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1. INTRODUCTION

With the advent of gauge theories it became necessary to reconsider many well-
established ideas in quantum field theories. The canonical formalism, formerly regarded
as the most conventional and rigorous approach, has now been abandoned by many authors.
The path-integral concept cannot replace the canonical formalism in defining a theory,
since path integrals in four dimensions are meaningless without additional and rather
ad hoe renormalization prescriptions.

Whatever approach is used, the result is always that the S-matrix is expressed in
terms of a certain set of Feynman diagrams. Few physicists object nowadays to the idea
that diagrams contain more truth than the underlying formalism, and it seems only rational
to take the final step and abandon operator formalism and path integrals as instruments
of analysis.

Yet it would be very shortsighted to turn away completely from these methods. Many
useful relations have been derived, and many more may be in the future. What must be done
is to put them on a solid footing. The situation must be reversed: diagrams form the
basis from which everything must be derived. They define the operational rules, and tell
us when to worry about Schwinger terms, subtractions, and whatever other mythological
objects need to be introduced.

The development of gauge theories owes much to path integrals and it is tempting to
attach more than a heuristic value to path integral derivations. Although we do not rely
on path integrals in this paper, one may think of expanding the exponent of the interaction
Lagrangian in a Taylor series, so that the algebra of the Gaussian integrals becomes
exactly identical to the scheme of manipulations with Feynman diagrams. That would leave
us with the problems of giving the correct ie prescription in the propagators, and to find

a decent renormalization scheme.

There is another aspect that needs emphasis. From the outset the canonical operator
formalism is not a perturbation theory, while diagrams certainly are perturbative objects.
Using diagrams as a starting point seems therefore to be a capitulation in the struggle to
go beyond perturbation theory. It is unthinkable to accept as a final goal a perturbation
theory, and it is not our purpose to forward such a notion. On the contrary, it becomes
more and more clear that perturbation theory is a very useful device to discover equations
and properties that may hold true even if the perturbation expansion fails. There are al-
ready several examples of this mechanism: on the simplest level there is for instance the
treatment of unstable particles, while if it comes to unfathomed depths the Callan-Symanzik
equation may be quoted. All such treatments have in common that global properties are
established for diagrams and then extrapolated beyond perturbation theory. Global pro-
perties are those that hold in arbitrary order of perturbation theory for the grand total
of all diagrams entering at any given order. It is here that very naturally the concept
of the global diagram enters: it is for a given order of perturbation theory, for a given
number of external lines the sum of all contributing diagrams. This object, very often
presented as a blob, an empty circle, in the following pages, is supposed to have a
significance beyond perturbation theory. Practically all equations of the canonical
formalism can be rewritten in terms of such global diagrams, thereby opening up the

arsenal of the canonical formalism for this approach.
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A further deficiency is related to the divergencies of the perturbation series.
Traditionally it was possible to make the theory finite within the context of the canonical
formalism. For instance quantum electrodynamics can be made finite by means of Pauli-
Villars regulator fields, representing heavy particles with wrong metric or wrong sta-
tistics. Judicial choice of masses and coupling constants makes everything finite and
gauge invariant and turns the canonical formalism into a reasonably well-behaving machine,
free of objects such as §(0), to name one. Unfortunately this is not the situation in the
case of gauge theories. There the most suitable regulator method, the dimensional regular-
ization scheme, is defined exclusively for diagrams, and up to now nobody has seen a way to
introduce a dimensional canonical formalism or path integral. The very concept of a field,

and the notion of.a Hilbert space are toc rigid to allow such generalizations.

The treatment outlined in the following pages is not supposed to be complete, but
rather meant as a first, more or less pedagogical attempt to implement the above péint of
view featuring global diagrams as primary objects. The most important properties of the
canonical as well as path integral-formalisms ave rederived: unitarity, causality,
Faddeev-Popov determinants, etc. The starting point is always a set of Feynman rules
succinctly given by means of a Lagrangian. No derivation of these rules is given:
corresponding to any Lagrangian (with very few limitations concerning its form) the rules

are simply defined.

* Subsequently, Green's functions, a Hilbert space and an S-matrix are defined in terms
of diagrams. Next we examine properties like unitarity and causality of the resulting
theory. The basic tool for that are the cutting equations derived in the text. The use
of these equations relates very closely to the classical work of Bogoliubov, and
Bogoliubov's definition of causality is seen to hold. The equations remain true within
the framework of the continuous dimension method: renormalization can therefore be

treated 4 la Bogoliubov.

