region x1(1 − λ1) ≤ x < x1,
in which the solution does not satisfy the Causality Principle. It follows from here with
necessity that x0 ≥ x1. From the physical point of view it is necessary to eliminate also
the equality x0 = x1, as the solution inside a body should continuously pass into the
external solution. Therefore, the variable f takes only positive values, and x0 cannot be
less than x1. For the values from the region x ≥ x1(1 + λ2) it is possible to omit the
terms with a small parameter ε in equations (38′) and (39′). Thus, we shall come to the
external Schwarzshild solution

zs = (x− ω)

[
1 +

b

2ω
ln

x− 2ω
x

]
, (99)

Vs =
x(

dz
dx

)2
(x− 2ω)

, Us =
x− 2ω

x
. (100)

Here " ω " and " b " are some constants, which are determined from the condition of
sewing solutions (96), (97) with the solution (99), (100). The function z from (96) is equal
to

z = x1

(
1

2
+ λ2

)
, (101)

at the point x = x1(1 + λ2). At the same point zs is equal to

zs = [x1(1 + λ2)− ω]

[
1 +

b

2ω
ln

x1(1 + λ2)− 2ω
x1(1 + λ2)

]
. (102)
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From a sewing condition of (101) and (102) we find

ω =
x1

2
, b = 0 . (103)

The function U from (97) is equal to

U =
x31

2x1(1 + λ2)C̃
, (104)

at the point x = x1(1 + λ2), as C̃ , according to (84), is equal to

C̃ =
1

C0x1λ2
. (105)

By substituting (105) into (104) we get

U =
C0x

3
1λ2

2(1 + λ2)
, (106)

at the same point, with account for (103), Us is equal to

Us =
λ2

1 + λ2
. (107)

From a sewing condition of (106) and (107) we get

C0 =
2

x31
. (108)

At the point x = x1(1 + λ2) the function V from (97) is equal to

V = C0x1(1 + λ1)C̃ . (109)

By substituting the value C̃ from (105) into (109) we obtain

V =
1 + λ2

λ2
, (110)

at the same point Vs, with account for (99) and (103), is equal to

Vs =
1 + λ2

λ2
, (111)

i.e. the solution for V is sewed to the solution for Vs.
Let us consider (92) for values εf , close to unity

f =
1

ε
(
1 + y

ε

) , y

ε
� 1. (112)

By substituting this expression into (92) and expanding it over y
ε
, we obtain

y2 = 2εC0(x− x1). (113)
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Inequality (112) tells us that the value (x− x1) = δ � ε, i.e.

y

ε
=
√
2C0 ·

√
x− x1

ε
� 1 . (114)

By substituting (113) into (112), and then f into (97), we get the following expressions
for U and V :

U =
x31[ε+

√
2εC0(x− x1)]

2x
, V =

x[ε+
√
2εC0(x− x1)]

2ε(x− x1)
. (115)

From here we have in the region of variable x, satisfying inequality (114),

U =
εx31
2x

, V =
x

2(x− x1)
. (116)

We see, that the presence of a graviton mass essentially changes the nature of solution
in the region close to the gravitational radius. In that point, where the function V ,
according to (116), has a pole, the function U is different from zero, whereas in the
General Relativity Theory (GRT) it is equal to zero. Just by virtue of this circumstance
the inevitable gravitational collapse arises, during which “black holes” appear in GRT. In
RTG “black holes” are impossible.
If we take into account (42), (43), (96) and neglect the second term in (59), expressions

(116) for U and V become

U =
(
GMm

h̄c

)2
, V =

1

2
· r +

GM
c2

r − GM
c2

, (117)

which coincides with formulas (18) from paper [1]. Note, that the residue in the pole of
the function V at ε �= 0 is equal to GM

c2
, whereas at ε = 0 it is equal to 2GM

c2
. This is due

to the fact that in case ε = 0 the pole of function V at the point x = x1 arises because of
the function f , which has a pole at this point , whereas at ε �= 0 it occurs because of the
function (1− εf), which one, according to (92), at the point x = x1 comes into zero.
Let us compare now the nature of motion of test bodies in the effective Riemannian

space with metric (117) and with the Schwarzshild metric. We write the interval (21) of
the Riemannian space as follows:

ds2 = Udt2 − Ṽ dW 2 −W 2(dΘ2 + sin2ΘdΦ2) . (118)

