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1. Introduction

The conservation laws are connected very closely with transformation properties of
the observables under coordinate system transformations. The circumstance that coordi-
nate transformations mapping the space-time properties form groups appears in the ob-
servables - they have some group-theoretic properties too. The Noether theorems establish
one-to-one correspondence [1] between these properties of observables and conservation
laws therefore their fulfilment is the mapping of space-time properties.

One of the main important object of quantum mechanics is the wave function. It can
not be observed in the experiment but the wave function and their derivatives form the
bilinear Hermitian forms defining the observables therefore the wave function and their
derivatives have some group-theoretic properties connected with conservation laws too. If
some quantum mechanics scheme is formulated in terms of amplitudes or propagators then
these objects also are obliged to have the correspondent group-theoretic properties too
due to fulfilment of conservation laws. It is needed to take into account that the quantum
mechanics is the local gauge theory [2] therefore the transformation of unobserved objects
accept more wide transformations then it is accepted for observed variables — the last
ones have to be unique.

Thus, the fulfilment of conservation laws in quantum theory is the consequence (from
mathematical point of view) of group-theoretic requirements to the wave functions, am-
plitudes or propagators in accordance with the Noether theorems. It means from one
hand that these objects have to be the sets forming groups, and from another hand the
violation of group-theoretic requirements to the elemets of these sets must lead to the
violation of the conservation laws.

At present three forms of quantum mechanics (Heisenberg, Schrodinger and Feynman
forms) are considered to be equivalent therefore all conclusions obtained in some one form
are valid in any another. The Feynman formulation of quantum mechanics is based on
the expression [3]

ϕba =
∑
c

ϕbc · ϕca (1.1)

for transition amplitudes ϕfi from initial state i into final one f .
The amplitudes ϕfi in the expression (1.1) are multiplicative (Markovian) for the

successive path segments and they are additive for the alternative paths. Therefore two
operations are used in the set of amplitudes (propagators): product due to multiplicativity
and addition in accordance with the superposition principle∗.

∗In the accordance with [3,4] the term “superposition principle” is used here as the summation of
alternative amplitudes.
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The group in accordance with its definition is the monoid at the same time [5], i.e. the
set with one operation. Therefore the expression (1.1) used as the base of the Feynman
formulation (and two others which are equivalent to it) contains the rejection (explicitly
or not) of consequently group-theoretic approach of quantum mechanics. In accordance
with the Noether theorems it may lead to the violation of conservation laws.

The consecutive group-theoretic approach of quantum mechanics may be carried out
only in the set with one operation — it is one of the necessary condition for that. At the
same time as far as the Markovian properties of amplitudes (or propagators) are outside
of doubts [6] then it is needed to extend the expression (1.1) so that a) both for successive
paths and for alternative paths it should be used only one operation - multiplication, and
b) the expression to be find out must turn to (1.1) under some conditions because of it is
clear that this expression has the range of validity at least approximately.

The aim of this paper is the investigation of conservation laws fulfilment in the frame-
works of two calculation schemes. One of them is based on the expression (1.1) which
implies applicability of the ordinary (Euclidean) superposition principle and another is
based on the consecutive group-theoretic approach leading to the non-Euclidean superpo-
sition principle on the Lobachevsky plane which may be considered as the generalization
of the Euclidean one.

Both calculation schemes are applied to the “mental experiment” with two slits si-
tuated at the boundary of two media. This problem is the simplest one containing the
noncommutativity of propagators along different paths due to the jump-like potential
and requiring some rule of their composition due to two paths. In both schemes the
observables are calculated and their transformation properties under coordinate system
transformations as far as the fulfilment of conservation laws are investigated.

2. Observables

The aim to obtain the possibly most complete description of quantum mechanical
phenomena leads to necessity of defining both the number of observable values and the
number independent of them. We shall use for this purpose the circumstance that the
Scrodinger equation

∇2χ(r) + k2(r) · χ(r) = 0, (2.1)

wherE k2(r) = E − U(r), U(r) is real potential, h̄2 = 2m = 1, is the second order differ-
ential equation in space variables over the set of complex function. We shall consider the
stationary quantum mechanical problem as the Cauchy one defined at the initial point ri.
The simplest and at the same time most general setting of the problem consists of such
choice of conditions at the initial point which corresponds to an arbitrary scalar for χ(ri)
and its arbitrary derivative along arbitrary direction ui

χ(ri) = a · exp(ib), ui · ∇χ(ri) = ki · c exp(id), (2.2)

where ui is unit vector, ki = k(ri). Then it is needed to calculate the wave function and
its derivative along arbitrary direction uf at the final point rf .

