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Polaron problem is considered. Bogoliubov group variables for the space-

time translations group are defined. The scheme of secondary quantization
for the scalar field interacting with charged quantum field is proposed. Scalar

field is assumes to have nonzero classical component. Polaron is treated as a
result of interaction of charged particle and neutral field classical component.
The system state space is constructed. Expressions for integrals of motion

in zero-point order with respect to inverted powers of coupling constant are
given as a derivatives with respect to symmetry group generators.

1. INTRODUCTION

The problem of accurate account of conservation lows in quantum theory when meth-
ods of approximate calculations are used has been solved by N.N.Bogoliubov. He con-
sidered the motion of classical particle in quantum field. The system was invariant with
respect to space-time translations, so the momentum of the system was integral of motion.
Bogoliubov proposed to take into consideration some new variables which had sense of
invariance group generators. New variables turn out to be cyclic. And derivatives with
respect to new variables coincided with system momentum, so operators of Hamiltonian
and momentum commuted and momentum conservation low was accomplished at once.

Lately it was shown that such scheme is applicable for any Lee group. However it is
difficult to describe the systems including time translations, course Hamiltonian structure
as generator of time translations becomes clear only after solution of equation of motion,
so the task was a rather indefinite. Hence we need to define group variables together with
developing of perturbation theory, and to specify formulae of variables substitutions step
by step, in according with forthcoming to accurate solutions of field equations. In [8] such
scheme of Bogoliubov transformations was realized for the Poincare-invariant self-acting
scalar field.

In present work we come back to polaron problem and treat it as a problem of quantum
field theory. We enter Bogoliubov group variables for the system of interacting neutral
and quantum charged scalar fields in space-time of (1+1)-dimension and consider scalar
field quantization in the neighborhood of nonzero classical component. The system is
assumed to be invariant with respect to translations group transformations.
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2. BOGOLIUBOV GROUP VARIABLES

Let’s consider (1 + 1)D system of charged and neutral scalar fields. Operators Ψ̂, Ψ̂∗

correspond to charged field and φ is neutral field.
Field interactions leads to appearance of classical component of neutral field. Bogoli-

ubov transformation permits to separate this component:

ξ(x) = gv(x
′
) + u(x

′
), (1)

where g � 1,
x
′α = xα − τα, α = 1, 2,

τα-new variables connected with space-time translations. τα are considered as indepen-
dent, so the right part of eq(1) contains on 2 variables more than the left part, and it is
necessary to equalize the number of variables. To that end to additional conditions are
imposed on u(x

′
) function:

w(Na, u) =
∫
(Nan(x

′
)u(x

′
)−Na(x′)un(x

′
))dλ = 0. (2)

Symbol fn denote the normal derivative of function f alone the integration line C which
is defined as a straight line with a normal n = (nα), n2 = 1 for simplicity. Equation of
the line C

xα = eαλ

is determined by vector n e = (eα), e2 = −1 orthogonal to n. Using substitution (1) for
ξ(x) in (2) one can obtain functional dependence τα with respect to ξ, ξn in differential
form:

δτ c

δξ(x)
= −1

g
QcbN

b
n(x

′
),

δτ c

δξn(x)
=

1

g
QcbN

b(x
′
),

where Qab = δab − 1
g
RacQ

c
b, R

c
α = −w(N cα, u). From now onwards w(Na, vβ) = δaβ, it is

possible to satisfy by appropriate Na choice. Varying ξ(x) and ξn(x) we have:

δ

δξ(x)
=

δ

δu(x′)
+
δτα

δξ(x)

(
Sα +

∂

∂τα

)
,

δ

δξn(x)
=

δ

δun(x′)
+

δτα

δξn(x)

(
Sα +

∂

∂τα

)
,

where

Sα =
∫ (
uα(x

′)
δ

δu(x′)
+ uαn(x

′)
δ

δun(x′)

)
dλ.

Here the following equation is used:

∫ (
vα(x

′)
δ

δu(x′)
+ vαn(x

′)
δ

δun(x′)

)
dλ = 0. (3)

This equation is the immediate consequence of additional conditions (2) and relationship
w(Na, vβ) = δ

a
β.