Here Ṽ is equal to

Ṽ (W ) = V

(
dr

dW

)2
. (119)

The motion of a test body takes place along a geodesic line of the Riemannian space

dvµ

ds
+ Γµαβv

αvβ = 0 , (120)

where

vµ =
dxµ

ds
, (121)
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the four-vector of velocity vµ meets the following condition:

gµνv
µvν = 1 . (122)

Let us consider a radial motion, when

vΘ = vΦ = 0 . (123)

By taking into account (29), from equation (120) we find

dv0

ds
+
1

U
· dU
dW

v0v1 = 0 , (124)

where

v1 =
dW

ds
. (125)

From equation (124) we get
d

dW
ln(v0U) = 0 . (126)

From here we have

v0 =
dx0

ds
=

U0

U
, (127)

where U0 is a constant of integrating.
Taking into account (127) we see that condition (122) for radial motion becomes

U20
U
− 1 = Ṽ ·

(
dW

ds

)2
. (128)

If we accept, the speed of a falling test body at infinity being equal to zero, we shall get
U0 = 1. From (128) is follows

dW

ds
= −

√
1− U

UṼ
. (129)

Taking into consideration (79), (96), (97) and (108), we have

U =
x31
2xf

, Ṽ =
2xf

x31(1− εf)2
.

Substituting these expressions in (129) we get

dW

ds
= −
√
1− U(1− εf) . (130)

By using (108), (112) and (113) in the neighborhood of the point x1 we have

dW

ds
= − 2

x1

√
x− x1

εx1
(131)

Passing from a variable x toW , according to (43) and taking into account (44), we obtain

dW

ds
= − h̄c2

mGM

√
W

GM

(
1− 2GM

c2W

)
. (132)
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It is apparent from here that there is a turning point. By differentiating (132) on s we
get

d2W

ds2
=

1

2GM

(
h̄c2

mGM

)2
. (133)

In the turning point the acceleration (133) is rather great, and it is positive, i.e. repulsing
takes place. By integrating (132) we obtain

W =
2GM

c2
+

(
h̄c2

2mGM

)2
· 1

GM
(s− s0)

2. (134)

Formulas (132)-(134) coincide with the formulas from publication [1]. The presence of
the Planck constant in equation (132) is connected with the wave nature of matter formed,
in our case, of gravitons having a rest mass. From formula (134) it is apparent, that the
test body can never intercept the Schwarzshild sphere. In GRT the situation is rather
different. From the Schwarzshild solution and expression (129) it follows that the test body
will cross the Schwarzshild sphere and a “black hole” will be formed. The test bodies or
light can cross the Schwarzshild sphere only in the inside direction, thus they already can
never leave the Schwarzshild sphere. We shall come to the same result if we proceed to a
synchronous system of freely falling test bodies with the help of transformations

τ = t+
∫

dW

[
Ṽ (1− U)

U

]1/2
. (135)

R = t+
∫

dW

[
Ṽ

U(1− U)

]1/2
. (136)

In this case interval (118) becomes

ds2 = dτ 2 − (1− U)dR2 −W 2(dΘ2 + sin2ΘdΦ2) . (137)

In such a form singularities of metric coefficients disappear both for the Schwarzshild
solution, when ε = 0, and for the solution in our case, when ε �= 0.
Subtracting from expression (136) expression (135) we get

R − τ =
∫

dW

√√√√ UṼ

(1− U)
. (138)

Differentiating equation (138) over τ we discover the following

dW

dτ
= −

√
(1− U)

UṼ
. (139)