Of course, the cutting equations will tell us in general that the theory is not
unitary, unless the Lagrangian from which we started satisfies certain rclations. In a
gauge theory moreover, the S-matrix is only unitary in a "physical" Hilbert space, which
is a subspace of the original Hilbert space (the one that was suggested by the form of the

Lagrangian).

To illustrate in detail the complications of gauge theory we have turned to good old
quantum electrodynamics. Even if this theory lacks some of the complications that may
arise in the general case it turns out to be sufficiently structured to show how every-

thing works.
The metric used throughout the paper is
= X, ict), K=K+ kE, Kk =ik =T
The factors i in the fourth components are only there for ease of notation, and should not
be reversed when taking the complex conjugate of a four-vector
. > L
ju=0, 1,

* <k

- .. hed
0%, 139 = 0% i)

%
Ju
In our Feynman rules we have explicitly denoted the relevant factors (2m)*i, but often

omitted the § functions for energy-momentum conservation.



DEFINITIONS

2.1 Definition of the Feynman rules

The purpose of this section is to spell out the precise form of the Feynman rules for
a given Lagrangian. In principle, this is very straightforward: the propagators are
defined by the quadratic part of the Lagrangian, and the rest is represented by vertices.
As is well known, the propagators are minus the inverse of the operator found in the

quadratic term, for example

~
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Customarily, one derives this using commutation rules of the fields, etc. We will simply

skip the derivation and define the propagator, including the ie prescription for the pole.

Similarly, vertices arise. For instance, if the interaction Lagrangian contains a

term providing for the interaction of fermions and a scalar field one has

L= gw)e !
/\ .

In this and similar cases there is no difficulty in deriving the rules by the usual
canonical formalism. If however derivatives, or worse non-local terms, occur in £, then
complications arise. Again we will short-circuit all difficulties and define our vertices,
including non-local vertices, directly from the Lagrangian. Furthermore, we will allow
sources that can absorb or emit particles. They are an important tool in the analysis.
In the rest of this section we will try to define precisely the Feymman rules for the
general case, including factors w, etc. Basically the recipe is the straightforward

generalization of the simple cases shown above.

The most general Lagrangian to be discussed here is

L0 = W00V, 9 00 + 5 6 0058560 + L0054, ) 2.1
The ¥y and 5 denote sets of complex and real fields that may be scalar, spinor, vector,
tensor, etc., fields. The index i stands for any spinor, Lorentz, isospin, etc., index.

V and W are matrix operators that may contain derivatives, and whose Fourier transform
must have an inverse. Furthermore, these inverses must satisfy the Kallén-Lelmann repre-
sentation, to be discussed later. The interaction Lagrangian Cl(b*,w,¢] is any poly-
nomial in certain coupling constants g as well as the fields. This interaction Lagrangian
is allowed to be non-local, i.e. not only depend on fields in the point x, but also on
fields at other space time points x', x”, ... . The coefficients in the polynomial expan-

sion may be functions of x. The explicit form of a general term in EI(x) is
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The o may contain any mumber of differential operators working on the various fields.

Roughly speaking propagators are defined to be minus the inverse of the Fourier

transforms of V and W, and vertices as the Fourier transforms of the coefficients o in EI.
The action S is defined by
is =i [dxreo . (2.3)

In [ we make the replacement

) :
INORNER a; (et
W60 = [ 4K, 00e
6, () =fd“k ¢, (0™
ailiz.-'(x, X, X, ved) =

- fdkk d K Ak, e et ik, () rik, (e )b 0 kL L)

1160 1 2
The action times i takes the form
[ v B 1 [ W - B
(2m 1b(k)Vij(k)aj(K) + z—(ZWJ 1ci(k)wij(k]cj(k)

et @m)tasa(k ¢k o+ ...)&i(k, kb ke x

x by (k)s wees ag Oy ooey Cg O * onn (2.4)

each tem integrated over the momenta involved. The V and W contain a factor ikn (or
-ikn) for every derivative a/axu acting to the right (left) in V and W, respectively. The
3 contain a factor ikju for every derivative a/axju acting on a field with argument xj.

The propagators are defined to be:

i - J S SR AT
* P briy® = -y Wi
- (2.5)
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Here W is W reflected, i.e. W., = ﬂﬁi' In the rare case of real fermions the propagator

ij
must be minus the inverse of the antisymmetric part of W. Furthermore, there is the usual
ie prescription for the poles of these propagators. The momentum k in Eqs. (2.5) is the

momentum flow in the direction of the arrow.