Let’s define operators:

q̂(x) =
1√
2

(
ξ(x) + i

δ

δξn(x)

)
, p̂(x) =

1√
2

(
ξn(x)− i

δ

δξ(x)

)
. (4)
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They are selfconjugated and satisfy commutation relations

[q̂(x
′
), p̂(x

′′
)] = iδ(x

′ − x′′),

so in is possible it treat them as coordinate and momentum operators of field oscillators.
However there is another pair of selfconjugated operators which is satisfy the same

commutation relations. So the number of possible field states turns out to be doubled.
Field state number reduction is possible to carry out using holomorphic representation
for example, see [8].

In the terms of new variables operators q̂(x) and p̂(x) looks like:

q̂(x) = gF (x′) +Q(x′) +
1

g
A(x′), p̂(x) = gFn(x

′) + P (x′) +
1

g
An(x

′),

where

F (x′) =
1√
2
(v(x′) +N b(x′)Φb), A(x′) =

1√
2
N b(x′)QcbTc,

Q(x′) =
1√
2

(
u(x′) + i

δ

δun(x′)
−N b(x′)rb

)
,

P (x′) =
1√
2

(
un(x

′)− i δ

δu(x′)
−N bn(x′)rb

)
,

Tγ = Kγ +R
a
γra, rα = R

c
αΦc, Kα = iSα + i

∂

∂τα
.

∂
∂τα

enter in integrals of motion in the order 1
g
only. In order to take into account all

interaction effects earlier the canonical transformation is made: i ∂
∂τα
→ g2Φα + i ∂∂τα , and

then Kα becomes to be Kα + g
2Φα.

3. SCHEME OF PERTURBATION THEORY

The dynamic of the system is determined by Lagrangian (function arguments are
omitted):

L =
1

2

∫
(φ2n − φ2λ − µ2φ2)dλ+

+g2
∫
(Ψ∗nΨn −Ψ∗λΨλ −m2Ψ∗Ψ)dλ−−g

∫
Ψ∗Ψφdλ. (5)

Action is invariant with respect to space-time translations, so energy and momentum
are to integrals of motion. Now it is possible to quantize via substitution

φ −→ q̂, φn −→ p̂, φλ −→ q̂λ,

and we have the following expressions of the integrals of motion:

E = H =
1

2

∫
(p̂2 + q̂2λ + µ

2q̂2)dλ+
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+g2
∫
(Ψ̂∗nΨ̂n + Ψ̂∗λΨ̂λ +m

2Ψ̂∗Ψ̂)dλ + g
∫
Ψ̂∗Ψ̂q̂dλ,

P =
∫
p̂q̂λdλ + g

2
∫
Ψ̂∗nΨ̂λdλ+ g

2
∫
Ψ̂nΨ̂

∗
λdλ.

Using expressions for p̂, q̂, one can expand integrals of motion into the series with respect
to inverted powers on coupling constant g:

O = g2O−2 + gO−1 +O0 + · · · .

Let’s take notice that H−2, P−2 don’t depend from neutral field operators.
In prospect we will consider only one-particle conditions of charged field

|1 >=
∫
Ψ̂∗(x)f(x)dλ|0 >, < 1| =< 0|

∫
Ψ̂(x)f∗(x)dλ

and
[Ψ̂(x), Ψ̂∗(x

′
)] = −iD(x− x′).

If state vectors is Ψ = Ψch ⊗Ψn, in the first approximation, then averages of < H−1 >ch,
< P−1 >ch are reduced to linear forms with respect to neutral field operators. There is
no normalizible eigenvectors of operators O−1, so perturbation theory is applicable only
is this operators are equal zero.

If the following boundary condition is performed FλQ |∂c = 0, than

H−1 =
1√
2

∫ (
Fn(un − i

δ

δu
− rbN bn) +B(u+ i

δ

δun
− rbN b)

)
dλ,

where B = −Fλλ + µ2F+ < Ψ̂∗Ψ̂ >= −Fλλ(x
′
) + µ2F (x

′
) + V (x

′
).