The solution of such problem allows one to calculate the observables to be obtained at
the final point for non-isotropic source situated at the initial point using integration over
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all directions there. In this way the vector observables at the final point may be either
calculated along any arbitrary direction or averaged over all directions there.

The observables in quantum mechanics are presented by the bilinear Hermitian forms
therefore as far as the initial conditions of the second order differential equation are
defined by both the complex function and its first order derivative χ(ri) and ∇ · χ(ri)
correspondingly containing four real parameters a, b, c, d one has

j0 = kχχ∗ + (u∇χ)(u∇χ∗)/k, j1 = kχχ∗ − (u∇χ)(u∇χ∗)/k,
(2.3)

j2 = χ(u∇χ∗) + χ∗(u∇χ), j3 = i(χ(u∇χ∗)− χ∗(u∇χ)),

where all parameters, including u, are given at ri. Four variables js in (2.3) have the
current dimensionality, they satisfy with the identity

j20 = j21 + j22 + j23 , (2.4)

it is fulfill ed independently if χ(r) is the solution of (2.1) or not. Therefore, the identity
(2.4) takes place at the initial and at the final points. It should be noted that the
parameters in (2.3) are similar to the Stokes ones.

If we substitute (2.2) into (2.3) then one has

j0 = (a2 + c2)ki, j1 = (a2 − c2)ki,
j2 = 2ac · cos(d− b)ki, j3 = 2ac · sin(d − b)ki,

(2.5)

(2.4) is fulfilled too. All js are real therefore they satisfy to the necessary requirements
to observables.

Then it is clear that the observables in stationary problem of quantum mechanics
described with equation (2.1) consist of four real values js(s = 0, 1, 2, 3)

j0 = kχχ∗ + (∇χ)(∇χ∗)/k, j1 = kχχ∗ − (∇χ)(∇χ∗)/k,
j2 = χ(∇χ∗) + χ∗(∇χ), j3 = i(χ(∇χ∗)− χ∗(∇χ)),

(2.6)

two of them are scalars (with s = 0, 1) and two of them are vectors (with s = 2, 3). They
satisfies with the condition (2.4) too therefore only three of them are independent.

The transformations of vector observables j2 and j3 under the coordinate system ro-
tation about angle θ around direction n belong to the group SO(3) [7,8].

Let us investigate the conservation laws of this problem. As far as they are connected
with transformation properties of observables then the conservation laws investigation
leads to the analysis of group-theoretic properties of the equation (2.1) solutions connected
with observables by expressions (2.6).

With the aim of using the group-theoretic representations of the object transforming
the union of χ and ∇χ let us go over to their linear combinations Φ+(r),Φ−(r)

χ(r) = 1√
2
k−1/2(Φ+(r) + Φ−(r)),

∇χ(r) = i√
2
k1/2(Φ+(r)− Φ−(r)) · u(r).

(2.7)

Since there are introduced two complex functions Φ+,Φ− then the unit vector u(r) may
be restricted with some requirements. We shall accept the following conditions

∇u(r) = 0, u2(r) = 1. (2.8)
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Let us present the functions Φ+,Φ− as Φ(r) = column ‖Φ+(r),Φ−(r)‖ then the matrix Q
transforming Φ at the initial point into Φ at the final point, Φ(rf ) = Q(rf , ri) · Φ(ri), we
shall call as “propagator”.

One may derive the equation for Φ from (2.1), (2.7) and (2.8) (k = ku)

∇Φ = [ikσ3 +
∇k

2k
σ1]Φ. (2.9)

Let us consider four Hermitian, bilinear with respect to Φ+,Φ−, forms

js(r) = Φ+(r) · σs · Φ(r), (2.10)

s = 0, 1, 2, 3, σ0 is the unit matrix, other σs are Pauli matrices, Φ+ is the Hermitian-
conjugate to Φ. In accordance with (2.7) parameters j0 and j1 coincide with two first
expressions and two second parameters j2 I j3 are the amplitudes in two last expressions
in (2.3) or (2.6).

The transformation of vectors under coordinate system rotation described with ma-
trices from the group SO(3) is equal to the spinor transformation in the representation
of the group SU(2) with matrix R = exp[−i(nσ)θ/2] [8].

