
On the Bag Models Based on the Singular Solution
of Yang–Mills Equations

O.V. Pavlovsky ∗

Bogolyubov Inst. for Theor. Problems of Microphysics,
Moscow, Russia

My report is devoted to the problem of constructing of the model of quark bag on
the basis of singular solutions of classical Yang-Mills equations. These solutions had been
obtained in works of F.A.Lunev [1] in gauge-invariant approach to Yang-Mills theory by
using the analogy between these solutions and black-hole solutions in general relativity.
The idea to use these solutions as the basis of the confinement of quarks is proposed
in [2]. But on the way of realization of this idea the very essential problem arises. The
self-energy of the gluon bag that confines the quark in the closed domain is infinite. This
problem seems to be very typical for the bag model, but in our model this problem can
be solved.
The basic assumption is that quarks in zero approximation move in a certain effective

YM potential that is a solution to classical YM equations with singularity on the sphere.
Our model obviously can be derived from QCD by quantization in neighborhood of such
singular solution as zero approximation. Further correction can be also obtained in a
systematic way. Indeed let us consider “partition function” that is represented as path
integral

Z =
∫

DADΨ̄DΨexp{i
∫ T
0

dt
∫

d3x(LYM(A) + Lferm(Ψ̄,Ψ, A))}. (1)

We assume that the main contribution in this path integral is given by trajectories close
to classical solution with singularity on the sphere. Applying stationary phase method
one gets the follow expression in zero approximation

Z =
∑

1≤ks≤ns

∫
zero
modes

e
−i(EYM (R)+

∑
q

∑
s
ksEs(R,mq))T , (2)

where

• EY M(R) is self-energy of the classical YM fields configuration that has singularity
on the sphere ;

• Es(R) are positive eigenvalues of Hamiltonian of color Dirak particle

iγ0�γ �∇(Acl) − γ0mq;

• ns is doubled multiplicity of the eigenvalue Es ;

• R is a radius of singularity.
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Applying again stationary phase method, one gets the formula to determine the mass
of “hadron”

M theor = EY M(R0) +
∑
quarks

E(R0, mq)

where R0 is defined from an equation

∂

∂R[EYM (R) +
∑
quarks

E(R0, mq)]
∣∣∣∣∣∣
R=R0

= 0.

In this formula the quarks contribution E(R0, mq) is defined by a standard numerical
procedure. Details of this calculation you can find in our work [3].
But now I want to discuss the contribution to the mass formula from YM fields. This

is EYM (R). The problem is that quantity EY M(R) is divergent due to singularity at
r = R and must be regularized.
But before this I wont shortly discuss the theory of singular solution of YM equation.
For simplicity, let us consider the three dimensional SU(2) YM theory. There are two

approaches to this theory: the first one is a traditional approach in terms of potential Aµ
of YM fields and the second one is a gravity-like approach proposed by Lunev [1]. This
approach operates with a second rank tensor

Gij = −
1

2
εiklεjmn tr F

klFmn, (1)

where Fij is field strength tensor. Gij is treated as metric of some manifoldM. Description
of the “dynamics” of this manifold is obsolutely equivalent to description of YM fields in
terms of potential. To make the discussion more clear both of these approaches are used
in parallel way. It appears that the lagrangian and equation of motion can be written in
both approaches as in Table 1.
Substituting in these equations the spherically symmetrical ansatz one gets absolutely

identical equations. It is not surprising because these approaches are absolutely equiva-
lent.
These equations have singular on the sphere solutions which have quasi-Schwarzschild

behavior near the singularity

H(r) ∼
√
2

1− r/R , r → R− 0.

The functional of classical energy of YM field

EYM [H(r)] =
4π

g2

∫ R
{1
2
(H ′)2 +

(H2 − 1)2
4r2

} → ∞

is divergent on this solution due to singularity of Acl, and the procedure of regularization
must be suggested.
We suggest a very simple method to solve this problem. From methodological point

of view this method is a modification of the well-known method of regularization by high
covariant derivative [4].
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Table 1: Rij is a Ricci tensor of manifold M corresponds with metric Gij. R is a scalar

curvature. There gij is a metric of the Euclidean space.

