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Abstract

Starting with simple assumptions about an “ether” in a Newtonian frame-
work with Galilean coordinates (X i(x), T (x)) we obtain a metric theory of
gravity defined by

L = LGR +Ξg
µνδijX

i
,µX

j
,ν −ΥgµνT,µT,ν.

We compare this theory with general relativity and Logunov’s “relativistic

theory of gravity”. The equations have a GR limit Ξ,Υ → 0, nonetheless
there are remarkable differences even for small Υ > 0: a big bounce instead

of the big bang singularity, stable frozen stars instead of black holes.

1. Introduction

The purpose of the present work is to present a metric theory of gravity which, in
addition to giving agreement with observation, provides an interesting conceptual and
philosophical framework.

Of course, there is already a theory of gravity with these properties — general rel-
ativity. What is the motivation to develop another theory of gravitation? Different
motivations have been given by other authors of alternative theories of gravity: Light-
man and Lee [8] have considered the following questions: “(i) if such theories exist, how
complex and contrived are their formulations? (ii) Do such theories have anything in
common and in what respect do they differ from GR outside the PN limit?”. Rosen’s [13]
problem was “whether one can set up a theory of gravitation which will give agreement
with observation without permitting black holes”. These are interesting questions which
justify the consideration of our theory of gravity too.

Instead, our main motivation was quantum gravity. GR seems incompatible with
quantum theory mainly because of the absence of an absolute framework. Our initial
hypothesis was that such an absolute framework exists in quantum gravity, but remains
unobservable in the classical limit. But in the theory of gravity we present here, the
preferred frame remains in principle observable.

From mathematical point of view, the theory is a metric theory of gravity, the La-
grangian contains the GR Lagrangian with additional terms, which depend on the “pre-
ferred coordinates” Xi, T :

L = (R − Λ)
√
−g + Lmatter(gµν , ψ

m) + ΞgµνδijX
i
,µX

j
,ν

√
−g −ΥgµνT,µT,ν

√
−g.

But the philosophical framework is completely different from GR. We start with as-
sumptions very close to old “ether theory”: an Euclidean space with absolute time, filled
with an ether. The speed of sound of this ether is the speed of light. The ether is described
as usual matter by density, velocity, stress and other, inner steps of freedom. A new point
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is that there is nothing except the ether — the usual “matter fields” are steps of free-
dom of the ether too, not external matter. The restriction that we, together with all our
measurement devices, are part of the ether, is sufficient to explain relativistic symmetry.

It is important to understand that “general ether theory” considers only general prop-
erties — properties of a whole class of possible ether theories: basic steps of freedom,
conservation laws, existence of a Lagrange formalism. It does not specify the “inner steps
of freedom” and the “material laws” of the ether. The complete ether model, which
specifies them, will be the “theory of everything”.

For Λ < 0 the Lagrangian of the theory coincides with the Lagrangian of the “rel-
ativistic theory of gravity” of Logunov et al. [9] [10] [11] with massive graviton. For
Ξ > 0,Υ < 0 the Lagrangian coincides with GR with four scalar “dark matter” fields.
The differences between these theories are not only metaphysical, they have different
empirical content.

The values of Ξ,Υ,Λ should be obtained from observation. The values of Ξ and Λ
influence the age of the universe. Current observation seems to favour positive values.
The choice Υ > 0 leads to remarkable qualitative effects: we obtain a counter-force which
prevents horizon formation during the gravitational collapse and big bang singularity.
Even for arbitrary small Υ this solves the cosmological horizon problem.

2. General Ether Theory

The reason to name the theory “ether theory” is that some properties of our theory
closely remember classical ether theory: absolute time, Euclidean space filled with some
“ether” so that the speed of sound of the ether is the speed of light. It seems to be more
than a nice similarity — we can choose this interpretation as to justify basic properties
of the theory: “ether density” should be positive, conservation laws for ether mass and
momentum. Therefore, the interpretation has essential explanatory power.