If one multiplies the identity

exp[i(nσ)θ/2]σs exp[−i(nσ)θ/2] = cos θσs + (1− cos θ)nsnkσk + sin θεskpnkσp

from the left and right sides by Φ+ and Φ respectively then the expression for the j′s after
rotation will have the form

j′s = cos θjs + (1− cos θ)nsnkjk + sin θεskpnkjp, (2.11)

where s, k, p = 1, 2, 3 and at the same time
∑3
i=1 j

′2
i =

∑3
i=1 j

2
i = j20 .

The rotation of coordinate system and the corresponding transformation of Φ = col-
umn ||Φ+,Φ−|| leads to the same rotation of current vector as the acting of matrix from
the group SO(3) directly onto the current vectors j2 or j3. It is needed to mention that
these vectors are collinear in the representation chosen here. The unit vector u defining
the current direction is given by values j1, j2, j3 in accordance with u = (j1i+j2j+j3k)/j0.
Thus, three bilinear Hermitian forms in (2.10) with s = 1, 2, 3 define the currents in three-
dimensional space at the same time and the identity (2.4) is fulfilled due to the unitarity
of R.

The transformation of the variable Φ = column ||Φ+,Φ−|| under coordinate system
rotations is described by the representation of the group SU(2) and the observables are
expressed as the bilinear Hermitian forms of its components, thus Φ is the spinor. As
far as the variables js in (2.10) are completely similar to the four-vector components
expressed in terms of spinor components [9,10] then they may be named as the four-
current components.

One notes here that the space dimensionality of independent variables in equation
(2.1) does not have the association to the number of current components js. For example,
the expressions (2.3), (2.4) and (2.7), (2.10) have place in the one-dimensional case too
(see also [11]).
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Let us consider the conservation laws for observables which follow from the Schrodin-
ger equation (2.1) or its spinor representation (2.9). Let construct the matrix J = Φ+

⊗
Φ

obtained in accordance with the definition of matrix direct product. The matrix elements
of J expressed through js from (2.10) are following

J = Φ+
⊗

Φ = ‖Φ∗+,Φ∗−‖
⊗
‖ Φ+
Φ−
‖ = ‖ Φ∗+Φ+ Φ∗−Φ+

Φ∗+Φ− Φ∗−Φ−
‖ =

=
1

2
‖ j0 + j3 j1 − ij2

j1 + ij2 j0 − j3
‖. (2.12)

Its determinant is equal to zero, J satisfies to the condition J2 = j0J which fits with
the definition of idempotent matrix under the condition j0 = 1, therefore the matrix J is
similar to the density matrix of pure states.

If we differentiate (2.12) and use (2.9) together with Hermitian associated equation
one has

∇J = iku{Φ+
⊗

σ3Φ− Φ+σ3
⊗

Φ}+ ∇k

2k
{Φ+

⊗
σ1Φ+ Φ+σ1

⊗
Φ}. (2.13)

Going over to four-current js one derives the conservation laws in the differential form
following from (2.9)

3∑
s=0

σs∇js = 2ku(σ1j2 − σ2j1) +
∇k

k
(σ0j1 + σ1j0). (2.14)

The relations between four-current components accordingly to (2.14) may be expres-
sed in the following form

∇j0 =
∇k

k
j1,∇j1 = 2kuj2 +

∇k

k
j0,∇j2 = −2kuj1,∇j3 = 0. (2.15)

If we differentiate the identity (2.4) and use (2.15) one has the identity for relations
(2.15) too. Therefore it allows one to consider (2.4) and (2.14) as the conditions of
completeness for observables set js, s = 0, 1, 2, 3 for stationary Schrodinger equation with
real potential.

It is clear from the definition of four-current js (2.3) and from the first and the second
equations (2.15) that the linear combination of j0 and j1 forms the “probability density”
ρ = (j0 + j1)/2k. The last one satisfies in accordance with (2.15) to the condition ∇ρ =
j2u (j2 = j2u) which allows one to consider j2 from (2.3) as the amplitude of “probability
density” diffusion current. The current j3 from (2.6) to be conserved is collinear to the
diffusion current in this representation, it may be considered as the convection current of
“probability density”.

Thus, three real variables ρ, j2 and j3 may be interpreted as “probability density”,
diffusion and convection currents respectively, they form the complete set of indepen-
dent observables too in the problems described by stationary Schrodinger equation with
real potential.

Let us define the group-theoretic properties of the complete propagator for spinor Φ
under translations. They are defined by the properties of bilinear Hermitian forms (2.6),
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(2.10) and (2.15). The simplest way to obtain these properties is the analysis of the last
equation from (2.15). The equation (2.1) leads to the current j3 from (2.6) conservation
condition which has its differential form ∇j3 = 0. The condition ∇j3 = 0 from (2.15) (or
j3 = const) is its expression for the spinor form of the Schrodinger equation (2.9) under
condition (2.8).