Approach I Approach II

Lagrangian

of the system L = − 1
16g2
tr(FijFij) L = − 1

16g2
(
√
GR+ λgijGij)

Equation of motion DiFij = 0 Rij − 1
2
RGij = λ

√
g√
G
gij

Spherically Aai = εaij
xj

r2
(1−H(r)) Grr = A(r), Gθθ = B(r),

symmetrical ansatz Gφφ = B(r) sin2 θ

Resulting equation r2H ′′ = H(H2− 1) After changing of variables

K =
√
B H = K ′/

√
A

one gets
r2H ′′ = H(H2 − 1)

Regularization part ∆L = − iε2

12g2
tr(FijFjkFki) ∆L = − 1

16g2
(−2Λ)

√
G, Λ = 1

ε2

in lagrangian

Instead of initial theory with lagrangian L, we would describe a slightly-modified
theory with lagrangian Lε = L + ε∆L. The modified theory has to satisfy this obvious
requirements:

1. If ε tends to the zero, Lε tends to L : Lε
ε→0−→ L.

2. Lε has a maximum symmetries of L.
3. Theory with Lε set has a set of solutions Hε(r) that tend to the H(r) almost

everywhere if ε tends to the zero.
4. Functional of classical energy of modified theory on the solutions Hε(r) has to be

finite for any nonzero ε.
5. The correction ∆L must have the same order by inverse g that has initial la-

grangian L.
It tern out that it is possible to find a correction that satisfies these requirements. You

can see this in the last section of table 1. This correction isn’t surprising, in gravity-like
approach this correction is the well-known Λ-part. This one has a 1

g2
order since this term

can be expressed the following form

tr(DiFjk ×DiFjk)− tr(DiFik ×DJFjk) = −4i tr(FijFjkFki).

Let us variate the new modified lagrangian Lε and substitute the spherically symmet-
rical ansatz in the results one gets the following expression

(1− ε2

r2
(H2ε − 1))r2H ′′ε = Hε(H

2
ε − 1) +

ε2

r2
(rH ′ε)

2Hε − 2
ε2

r2
rH ′ε(H

2
ε − 1).

If ε tends to zero this equation becomes a Wu-Yang equation that has singular on the
sphere solutions. But this equation has solutions suggested to contributions 3) and 4) but
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nonsingular on the sphere. In point r = R these solutions have asymptotic

Hε(r) ∼
√
1 +R2/ε2 + C(1− r/R)2/3 + . . .

where C is a constant.
If we substitute these solutions in new functional of classical energy

EεYM [H(r)] =
4π

g2

∫ R
{1
2
(1− ε2

r2
(H2 − 1))(H ′)2 + (H

2 − 1)2
4r2

}

we get a finite result. But if ε tends to zero, result tends to infinity. This is a principal
point of our contruction. On the set of solutions {Hε(r)} the functional of classical energy
is a function of ε. Getting the asymptotic at ε → 0 of this function is very nontrivial
operation but result is following

EεYM [Hε(r)]
ε→0−→ 1

g2
(constant1 +O(ε)).

Now if we suggest that g is

g =
constant2

ε2
+O(

1

ε
)

one gets the finite expression for the EY M

EεYM [Hε(r)] = BphysR
3 +O(ε).

Now as we expect in the previous works [2, 3] the regularized self-energy of the bag
gives a polynomial contribution in mass formula and is proportional to the volume of
bag. In order to achieve the best agreement with the experimental data we choose the
following volum for the constant B. Our result is in agreement with experiment data
with accuracy 3-7 per cent for all hadron mass except those of light pseudoscalar mesons.
This accuracy is a maximal possible accuracy for any constituent quark model in which
interaction between the quark isn’t taken into account.
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