The definition of the vertices is:

CORTED) YooY P

fi...m-1} {m...n-1} {n...}

T kl’ k2’ ...)6“(k+ kl +...) . (2.6)

imKm

The sumation is over all permutations of the indices and momenta indicated. The momenta
are taken to flow inwards. Any field v* corresponds to a line with an arrow pointing out-
wards; a field y gives an opposite arrow. The ¢ fields give arrow-less lines. The factor
(—1]P is only of importance if several fermion fields occur. All fermion fields are taken
to anticommute with all other fermion fields. There is a factor -1 for every permutation

exchanging two fermion fields.
The coefficients o will often be constants. Then the sum over permutations results

simply in a factor. It is convenient to include such factors already in EI; for instance

() = o gV ()W)

gives as vertex simply the constant g.

As indicated, the coefficients a may be functions of x, corresponding to some
arbitrary dependence on the momentum k in (2.6). This momentum is not associated with any
of the lines of the vertex. If we have such a k dependence, i.e. the coefficient a is non-
zero for some non-zero value of k, then this vertex will be called a source. Sources will

be indicated by a cross or other convenient notation as the need arises.

A diagram is obtained by comnecting vertices and sources by means of propagators in
accordance with the arrow notations. Any diagram is provided with a combinatorial factor
that corrects for double counting in case identical particles occur. The computation of

these factors is somewhat cumbersome; the recipe is given in Appendix A.

Further, if fermions occur, diagrams are provided with a sign. The rule is as

follows:

i) there is a minus sign for every closed fermion loop;
ii1) diagrams that are related to each other by the omission or addition of boson lines
have the same sign;
iii) diagrams related by the exchange of two fermion lines, internal or external, have a

relative minus sign.
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EXAMPLE 2.1.1 Electron-electron scattering in quantum-electrodynamics. Some diagrams and
their relative sign are given in the figure. The fourth and fifth diagrams are really the
same diagram and should not be counted separately:

\*~\\?,,Jr/" “-\3____,__T,vr’

c—evaen
PRV VN

+1 +1

-1 -]

This raises the question of the recognition of topologically identical diagrams. In
Appendix A some considerations pertinent to the topology of quantum electrodynamics are
presented.

2.2 A simple theorem; some examples

THEOREM  Diagrams are invariant for the replacement
* *
¥ 7 ki

in the Lagrangian (1.1), where X is any matrix that may include derivatives but must have
an inverse.

The theorem is trivial to prove. Any oriented propagator cbtains a factor X™! that
cancels against the factor X occurring in the vertices. It is left to the reader to

generalize this theorem to include transformations of the Y's and ¢'s.

Some examples illustrating our definitions are in order.

EXAMPLE 2.2.1 Charged scalar particles with ¢* interaction
£G) = 977 - )0+ i (0P ¢ TT00W ¢ W) (2.7)

Only " (x) and ¥(x) in the same point x occur, and in accordance with the description given
at the beginning of the previous section we have here a local Lagrangian. The functions
J(x) and J¥(x) are source functions.

Propagator:

o—atll——® A = 1 1
K F (M K +m* - ie”




~J

Vertex:

(2m)*ig (8 function for energy-
::><:: momentum conservation
is understood.)
Sources:
*
k (2m) *1J” (k) k (2m)*1I(K) .

The functions J(k), J*(k) are the Fourier transforms of J(x) and J*(x)

Jx) :J' duke M g1y

Note that k is the momentum flowing from the line into the source.

Some diagrams:

k
p] p3
J(-p1) J* (-p2) J"(ps) J(ps)

- - ; — & + D, - Pa - X
p} +m? - 1le pZ+m?-die pi+md-le pi+m?-ode WPy * P2 7Py 7 P

xg? [ dk ——t L .
R T (k +p, +p)? +m - ie
P P3
P2 P
J(-p1) J(-p2) J* (03) I D) 5o 4 pe b o) x
p? Tl - e p§ + M - ie p§ + m? - ic pi T 0t < i s(P1 * P2 - Ps - D)

1 1
+m? -ie (k+p; +p)? +m?-ds

o]

gZ ," d"k kZ

The factor 1/2 in the second case is the combinatorial factor occurring because of the
identical particles in the intermediate state.

EXAMPLE 2.2.2 Free real vector mesons

mew? . 7.8
N (2.8)



In terms of four real fields ¢ =W , a =1, , 4,
o
_ l. _ ~ > 2 “« > - l
b=3 ¢a[ ( uau rm)e B " 3a36]¢8 T2 ¢uVaB¢B

The matrix V in momentum space is

_ 2 2
6a8(k + m*) + kakB .