But this does not mean that we provide a mechanical model for the ether. Instead, we
consider only general properties of the ether, that means, common properties of a whole
class of theories — complete ether models. This is similar to the way we learn condensed
matter theory: first, we consider common properties, especially the conservation laws.
Only later we consider material-specific properties like the “material equations”.

Our theory describes only the general part — that’s why I have named it general
ether theory. This part consists of the definition of basic variables — ether density, ether
velocity, stress tensor — and the basic equations — the conservation laws. These general
variables define the gravitational field. What is left for the “complete ether model” are
the inner steps of freedom of the ether — all matter fields (gauge fields, fermions) — and
the related “material equations”. Therefore, the complete ether model should be a theory
of everything. There is nothing except the ether.

An essential point is that our general ether theory does not define the matter La-
grangian itself, but nonetheless derives a very important property of this Lagrangian —
its relativistic invariance. Lmatter should not depend on the preferred coordinates Xi, T
of the Newtonian background. Thus, to explain relativistic symmetry we do not need
the complete ether model. Instead, we need only general assumptions — especially that
“matter fields” describe inner steps of freedom of the ether.
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2.1 Basic variables and equations

Let’s now consider the mathematics. We have a Newtonian framework (absolute
Euclidean space, absolute time) described by “preferred” orthonormal coordinates Xi, T .
This space is filled with an ether. The general variables of GET are “ether density”
ρ(X, T ), “ether velocity” vi(X, T ) and a symmetric “stress tensor” σij(X, T ). We assume
that there are “inner steps of freedom” ψm(X, T ) of the ether without defining them —
this has to be done by a complete ether model.

Basic assumptions (axioms) are: “ether density” ρ(X, T ) > 0, “stress tensor” σij(X, T )
is positive definite, the ether fulfils classical conservation laws:

∂tρ+ ∂i(ρv
i) = 0, (1)

∂t(ρv
j) + ∂i(ρv

ivj − σij) = 0. (2)

Note that the conservation laws do not contain terms for momentum exchange with
other matter. This is the mathematical expression for our axiom that “there is nothing
except the ether”.

The basic formula is the definition of the physical metric gµν as a function of the basic
ether variables:

ĝ00 = g00
√
−g = ρ, (3)

ĝi0 = gi0
√
−g = ρvi, (4)

ĝij = gij
√
−g = ρvivj − σij. (5)

This formula allows to translate properties of the ether into properties of the metric.
We obtain: The signature of gij is (3, 1), T is a time-like coordinate, the metric is harmonic:

Xi = T = 0.

2.2 Covariant Lagrange mechanism

Let’s observe that instead of the original variables ρ, vi, σij, ψm in the preferred coordi-
nates Xi, T we can use the variables gij(x), X

i(x), T (x), ψm(x) for a covariant description
of the ether. What depends on the preferred frame may be described as depending on the
fields Xi(x), T (x) in a covariant way. The conservation laws are already described by a
covariant equation. Thus, we assume that the other equations are covariant too without
restricting generality.

Now let’s introduce another axiom of GET — that there exists a Lagrange formalism.
For simplicity, let’s leave the “axiomatic” way and try to find a simple Lagrangian. We
have to obtain covariant equations. Therefore, the simplest way is to assume that the
Lagrange density is covariant too. We have to obtain the equations for Xi and T . There
is a simple way to do this — the standard GR Lagrangian for scalar fields Xi, T . Using
the Euclidean symmetry of the space, we can reduce the four constants for the four scalar
fields X1, X2, X3, T to two constants Ξ,Υ and obtain:
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L = ΞgµνδijX
i
,µX

j
,ν

√
−g −ΥgµνT,µT,ν

√
−g + Lrem.

Now, the remaining part should not modify the equations for Xi and T . And there
is a very simple and natural way to reach this — it is sufficient to require that the
remaining part does not depend on the preferred coordinates Xi and T . But this is
simply the requirement for the GR Lagrangian. Therefore, we have found a simple class
of Lagrangians which fulfils our requirements:

L = ΞgµνδijX
i
,µX

j
,ν

√
−g −ΥgµνT,µT,ν

√
−g + LGR,

where LGR is a classical GR Lagrangian with matter fields ψm:

LGR = (R + Λ)
√
−g + Lmatter(gµν , ψ

m).