Substituting the expression Φ(rf ) = Q(rf , ri) · Φ(ri) into the conservation condition
j3 = const one has

Q+σ3Q = σ3, (2.16)

it defines the group-theoretic belonging of propagator Q under translations [8]: Q ∈
SU(1, 1) which satisfies to the conditions detQ = 1, Q∗22 = Q11, Q

∗
21 = Q12.

Thus the complete set of observables for equation (2.1) consists of four real parame-
ters, only three of them are independent. They determine the density and two current
vectors in three-dimensional space. Their transformation properties and conservation
laws define the groups of transformation for spinor: the last one is transformed on the
three-parameter group SU(2) under the coordinate system rotations and on the three-
parameter group SU(1, 1) under translations. The spinor Φ transformation by means of
matrix σ1 leads to the conservation of scalars j0, j1 and to change sign of vectors j2, j3
therefore σ1 is the inversion operator [7].

3. Non-Euclidean composition of propagators

One of the significant peculiarity of quantum mechanics is the noncommutativity of
operators (propagators) transforming a wave functions and their derivatives (or spinors).
This peculiarity appears in the stationary problem to be considered in the fact that the
complete propagator allowing to construct the complete spinor at the final point belongs
to the non-Abelian group SU(1, 1). The metric and Gaussian curvature of the propagator
logarithms space obtained in [7,11,12] show that this space is the Lobachevsky plane
having the constant negative Gaussian curvature. The geometric image of the propagator
is the geodesic vector on this plane at the same time.

The unidimensional Schrodinger equation was investigated in semiclassical region [13]
by means of the product integral and this techiques allowed one to establish the association
between the Schrodinger equation and the Lobachevsky geometry both in the semiclassical
and anticlassical regions [14]. The belonging of the complete propagator of the equation
(2.1) to the group SU(1, 1) (see section 2) coincides with the same of the unidimensional
Schrodinger equation [14], it allows one to restrict with the last one to consider the role of
the magnitude of the Gaussian curvature and its connection with (2.1). This opportunity
is caused also by the fact that equation (2.1) is unidimensional one on any path between
initial and final points with correspondent dependence of potential. At the same time the
complete propagator may be constructed over the complete set of (partial) propagators
calculated along each path in the accordance with the path integral concept [3].

Let us consider the unidimensional Schrodinger equation over the complex functions
set with the conditions defined at the initial point x0

d2

dx2
χ(x) + k2(x) · χ(x) = 0 , (3.1)
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k2(x) = E − U(x), h̄2 = 2m = 1,

χ(x0) = aeib, χ′(x0) = k0ce
id . (3.2)

k(x0) = k0. Let us go over from (3.1), (3.2) to two first order equations for linear
combination of χ and χ′ accordingly to

Φ±(x) =
1√
2
k1/2(x) · (χ(x)± χ′(x)

ik(x)
), (3.3)

compatible with (2.7).
One has, taking into account (3.1), two coupled equations for two-component value

Φ = ‖Φ+,Φ−‖ joined in the matrix equation

Φ′(x) = (ikσ3 +
k′

2k
σ1)Φ(x) (3.4)

with correspondent conditions at x0, Φ
0 = Φ(x0) defined by (3.2). Its solution may be

expressed (dk = k′dx) as [14]

Φ(x) = Texp

x∫

x0

(ikdxσ3 +
dk

2k
σ1)Φ

0 = Q(x, x0)Φ(x0). (3.5)

Let us consider the properties of propagator Q in (3.5). The matrix trace in the
expression to be integrated is equal to zero then detQ = 1 everywhere. The Hermitian
associated matrix has the form (σs = σ+s )

Q+(x, x0) = Texp

x∫
x0

(−ikdxσ3 +
dk

2k
σ1),

then one has
Q+σ3Q = σ3, (3.6)

defining the group belonging of Q, Q ∈ SU(1, 1) [8]. Any matrix of this three-parameters
group may be presented in the form

Q = e�p�σ = eiMσ3eLσ1eiNσ3 (3.7)

with real parameters p1, p2,M, L,N and imaginary p3. Let us consider j3(x) under con-
dition Q ∈ SU(1, 1) taking into account (3.6) or (3.7)

j3(x) ≡ Φ+(x)σ3Φ(x) = Φ+(x0)Q
+σ3QΦ(x0) = Φ+(x0)σ3Φ(x0) ≡ j3(x0),

that is j3(x) = const. Therefore the conservation law for j3 is the consequence of belonging
Q to SU(1, 1).