The vector meson propagator becomes:

i K j 1 -1 1 Bap + kokg/m
—— Ao = = ——— (V1)aB = _
FoB (2m)*i (e (2m* k2 +m? - ie (2.9
Indeed
N 2
2 2y _ OE)\*’](Ek)\/m -
[dus(k + m?) kakg} T ie
_ 1 2 2y _ k> +m? _ K] _
TX w2 - ie [auk(k ) -kt kakk mZ akx mz| San
EXAMPLE 2.2.3 Electron in an external electromagnetic field A.u
U= R0y ¢ mu + deA ity (2.10)

Note that ¥ = y*v*. Because of our little theorem the matrix v* can be omitted in giving
rules for the diagrams. Then:

~———— .
- 1 -iyk + m
4.Ji_ bp 2m*i K2 +m® - ie ’ (.11
p-k
~p -(2n)te y“Au(k) .

As a further application of our theorem we may substitute y - (—yvav + m)y to give
€= 30" - m)y + deA (v, ¢ m)y
This gives the equivalent rules:

_ 1 1
Fooon*i k2 +n? - ie

-(2m)*eA (0" (-1v"p, + m)



2.3 Internal consistency

Two points need to be investigated. First, the separation in real and complex fields
is really arbitrary, because for any complex field ¢ one can always write

*

o=-—(@A+1iB), ¢ == (@A-1iB),

Sl
Qi

where A and B are real fields. The question is whether the results will be independent of
the representation chosen. This indeed is the case, and may be best explained by
considering an example:

£=¢*V..6. + J’.l‘cp.l + o3y

11)7]
i._<___.J _ ?2#}: (V-l)ij
i (2m)*iJ}
— - (ZW)“iJi .
The diagram containing two sources is:
! - J —(zm"iJ;(v-l)iij .

On the other hand, let us write ¢ = (1/vZ)(A + iB)

£ =Lav.A +L1BV.B +L1AV..B -1BV.A +
2 2 71°1) 2°11)j71 2 71133

Defining the real field X;

we have

p= LW X+ FXO+ X,
2717137 171 171

-ivd 2\ vZ -iJ,

where the superscripts s and a denote the symmetrical and the antisymmetrical part,

with

respectively.
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Let Y now be the inverse of V. Thus
w=1, Yv=1.
Writing V = Vo o+ Va, Y =Y +Y® one finds, comparing the reflected VY with YV
vy v =1,
VY s v = v s YSP = g

The inverse of the matrix W is therefore

Ys iYaJ
Wl o= ,
-iYt ¥s

where Y = V!, The source-source diagram becomes
-(2M*FWCIF = - 20 3 200 ¢ YA = -en st

as before. C(learly the separation into real and imaginary parts amounts to separation
into symmetric and antisymmetric parts of the propagator.

The second point to be investigated is the question of separation of the quadratic,
i.e. propagator defining, part in £. Thus let there be given the Lagrangian

+ TV 4

*
v ¢i 1135

{ =
ALY

One can either say that one has a propagator -(V + V/)~! for the ¢-field, or alternatively
a propagator -(V)~! and a vertex:
i ] I}
- . - ) Vij
However, these two cases give the same result. Summing over all possible insertions of

the vertex V! one finds:

1 o1
1+V/V V+v e

1
<l
+
[}
<=
~—
<
—
<
——
+
1
!
<<

This demonstrates the internal consistency of our scheme of definitions. We leave it
as an exercise to the reader to verify that combinational factors check if one makes the
replacement ¢ > (A + iB)/v2, for instance for the diagrams:

O OO
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2.4 Definition of the Green's functions

Let there be given a general Lagrangian of the form (2.1). Corresponding to any field

we introduce source terms (we will need many, but write only one for each field)
R N A R
According to the previous rules such terms give rise to the following vertices:
— - MW,

— —-——————x  (M*Im

> (2m*iK() ,

where the k dependence implies Fourier transformation.

Remember now that the interaction Lagrangian was a polynomial in some coupling
constants. For a given order in these coupling constants we may consider the sum of all
diagrams connecting n sources. All n sources are to be taken different, because we want

'n

to be able to vary the momenta independently. Each of these diagrams, and a fortiori their

sum, will be of the form

Ji, ()5, () wew i ()Gi iy Geys oeey Ky

The function Gi will be called the n-point Green's function for the given external line
configuration for the order in the coupling constants specified. Factors (2m)*i from the
source vertices are included. The ki denote the momenta flowing from the sources into the

diagrams. The propagators that commect to the sources are included in this definition.

The first example of Section 2.2 shows some diagrams contributing to the second-order

four-point Green's functions.