Of course, this is not a strong derivation of the Lagrangian based on our axioms — it
cannot be because the Lagrangian itself is not uniquely defined by the equations. In full
agreement with the modern concept of QFT as an effective field theory there is no reason
to restrict the Lagrangian to the lowest order terms R and Λ. There may be also other
ways to obtain the harmonic equations for Xi, T in the Lagrange formalism (using other
variables, Lagrange multipliers). The Lagrange density should not be covariant for giving
covariant equations. Especially it seems reasonable to replace R by the (non-covariant)
Rosen Lagrangian which does not depend on higher order derivatives of gij .

Nonetheless, the explanation of relativistic symmetry is independent of this uncer-
tainties of the Lagrange formalism. If there exists a Lagrange density, then we have a
symmetry requirement for the equations: they have to be “self-adjoint”. And this is
what we really need to explain relativistic symmetry: once the equations for Xi, T do not
depend on the matter fields ψm, the equations for ψm do not depend on the preferred
coordinates Xi, T too. The only way we can observe the preferred coordinates is as “dark
matter” — via its interaction with the gravitational field. The equations for matter fulfil
the Einstein equivalence principle.

3. Quantization

The preferred Newtonian framework avoids most conceptual problems (problem of
time [5], topological foam, information loss problem) of GR quantization, allows to define
uniquely local energy and momentum density for the gravitational field as well as the
Fock space and vacuum state in semi-classical theory.

What remains are the ultraviolet problems. But they may be cured by explicit, phys-
ical regularization if we accept an “atomic hypothesis” for the ether. Unlike in renormal-
ized QFT, the relationship between bare and renormalized parameters obtains a physical
meaning.

Similar ideas are quite old and in some aspects commonly accepted among particle
physicists [6]. Usually it is expected that the critical cutoff length is of order of the
Planck length aP ≈ 10−33cm [6],[16]. But an atomic hypothesis for our condensed matter
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interpretation predicts a different cutoff: Once we interpret ρ as the number of “atoms”
per volume, we obtain the prediction

ρ(x)Vcutoff = cons.

Considering this prediction for the homogeneous universe, we find that the cutoff
length seems to expand together with the universe. More accurate, our rulers shrink
compared with the cutoff length.

4. Why absolute space and time?

While the reintroduction of absolute space and absolute time solves serious concep-
tual problems of GR quantization (problem of time, topological foam, information loss
problem) and allows the generalization of Bohmian mechanics [2] into the relativistic do-
main, it may be (and has been) criticized as ad hoc. This is unjustified, because a fixed
background manifold and a preferred foliation may be derived from completely different
axioms.

To derive a preferred foliation we simply use the EPR criterion of reality [3] and
causality. Then the violation of Bell’s inequality [1] proves the existence of real, causal
influences which propagate faster than light. The only way to make this compatible with
causality is a preferred foliation with classical causality.

A fixed background manifold we obtain from quantum gravity. We consider the inter-
action of a superposition of gravitational fields |g1〉 + |g2〉 with a test particle |ϕ〉. The
assumption is that the transition probability |g1〉 + |g2〉 → |g1〉 − |g2〉 is observable. It
depends on a scalar product between the resulting states of the test particle 〈ϕ1|ϕ2〉,
which therefore should be well-defined. But this scalar product may be used to transfer
position measurement from one state of the gravitational field to another. Thus, starting
with a position measurement for a reference state (say, the vacuum), we obtain a similar
one for all states. This common position measurement defines the common background
manifold. For more details, see [14].

Note that in above cases it is already known that the axioms are in contradiction with
relativistic principles (no preferred frame, no absolute background manifold). The point
is that to use them is sufficient to obtain a fixed background manifold with preferred
foliation. The choice of Newtonian space-time may be justified by Occam’s razor.