Let’s suppose the following equality to be true:

Fn = c
αvα, B = −cαvαn, (6)

than the first order of Hamiltonian tuns out to be (3), and condition of perturbation
theory application is accomplished. As a consequence of (6) we obtain equation for the
classical component of neutral scalar field:

Fnn − Fλλ + µ2F + V = 0.

Further F (x
′
) is considered as a solution of the equation

Ftt(x
′
)− Fxx(x

′
) + µ2F (x

′
) + V (x′) = 0 (7)

with given boundary conditions on (Caushy problem), here

V (x) = −
∫ ∫

f∗(x1)D(x1 − x)D(x− x2)f(x2)dλ1dλ2.

It is easy to show that H−1 = 0 if vα = N cαΦc it means that F = cN cΦc. From
F = 1√

2
(v +N cΦc) =

√
2v immediately follows that c =

√
2.

Analogously one can show that P−1 = 0, if the following boundary conditions are
accomplished FλQ |∂c = 0.
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It is possible to obtain equation for the function f(x) describing one-particle charged
field state. Ψ̂(x) satisfy the following equation (due to variational principle):

Ψ̂tt − Ψ̂xx +m
2Ψ̂ + vΨ̂ = 0.

Than it is possible to represent Ψ̂(x) as a following:

Ψ̂ (x) = Ψ̂0 (x) +
∫
Dc (x− y) v (y) Ψ̂ (y)dy, (8)

where Ψ̂0 (x) - is a solution of the homogeneous equation.
One-particle state is:

| 1〉 =
∫
f (x) Ψ̂∗ (x) | 0〉dx.

Denote
〈0 | Ψ̂ (x) | 1〉 =

∫
〈0 | Ψ̂ (x) f (y) Ψ̂∗ (y) | 0〉dy = f̄ (x) ,

f(x) = ([] +m2)f̄(x).

From (8) we have:

f̄ (x) = 〈0 | Ψ̂0 (x) | 1〉 +
∫
Dc (x− y) v (y) f̄ (y) dy.

f̄ (x) satisfies to the equation
(
[] +m2

)
f̄ (x) + v (x) f̄ (x) = 0.

In nonrelativistic limits f̄(x) could be represented as

f̄ (x) = e−imtξ̄ (x, t) ,

and it ξ̄ (x, t) changes slowly in process of time, it means ξ̄tt (x, t) = 0, and for ξ̄ (x, t) we
have:

i
∂ξ̄ (x, t)

∂t
+

1

2m
∇rξ̄ (x, t)−

1

2m
v(x)ξ̄ (x, t) = 0.

4. SYSTEM STATE SPACE CONSTRUCTION

Neutral field dynamic properties in zero-point order with respect to inverted powers
of coupling constant g are determined by operators H0 and P0. It is possible to show
that after system state space construction those operators reduces to the derivatives with
respect to symmetry group generators.

If AFλ |∂c = 0, where A = 1√
2
N bTb, then

H0 = in
α ∂

∂τα
+

1

2

∫
(P 2 +Q2λ + µ

2Q2)dλ+

+i
∫ (
un
δ

δu
++unn

δ

δun

)
dλ +

∫
(N cnun −N cnnu)dλrc. (3)
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If coordinate and momentum operators of field oscillators looks like (4), then the
number of possible neutral scalar field states is doubled over against real situation. That
is why states number reduction is necessary.

Primarily let’s analyze the number of independent variables. Original number of in-
dependent variables was ∞. After defining of Bogoliubov group variables (they are con-
sidered to be independent) the number became ∞+ 2. This number was doubled due to
determination of creation-annihilation operators: (∞ + 2) ∗ 2 = 2 ∗ ∞ + 4. Additional
conditions reduced the number of independent variables on 2, that is at present time the
number of possible field states is 2 ∗ ∞ + 2. Let’s separate from field variables u(x

′
)

two variables ra which has no any physical sense and are connected with the method of
perturbation scheme realization. Then the state number is 2 ∗ ∞, and field is described
via w(x

′
) variables which are determined as the following:

u = w +Nara, un = wn +N
a
nra,

δ

δu
=
δ

δw
+
δra

δu

∂

∂ra
,

δ

δun
=

δ

δwn
+
δra

δun

∂

∂ra
.