Thus, we come to the same initial equation (129), around which the formulas (132-134)
were obtained. Thus, it is abundantly clear that the transition to the synchronous falling
reference frame does not eliminate the singularity which arises due to the presence of a
graviton mass, i.e. when ε �= 0. In case when ε = 0, the Schwarzshild singularity of the
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metric does not influence the motion of a test body both in the initial coordinate system
and in the falling synchronous system. Thus, the falling particles cross the Schwarzshild
sphere in the inside direction only.
Let us calculate now the propagation time for a light signal from a pointW0 up to the

point W1 =
2GM
c2
. For the Schwarzshild solution from expression ds2 = 0 we have

dW

dt
= −c

(
1− 2GM

c2W

)
. (140)

By integrating this equation we get

W0 −W +
2GM

c2
ln

W0 − 2GM
c2

W − 2GM
c2

= c(t− t0) . (141)

Hence it is apparent that to achieve the gravitational radiusW1 =
2GM
c2
in GRT we need an

infinite time measured by a distant observer clock. In RTG, as we have established earlier,
the Schwarzshild solution takes place up to the point W = W1(1 + λ2), and therefore the
time interval to reach this point is equal to

c(t− t0) = W0 −W1(1 + λ2) +
2GM

c2
ln

W0 − 2GM
c2

λ2
2GM
c2

. (142)

The propagation time of a light ray from the point W = W1(1 + λ2) up to the point W1
can be computed by using formulas (97) and (108). In this interval we have

dW

dt
= −c x31

2xf
(1− εf). (143)

Hence after integrating and replacement of a variable we get

2MG

c2

1/ε∫
f

xdf

f
= c(t1 − t) . (144)

According to (84) and (108) the lower limit of integration is equal to

f = C̃ =
x21
2λ2

. (145)

Integral (144) is easily evaluated and with good accuracy results in the following relation:

c(t1 − t) = W1λ2 +
2GM

c2
ln
2λ2
ε

. (146)

On the basis of equations (142) and (146) the time needed for a light signal to pass the
distance from the point W0 up to the point W1 =

2GM
c2
is equal to the sum of expressions

(142) and (146)

c(t1 − t0) =W0 −W1 +
2GM

c2
ln

W0 − 2GM
c2

εGM
c2

. (147)
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Thus it is evident that in RTG, as opposed to GRT, the propagation time of a light
ray up to the Schwarzshild sphere is finite also if measured by a distant observer clock.
From formula (147) it is apparent that the propagation time of a signal does not sharply
increase due to the gravitational field.
From the above it is apparent that in the presence of a graviton mass ε �= 0 the solution

in RTG differs essentially from the Schwarzshild solution because of the presence of the
Schwarzshild sphere singularity, which cannot be removed by any choice of coordinate
system. For this reason, as we have shown above, the physical solution for a static
spherically symmetric body is possible only in the case, when the point x1 is inside the
body. This conclusion is also preserved for the synchronous coordinate system, when the
metric coefficients (see (134)) are functions of time.
Thus, according to RTG as a field theory of gravitation, the body of any mass cannot

contract unlimitedly, and therefore the gravitational collapse to form a “black hole” is
impossible. In GRT the energy release at a spherically symmetric accretion of matter on
a “black hole” is not enough, as the falling matter carries energy into the “black hole”.
According to RTG, the situation cardinally changes, as at the accretion the falling

matter hits the surface of a body, and therefore the energy release is now considerable.
The field approach to gravitation changes in essence our notions which were formed under
the influence of GRT. In particular, this manifests in the fact that the effective Riemannian
space which has arisen due to the gravitational field, has only simple topology, since the
gravitational field in the Minkowski space, as well as any other physical field, can be
described in a single Galilean coordinate system. In GRT the Riemannian space may
have a complicated topology, and it is described by the atlas of charts.
Further it is noteworthy that the operation of a gravitational field, as well as any

other physical field, does not move the trajectory of motion of a test body outside the
causality cone of the Minkowski space. This circumstance allows one to compensate the
three-dimensional gravitation force by a force of inertia through selection of an accelerated
coordinate system.
There is a principal difference between gravitation forces and forces of inertia. The

force of inertia can always be made equal to zero by having selected an inertial system
of coordinates, whereas the gravitation force, which has arisen because of the presence of
a gravitational field, is impossible to be made equal to zero by selection of a coordinate
system, even locally.
If GRT asserts that the gravitation is the consequence of the space-time (Riemannian)