Of course, this justification depends on a certain metaphysical decision: we consider
these assumptions as fundamental and use them as axioms. Relativists prefer to reject
them because they contradict relativistic philosophy. But, of course, we cannot reject
relativity without making such a metaphysical decision: to falsify the meta-rule “all laws
of nature are local Lorentz-invariant” we need not only a law of nature which is not
Lorentz-invariant — we also have to decide that it is really a law of nature, despite the
violation of local Lorentz-invariance.

5. Comparison with other theories of gravity

For a certain choice of cosmological constants, the equations of GET are identical
with the equations of another alternative theory of gravity — the “relativistic theory
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of gravity” proposed by Logunov et al. [11]. For another choice, they are equivalent
with classical GR with some additional scalar “dark matter” fields. Nonetheless, equa-
tions are not all. The comparison of these theories provides an interesting example —
there are other physical important things, like global restrictions, boundary conditions,
causality restrictions, quantization concepts which are closely related with the underlying
“metaphysical” assumptions.

5.1 Comparison with RTG

The “relativistic theory of gravity” (RTG) proposed by Logunov et al. [11] has
Minkowski background metric ηµν. The Lagrangian of RTG is

L = LRosen + Lmatter(gµν , ψ
m)−m2g(

1

2
ηµνg

µν√−g −
√
−g −

√
−η).

Instead of the preferred coordinates Xi, T in GET, we vary the metric ηµν in RTG.
But this does not change the equations. Variation over ηµν of the RTG Lagrangian gives
the harmonic equation for gµν too [11]. Variation over gµν gives the same equation because
the Lagrangians as functions of gµν are equivalent for appropriate choice of the constants:
Λ = −m2g < 0, Ξ = −η11m2g > 0, Υ = η00m2g > 0.

The metaphysical context of RTG is completely different. It is a special-relativistic
theory, therefore incompatible with EPR-realism and Bohmian mechanics. Another dif-
ference is the causality condition: In RTG, only solutions where the light cone of gij is
insider the light cone of ηij are allowed. A comparable but weaker condition exists in GET
too: T (x) should be a time-like function, or, ρ(X, T ) > 0. Note also that GET suggests
a different way of quantization: the GET suggestion for lcutoff is not Lorentz-covariant.

5.2 Comparison with GR plus dark matter

The Lagrangian is also equivalent to GR with some dark matter — four scalar fields
Xµ. In this theory they are no longer preferred coordinates, but simply fields. Such “clock
fields” in GR have been considered by Kuchar [7]. Usual energy conditions require Ξ >
0,Υ < 0. Nonetheless, the choice Ξ > 0,Υ > 0 does not look completely unreasonable —
it is similar to the diagonal Lagrangian for EM.

Now, this GR variant allows a lot of solutions where the fields F µ(x) cannot be used
as global coordinates. Especially, all solutions with non-trivial topology are of this type.
They may also violate the condition that F 0(x) = T (x) is time-like. Such solutions are
forbidden in GET and would falsify this theory. On the other hand, the boundary values of
GET solutions are very strange, incompatible with usual boundary conditions for matter
fields — they go to infinity instead of remaining finite.

Therefore, despite having the same equations, the two theories remain essentially
different. The differences become especially important during quantization: in GET we
can use the preferred coordinates to apply canonical quantization, while in GR with dark
matter we have the full beauty of GR quantization problems.
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6. Observable effects

Using small enough values Ξ,Υ → 0 leads to GR equations. Therefore it is not
problematic to fit observation. It is much more problematic to find a way to distinguish
GET from GR by observation.

6.1 A dark matter candidate

Let’s consider the influence of the new terms on the expansion of the universe. In GET
a homogeneous universe is flat. The the usual ansatz ds2 = dτ 2 − a2(τ )(dx2 + dy2 + dz2)
gives

3(ȧ/a)2 = −Υ/a6 + 3Ξ/a2 + Λ + ε

2(ä/a) + (ȧ/a)2 = +Υ/a6 + Ξ/a2 + Λ− p.