In this case operators Q and P are:

Q = Q̂+ q, P = P̂ + p,

where

Q̂ =
1√
2

(
w + i

δ

δwn

)
, P̂ =

1√
2

(
wn − i

δ

δw

)
,

q =
i√
2

δra

δun

∂

∂ra
, p = − i√

2

δra

δu

∂

∂ra
.

Using variables w and wn one can reduce of state number by the following way: let’s
describe the field states by the functionals in which δ

δw
I δ
δwn

reduces to the operators:

δ

δw
→ δ

δw
− iwn,

δ

δwn
→ −iw.

Then

Q̂→
√
2w, P̂ → −i 1√

2

δ

δw
,

and if ∂ra
∂un
wλ|∂c = 0, after states number reduction Hamiltonian H0 in zero-point order

with respect to coupling constant depends on extra variables ra and derivatives with
respect to translation group generators only.

H0 = in
α ∂

∂τα
+

1

2

∫
(p2 + q2λ + µ

2q2)dλ+

+i
∫
(Nan

δrb

δu
+Nann

δrb

δun
)dλra

∂

∂rb
+
∫
(N cnN

a
n −N cnnNa)dλrarc. (10)
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Analogously if AFn |∂c = 0, Q̂p |∂c = 0, w δra
δu
|∂c = 0, wn

δra
δun
|∂c = 0 and wwn |∂c = 0, after

reduction momentum turns out to be function of nonphysical variables and translations
parameters only :

P0 = ie
α ∂

∂τα
+
∫
qλpdλ + i

∫
(Naλ

δrb
δu

+Naλn
δrb
δun

)dλra
∂

∂rb
+

+
∫
(NanN

c
λ −NaN cλn)dλrarc. (11)

So in H0 and P0 enter addends depending on nonphysical variables. Those variables
could be removed from dynamic scheme via appropriate choice of state vector on which
commutators of integrals of motion are equal zero.

If we demand F 2λ |∂c = 0, FλF |∂c = 0,
∫
V Fλλdλ = 0 I

∫
V Fdλ = 0 then expressions

for H0 and P0 look like:

H0 = in
α ∂

∂τα
+ h0, P0 = ie

α ∂

∂τα
+ p0,

where h0 and p0 are the quadratic forms with respect to ra and canonical momenta.
Commutator of h0 and p0 is equal zero on the state vector which looks like

Φ(ξ, η) = Cexp(α̂(ξ2 − η2)),

here ξ and η are linear combinations of ra. So h0 and p0 can be removed from dynamical
scheme.

Hence

H0 = in
α ∂

∂τα
= i

∂

∂τ 1
,

so

i
∂Ψ

∂t
= [Ψ, H], i

∂

∂t
Ψ = −i ∂

∂τ 1
Ψ⇒ Ψ(t) = Ψ(t− τ 1).

Analogously for the momentum:

Ψ(x) = Ψ(x− τ 2).

So energy and momentum conservation lows are accomplished.

5. CONCLUSION

Nonstationary equation describing polaron motion has been obtained in present work.
It was possible after Bogoliubov group variables definition. To that end we have solved a
more general problem of classical component separation in secondary quantized system.

Integrals of motion for the quantized neutral field are reduced to the derivatives with
respect to group variables which turn out to be cyclic.

It permits to take into account conservation lows accurately within zero-point order
with respect to parameter g.

Further development of perturbation theory scheme requires group variables specifying
and additional conditions. However it demands only technical efforts, course in principle
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the accurate account of conservation lows problem is solved namely in orders considered
already .

Note that proposed formalism permits to consider arbitrary motions of charged parti-
cle, for example periodic motion or particle motion in external field (group variables not
cyclic in this case but this is not important for the formalism development).
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