Multiplying (3.4) by dx and going over to variables u = 1/(2k), v = ix one has

dΦ = dP · Φ =
dvσ3 − duσ1

2u
· Φ. (3.8)
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The matrix dP determinant taken with opposite sign defines the metric of propaga-
tor logarithms space in the coordinates (u, v)

det(dP ) = −du2 + dv2

4u2
= −ds2. (3.9)

This expression defines the magnitude of the Gaussian curvatureCG = −4 of the Lobachev-
sky plane in its representation on the Poincare map.

It is well known that the spaces with the constant Gaussian curvature (positive, nega-
tive or zero) have the particular role in physical applications - only such spaces accept to
obtain the necessary number of invariant values [15]. Taking this fact into account let us
replace the integer 2 in (3.8) defining the Gaussian curvature of the Lobachevsky plane
by some constant parameter R. If we return to the variables (k, x) one has the following
equation instead of (3.4)

R

2
Φ′ = (ikσ3 +

k′

2k
σ1) · Φ, (3.10)

which goes to (3.4) under condition R = 2.
Now considering R as a constant let us go over to the second order equation in accor-

dance with (3.3). It has the form

χ′′ + k2(x)χ+ (
2

R
− 1)(

k′

2k
+ ik)χ′ + (

2

R
− 1)(k2 +

i

2
k′)χ = 0, (3.11)

which turns under condition R = 2 to the Schrodinger one (3.1).
Thus the value of Gaussian curvature of the Lobachevsky plane defines the kind of

differential equation. This equation, (3.11), corresponds to the Schrodinger one only in
the case of CG = −4, or R = 2 in (3.11). The deviation of Gaussian curvature from the
value CG = −4 leads to the equation (3.11) instead of initial Schrodinger one (3.1).

From the mathematical point of view the method of equation Schrodinger solving de-
scribed above [7,11] consists of the going over from the partial differential equation (2.1)
to the infinite set of ordinary differential equations along all paths between initial and
final points. This approach corresponds to the algorithm of noncommutative integration
of linear differential equations proposed in [17]. The conservation condition j3 = const is
the analog of the Wronskian constancy for unidimensional equation (3.1). The method
proposed here is near to the Feynman path integral with only the distinction that the
propagators along each path belong to the noncommutative group SU(1, 1). It means,
from algebraic point of view, that these propagators are quaternions but not scalars and,
from geometric point of view, that this propagators (more exactly - their logarithms)
accept the geometric representation only in the spaces with nonzero Gaussian curvature
taking into account their noncommutativity. This circumstance is the immediate conse-
quence of the fact that the Schrodinger equation is the second order differential equation
over the complex functions set.

The solution of problem (2.1) requires, besides of calculation of partial propagators
along each path, some law of their composition into the complete propagator taking
into account all paths. The requirements of conservation laws fulfilment and observables
transformation lead to the complete propagator belonging to the group SU(1, 1). As it was
shown earlier [7,11,16] each partial propagator belongs to the same group therefore their
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composition allowing one to obtain the complete one has to conserve the group belonging.
As far as alternative paths are equal then the complete propagator (for bosons) has to
be independent of noncommutative partial propagators order in such their composition.
The symmetric binary operation independent of the noncommutative matrices order was
carried out in [11,12], it has the form

C = [(AB−1)1/2B]2 = [(BA−1)1/2A]2. (3.12)

This operation is valid for the nonsingular matrices of arbitrary order. If the matrices A
and B belong to the Abelian or non-Abelian group g then also∗ C ∈ g.

If matrices A and B belong to the groups SL(2, R) or SU(1, 1) then (3.12) has the
descriptive geometric representation. This matrices in this case may be presented as
the geodesic vectors originating from the common point on the Lobachevsky plane in
its representation on the Poincare map. The matrix C corresponds to the diagonal of
“parallelogram” originating from the same point [11,12]. If the matrices in (3.12) near to
the identity ones and they may be expanded into series then (3.12) goes over to the vector
addition on the Euclidean plane. The second diagonal of “parallelogam” corresponds to
the antisymmetric operation. It should be noted that geometric interpre-
tation of propagators allows one to determine the path product integral measure and to
formulate its variational principle. The measure is the square element of the Lobachev-
sky plane dudv/(4u2), the variational principle has the form δ(TrQ) = 0 [7,11].