We see that Ξ influences the expansion of the universe similar to dark matter with
p = −1

3
ε.

6.2 Big bounce instead of big bang singularity

Υ becomes important only in the very early universe. But for Υ > 0, we obtain a
qualitatively different picture. We obtain a lower bound a0 for a(τ ) defined by

Υ/a60 = 3Ξ/a20 + Λ + ε.

The solution becomes symmetrical in time, with a big crash followed by a big bang.
For example, if ε = Ξ = 0,Υ > 0,Λ > 0 we have the solution

a(τ ) = a0 cosh
1/3(
√
3Λτ ).

In time-symmetrical solutions of this type the horizon is, if not infinite, at least big
enough to solve the cosmological horizon problem (cf. [12]) without inflation.

6.3 Frozen stars instead of black holes

The choice Υ > 0 influences also another physically interesting solution — the grav-
itational collapse. There are stable “frozen star” solutions with radius slightly greater
than their Schwarzschild radius. The collapse does not lead to horizon formation, but to
a bounce from the Schwarzschild radius. Let’s consider an example. The general stable
spherically symmetric harmonic metric depends on one step of freedom m(r) and has the
form

ds2 = (1− m

r

∂m

∂r
)(
r −m

r +m
dt2 − r +m

r −m
dr2)− (r +m)2dΩ2.

Let’s consider the ansatz m(r) = (1−∆)r. We obtain
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ds2 = ∆2dt2 − (2−∆)2(dr2 + r2dΩ2),

0 = −Υ∆−2 + 3Ξ(2−∆)−2 + Λ+ ε,

0 = +Υ∆−2 + Ξ(2−∆)−2 + Λ− p.

Now, usually the cosmological terms Υ,Ξ,Λ may be ignored and we obtain only the
trivial solution ε = 0. But for very small ∆ even a very small Υ becomes important,
and we obtain a non-trivial stable solution for p = ε = Υg00. Thus, the surface remains

visible, with time dilation
√
ε/Υ ∼ M−1.

A radiation of this type from objects which should be black holes according to GR
would be strong evidence for GET. On the other hand, for small enough Υ this radiation
becomes invisible in comparison with the background radiation.

References

[1] J.S. Bell, Speakable and unspeakable in quantum mechanics, Cambridge University Press,

Cambridge, 1987.

[2] D. Bohm, Phys. Rev. 85, 166-193, 1952.

[3] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777-780, 1935.

[4] V. Fock, Theorie von Raum, Zeit und Gravitation, Akademie-Verlag Berlin, 1960.

[5] C. Isham, gr-qc/9210011.

[6] F. Jegerlehner, hep-th/9803021.

[7] K.V. Kuchar, C.G. Torre, Physical Review D, vol. 44, nr. 10, pp. 3116-3123, 1991.

[8] A.P. Lightman, D.L. Lee, New two-metric theory of gravity with prior geometry, Phys.Rev.

D 8, 10, 3293-3302 (1973).

[9] A.A. Logunov, M.A.Mestvirishvili, Yu.V.Chugreev, Graviton mass and evolution of a Fried-
man universe, Theor.Math.Phys. 74, 1-20 (1988).

[10] A.A. Vlasov, A.A. Logunov, Bouncing from the Schwarzschild sphere in the relativistic
theory of gravity with non-zero graviton mass, Theor.Math.Phys. 78, 229-233 (1989).

[11] S.S. Gershtein, A.A. Logunov, M.A. Mestvirishvili, The upper limit on the graviton mass,
hep-th/9711147.

[12] J.R. Primack, astro-ph/9707285.

[13] N. Rosen, A theory of gravitation, Ann. Phys. 84, 45-473 (1974).

[14] I. Schmelzer, gr-qc/9811033.

[15] M. Visser, Mass for the graviton, gr-qc/9705051.

[16] G.E. Volovik, Induced gravity in superfluid 3He, cond-mat/9806010.

185