curvature, then, according to RTG, the effective Riemannian space-time is a consequent
of the presence of a gravitational field, possessing density of energy-momentum. The
source of it is the energy-momentum tensor density of the entire matter, the gravitational
field included. The space-time was and is the Minkowski space, and all the remaining,
including the gravitation, are physical fields. Just under these notions the basic physical
principles — the integral conservation laws of energy-momentum and angular momentum
take place.
The field approach to gravitation with necessity requires the introduction of the gravi-

ton mass, which, in turn, makes the gravitational collapse impossible and results in the
cyclical development of the homogeneous and isotropic Universe. Thus, the homogeneous
and isotropic Universe is “flat”, and the existence of “dark matter” in the Universe is
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a forecast [3]. It follows direct from the theory, that present density of matter in the
Universe should be equal to

ρ(τ ) = ρc(τ ) + ρg, (148)

where ρc is the critical density, determined by the Hubble “constant” H(τ ) and is equal
to

ρc =
3H2

8πG
, (149)

and ρg is determined by the graviton mass m and is equal to

ρg =
1

16πG

(
mc2

h̄

)2
. (150)

Since critical density ρc many times exceeds the observable density of matter in the
Universe, then, according to equation (148), there should be a dark matter in the Universe.
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Appendix A

In spherical coordinates of the Minkowski space the intervals of the Minkowski space
and of the effective Riemannian spaces look like

dσ2 = dt2 − dr2 − r2(dΘ2 + sin2ΘdΦ2) , (A.1)

ds2 = U(r)dt2 − V (r)dr2 −W 2(r)(dΘ2 + sin2ΘdΦ2) . (A.2)

Let us introduce the velocity vector

vi =
dxi

dt
, vi = vei, (xi = r,Θ,Φ) . (A.3)

where ei is the unit vector defined by the metric of a spatial section of the Minkowski
space-time

κike
iek = 1 . (A.4)
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In general κik is given as follows

κik = −γik +
γ0iγ0k

γ00
. (A.5)

In case (A.1)
κik = −γik. (A.6)

Condition (A.4) for the metric (A.1) looks like

(e1)2 + r2[(e2)2 + sin2Θ · (e3)2] = 1 . (A.7)

Let us define four-vector of velocity by the following equation

vµ = (1, vei) (A.8)

and demand that it should be isotropic in the Minkowski space

γµνv
µvν = 0 . (A.9)

By substituting (A.8) into (A.9) and accounting for (A.7) we obtain

v = 1 . (A.10)

Thus, isotropic four-vector vµ is equal to

vµ = (1, ei) . (A.11)

As according to the Special Relativity Theory the motion always takes place inside or
on the boundary of the Minkowski causality cone, the Principle of Causality takes place
for the gravitational field

gµνv
µvν ≤ 0 , (A.12)

that is,
U − V (e1)2 −W 2[(e2)2 + (e3)2 sin2Θ] ≤ 0 . (A.13)

By taking into account (A.7), expression (A.13) can be written as follows

U − W 2

r2

(
V − W 2

r2

)
(e1)2 ≤ 0 . (A.14)

Let

V − W 2

r2
≥ 0 . (A.15)

By virtue of an arbitrariness of 0 ≤ (e1)2 ≤ 1, inequality (A.14) will be fulfilled only if

U − W 2

r2
≤ 0 . (A.16)

From inequalities (A.15) and (A.16) it follows that

U ≤ V . (A.17)
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In case if

V − W 2

r2
< 0 , (A.18)

we shall write inequality (A.14) in the following form:

U − V −
(
W 2

r2
− V

)
(1− (e1)2) ≤ 0 . (A.19)

By virtue of the arbitrariness of e1, (A.19) will be satisfied for any values of 0 ≤ (e1)2 ≤ 1
only in case

U ≤ V . (A.20)

Thus, the RTG Principle of Causality results in all the cases in the inequality

U(r) ≤ V (r) . (A.21)
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