The circumstance that the propagator composition may be mapped as the geodesic
vectors addition on the non-Euclidean plane is not striking as far as the propagator
logarithms space even for unidimensional Schrodinger equation, as it was shown above, is
the Lobachevsky plane.

4. Comparison of superposition and composition principles
The differences between two principles allowing to take into account the contribution

of alternative paths into the complete propagator appear expressively in the simplest
problems containing equal noncommutative propagators. These requirements are ful-
filled in the “mental experiment” with two infinitesimal slits situated at the two-media
boundary. We shall use this experiment for the comparison of observables, calculated in
accordance with two different principles, with respect to its transformation properties and
conservation laws fulfilment.

Let A and B are two different propagators corresponding to two different paths from
the initial point S to the final point R defined by the geometry of problem, Figure 1. Let
us suppose that the conditions (2.2) and corresponding conditions for spinor defined at
the initial point are the same for both paths. In accordance with (3.7) the propagators A
and B have the form [7,16]

A = eaσ = eiM1σ3eLσ1eiN1σ3 ,
B = ebσ = eiM2σ3eLσ1eiN2σ3,

(4.1)

where N1 = k1sA, N2 = k1sB,M1 = k2rA,M2 = k2rB, L = 1
2
ln k2
k1
, k1 and k2 are indexes of

refraction in different media, sA,B and rA,B are the path lengths in media with k1 and k2
respectively.

∗The antisymmetric binary operation conserving the group belonging has the form D = (AB)1/2B−1

where (BA)1/2A−1 = D−1 and if A,B ∈ g then also D ∈ g.
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Figure 1: The experiment with two slits situated at the boundary of two media.

Let us calculate the hyperbolic first order moment [7] Q of two propagators A and B
on the Lobachevsky plane excluding power 2 in (3.12)

Q = (eaσe−bσ)1/2ebσ = (ebσe−aσ)1/2eaσ. (4.2)

One has a single slit propagator Q = exp(aσ) under the coincidence of both slits: b→ a.
This case may be considered as the shut-down of one slit.

The obvious form of the complete propagator (4.2) including both paths in the case
of two slits may be expressed as

Q =
exp(aσ) + exp(bσ)√

(cosh a+ cosh b)2 − (na sinh a + nb sinh b)2
, (4.3)

where the expression under radical sign is det[exp(aσ) + exp(bσ)] therefore detQ = 1.
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It follows from expressions (4.3) and (4.1)

Q = (cosh2 L cos2
(N1 −N2) + (M1 −M2)

2
− sinh2 L cos2

(N1 −N2)− (M1 −M2)

2
)−1/2×

×

coshL cos (N1−N2)+(M1−M2)
2

×
× exp(i (N1+N2)+(M1+M2)

2
)

sinhL cos (N1−N2)−(M1−M2)
2

×
× exp(−i (N1+N2)−(M1+M2)

2
)

sinhL cos (N1−N2)−(M1−M2)
2

×
× exp(i (N1+N2)−(M1+M2)

2
)

coshL cos (N1−N2)+(M1−M2)
2

×
× exp(−i (N1+N2)+(M1+M2)

2
)

=

=
1

2
· eiM1σ3eLσ1eiN1σ3 + eiM2σ3eLσ1eiN2σ3√

cos2 (N1−N2)+(M1−M2)
2

− sinh2 L sin (N1 −N2) sin (M1 −M2)
. (4.4)

It is obviously that Q ∈ SU(1, 1).
The spinor components at the final point R may be expressed by means of matrix

Q from (4.4) in the expression Φ(R) = QΦ(S) therefore all observables js(R,Q) may be
calculated at the final point R.

The direct calculations or the fact that Q ∈ SU(1, 1) leads to the condition j3(R,Q)=
j3(S), i.e. the current j3 is conserved.

Accordingly to the composition principle (4.2) one has

j0(R,Q) = (a2− b2)−1[(a2+ b2)j0(S) + 2ab cos(α+ β)j1(S) + 2ab sin(α+ β)j2(S)], (4.5)

j1(R,Q) = (a2 − b2)−1[2ab cos(α− β)j0(S) + (a2 cos 2α + b2 cos 2β)j1(S)+
+(a2 sin 2α + b2 sin 2β)j2(S)], (4.6)

j2(R,Q) = (a2 − b2)−1[−2ab sin(α− β)j0(S)− (a2 sin 2α − b2 sin 2β)j1(S)+
+(a2 cos 2α − b2 cos 2β)j2(S)], (4.7)

j3(R,Q) = j3(S), (4.8)

where
a = cosh(1

2
ln k2
k1
) · cos (N1−N2)+(M1−M2)

2
, α + β = N1 +N2,

b = sinh(1
2
ln k2
k1
) · cos (N1−N2)−(M1−M2)

2
, α− β = M1 +M2.

It follows from (4.5) - (4.8) that js(R,Q) with s = 0, 1, 2 do not consist of j3(S). Be-
sides, variables j0(S) I j1(S) combine with even functions of coordinates and j2(S) com-
bines with odd functions of coordinates in the expressions for scalar observables j0(R,Q)
and j1(R,Q) then both last variables do not change the sign under coordinate system
inversion. At the same time the variables j0(S) and j1(S) combine with odd functions
of coordinates and variable j2(S) combines with even functions of coordinates in the ex-
pression for vector observable j2(R,Q) then last variable changes its sign under the same
procedure.

Thus the first order hyperbolic moment calculated accordingly to (4.2) leads to the
observables having correct transformation properties under coordinate system inversion
and satisfying to the necessary conservation laws (2.4) and (2.15). At the same time
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three independent observables defined at the initial point allow one to calculate three
observables at the final point.

In accordance with the superposition principle one has Φ(R) = (A + B)Φ(S) with A
and B from (4.1). In the case of two slits coincidence, there are b→ a and B → A, but
(A+B) �→ A at the same time. If one changes (A+B)→ (A+B)/2 then the complete
propagator goes to A therefore we shall accept that the complete two slits propagator has
the following form

P = (eiM1σ3eLσ1eiN1σ3 + eiM2σ3eLσ1eiN2σ3)/2. (4.9)

The expression (4.9) corresponding to the superposition principle differs from the
expression (4.4) corresponding to the composition principle on the Lobachevsky plane with
the radical in the denominator of last one. Therefore all observables js(R,Q) calculated
at the final point R by means of propagator Q from (4.4) differ of the observables js(R,P )
calculated at the same point by means of propagator P from (4.9) with the common factor

js(R,P ) = [cos2 (N1−N2)+(M1−M2)
2

−
− sinh2 L sin (N1 −N2) sin (M1 −M2)] · js(R,Q).

(4.10)

This factor is the determinant of two propagators sum, it depends on the medium prop-
erties along these two paths.

As far as j3(R,Q) = j3(S) then the expressions j3(R,P ) and j3(S) differ with the
same factor. It means that j3 �= const therefore the superposition principle leads to the
violation of the necessary conservation law.

The “probability density” ρ calculated accordingly to the superposition and compo-
sition principles have the same distinction due to the expression ρ = (j0 + j1)/(2k).

An arbitrary matrix from the group SU(1, 1) may be expressed in the form (4.1)
therefore the expression (4.4) and corresponding expressions for observables (4.5) – (4.8)
may be used for the analysis of propagators composition results for any two paths where
the potential has an arbitrary coordinate dependence. However the parameters N,L and
M will not have such simple interpretation as in (4.1) in this case.

In the case when so the initial and the final points as two coinciding slits are situated
on the straight line which is perpendicular to the boundary the expressions (4.4) – (4.8)
lead to the same expressions for propagator, reflection and transition coefficients as in the
one-dimensional case calculations [11,14]. The sum of these coefficients satisfies to the
condition R + T = 1 due to Q ∈ SU(1, 1) at the same time.

Let us take identical media, L = 0, then the expressions (4.5) – (4.8) have the form

j0(R,Q) = j0(S), j3(R,Q) = j3(S), (4.11)

j1(R,Q) = cos 2α · j1(S) + sin 2α · j2(S), (4.12)

j2(R,Q) = − sin 2α · j1(S) + cos 2α · j2(S), (4.13)

where 2α = N1 +M1 +N2 +M2.
If the positions of initial point S and both slits are fixed (N1 and N2 are constant) then

the surfaces of constant probability density ρ = (j0 + j1)/(2k) are ellipsoids of revolution
M1 +M2 = const with slits at their foci.
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The diffusion current of probability density ∇ρ = ∇(j0 + j1)/(2k) = j2 · ∇(rB + rA)
is orthogonal to the surfaces ρ = const, its value oscillates in the opposite phase to ρ in
three-dimensional space .

Let the screen is situated in the plane x = 0 and two slits are situated at the z = ±c
on the z-axis, figure 1. Restricting with the case of point S on the x-axis and considering
the contour SARBS formed by two paths as loop trajectory one may obtain, taking
into account the quantum conditions for loops [7,16] including signs for Ni,Mi in (4.1),
M1 −M2 = k(rB − rA) = πn. This condition is equivalent to

rB − rA = n(λ/2), n = 0,±1, ..., (4.14)

where k = 2π/λ, λ is wavelength. In whole space at the right side of the screen one has
−2c ≤ rB− rA ≤ 2c. The maximal value of n is nmax = [2c/(λ/2)] and on the plane z = 0
(rB = rA) n = 0 at the same time. Therefore the expression (4.14) defines the restricted
discrete set of hyperboloids of revolution which are confocal to the ellipsoids mentioned
above.

The current directions are tangent to the hyperbolas which are the conic sections of
hyperboloids by planes passing through the x-axis.

Using the identity rB−rA = 4rc sin θ/(rB+rA), figure 1, one may obtain the condition
rB − rA = 2c sin θ = nλ/2 from (4.14) for large r. This condition defines the positions of
maxima and minima for fringes beyond the screen with two slits.

It should be mentioned that maxima of interference fringes correspondent to extrema
of “probability density” diffusion current ∇ρ, but not to ρ. The expression in square
brackets in (4.10) is equal to unit at these points, therefore the current j3 is conserved
there both in the case of use the ordinary and the Lobachevsky superposition principles.
In the case of use the Lobachevsky one this current is conserved everywhere.

The analysis of conservation laws in their differential form carried out in [16] leads to
the same conclusion as it obtained in algebraic form [7] in section 4 of the present paper.

5. Conclusion

The fulfilment of conservation laws and their relation with the group-theoretic
requirements for propagators in the stationary problems of quantum mechanics described
with the partial Schrodinger equation with real potential were investigated in this paper.
It was shown that the nonrelativistic quantum mechanics is not the consecutive group-
theoretic theory. In accordance with the Noether theorems it may lead to violation of the
conservation laws.

The complete set of observables for the Schrodinger equation was obtained, only three
of them are independent. The transformation properties of complete propagator for spinor
were obtained on the base of transormation properties of the observables and conservation
laws for them. The complete propagator is constructed in the set of partial propagators,
both of them belong to the same group. The complete propagator is the path product
integral.

The connection of complete propagator for the Schrodinger equation with the Lobachev-
sky geometry allowed one to establish the non-Euclidean superposition principle on the
hyperbolic plane obtained on the base only group-theoretic requirements to the theory.
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This principle allows one to develop the consecutive group-theoretic quantum mechan-
ics, to obtain the measure for the path product integral and to formulate the variational
principle. The Lobachevsky superposition principle may be considered as the general-
ization of the ordinary Euclidean superposition principle, it turns to the last one in the
correspondent range of parameters.

The results of calculations for observables obtained in accordance with the ordinary
superposition principle and in accordance with the Lobachevsky one are compared for the
”mental experiment” with two slits situated at the boundary of two media. It was shown
that the use of ordinary superposition principle leads to the violation of conservation
laws under some conditions. The use of the Lobachevsky superposition principle leads to
fulfilment of the conservation laws everywhere at the same time.

One of the consequence of conservation laws violation under use of the Euclidean
superposition principle in the nonrelativistic quantum mechanics due to violation of the
group-theoretic structure of the theory shown above is following.

The logical completeness of the quantum electrodynamics is absent now. The testi-
mony of this fact is the presence of divergencies in the observables calculations there. It
may be excluded only by means of renormalization technique which does not enter the
theory first principles. One of the possible cause may be violation of some conservation
laws in QED which has to be a consequence of the violation group-theoretic requirements
to the theory in accordance with the Noether theorems.

QED is the combination of two fundamental theories: the special relativity which
is the group-theoretic theory and the nonrelativistic quantum mechanics which is not
the consecutive group-theoretic theory as it was mentioned above. It is clear that the
combination of two such theories can not lead to the group-theoretic QED. According to
the Noether theorems this circumstance may lead to the violation of some conservation
laws. Therefore the violation of conservation laws existing also as it was shown above in
the nonrelativistic quantum mechanics may be considered as an analog of divergencies in
QED.

The successive group-theoretic approach of the nonrelativistic quantum mechanics
developed on the base of path product integral leading to the Lobachevsky superposition
principle leads to fulfilment of the conservation laws everywhere. It allows one to wait that
the development of QED without divergencies may be carried out also on the same base
under fulfilment of the special relativity groups requirements both for partial propagators
and for their composition into complete one at the same time.
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