2.5 Definition of the S-matrix; some examples

Roughly speaking the S-matrix obtains from the Green's functions in two steps:
(i) the momenta of the external line are put on mass shell, and (ii) the sources are
normalized such that they correspond to emission or absorption of one particle. Both
these statements are somewhat vague, and we must precise them, but they reflect the

essential physical content of the reasoning below.
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Consider the diagrams connecting two sources:

i |
T (k') = O 3 1)

The corresponding expression is

Ji(k')Gij(k, k’)Jj(k) . (2.12)

The two-point Green's function will in general have a pole (or possibly many single poles)
at some value -M? of the squared four-momentum kv' If there is no pole there will be no
corresponding S-matrix element; such will be the case if a particle becomes unstable

because of the interactions. At the pole the Green's function will be of the form

K.. (k)
Gys (K, k) = (2m)*ise(k + kD 21

goE k? - -2,

The matrix residue Kij can be a function of the components ku, with the restriction that
k% = =M%,

First we will treat the currents for emission of a particle, corresponding to incoming
particles of the S-matrix. Define a new set of currents Jga], one for every non-zero

eigenvalue of K, which are mutually orthogonal and eigenstates of the matrix K(k)

J@x; ) =0 if a#b,
i i
@ - oy @ (2.13)
and normalized such that
- - 1 for integer spin
1P "k 0039 o) - (2.14)

%% for half-integer spin .

This is possible only if all eigenvalues of K are positive. In the case of negative eigen-

values normalization is done with minus the right-hand side of Eq. (2.14).

The sources thus defined are the properly normalized sources for emission of a par-
ticle or antiparticle _the latter follows from considering K[-k)]. The properly normalized
sources for absorption of a particle or antiparticle follow by considering Eqs. (2.13) and
(2.14) but with k replaced by -k in K,

The above procedure defines the currents up to a phase factor. We must take care that
the phase factor for the emission of a certain particle agrees with that for absorption of
that same particle. This is fixed by requiring that the two-point Green's function pro-
vided with such sources has precisely the residue 1 (or k¢/m) for k? = -m2.

The matrix elements of the matrix S’ (almost, but not exactly the S-matrix, see

below) for n ingoing particles and m outgoing particles are defined by
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i

; [ar) 2 2
H im 35T ) O+ 1)
T T

<p1b1) cers pmbmlsllklal’ sy knan>

=1

(by)
. S 2 - -
* . 2]__1.1.an st (PS)(pé * M) X Gil-..jm(kl’ e Kps TPy e Pn) - (2.19)
Ps™™s
S=1

The energies k vees kno and P o+ »++» Pp, are all positive. The minus sign for the

10°
momenta p in the Green's function appears because in the matrix element the momenta of the
outgoing particles are taken to be flowing out, while in our Green's functions the conven-

tion was that all momenta flow inwards.
EXAMPLE 2.5.1 Scalar particles. Near the physical mass pole the two-point Green's
function will be such that

G(k, k') - 1
(M) *is, (k - k') Z%(k® + M?) °

(2.16)

For any k the properly normalized external current is J = Z, and the prescription to find

S'-matrix elements with external scalar particles is

<p1, B 1L S kn> =H 1;1{1 Z(k2 + M)

m

. 2 2 - -
X 1—[ z{gﬁz Z(pS + MGk, ..., kn, D> wevs pm) . (2.17)
s=1 Ps”

EXAMPLE £.5.2 Fermions as in QED. Near the physical mass pole the two-point Green's
function will be such that

1 -
Gij(k, k ) ) 1 } Ki; (K) 2.18)
(2 ion(k - K1)  ZP(yk + M) K+ M2’ :
with
K500 = 2 (-ivk + M, - (2.19)

A set of eigenstates of this matrix is provided by the solutions ua(k) of the Dirac equation
*
(ivk +Mu=0, vu*=1, a=1,2. (2.20)

Because of the normalization condition Eq. (2.14), we must take for the currents J(a)(k)

1@ = P & /e 2.21)

with the Dirac spinors normalized to 1, see Eq. (2.20). Note that the factor 1/2M cancels
upon multiplication of this source with the propagator numerator (2.19).
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The antiparticle emission currents are obtained by considering R(-k). The solutions

are the antiparticle spinors

B, a=3,4.

For outgoing antiparticles and particles K(-k) and K(k) must be considered to obtain
the proper absorption currents. The solutions are the spinors ua(k], a=23,4 and ﬁa(k),
a =1, 2. The phase condition o°Ku® = 2M dictates a minus sign for the source for emission
of an antiparticle (see Appendix A).

Let us now complete the S-matrix definition. The prescription given above results
in zero when applied to the two-point function, because there will be two factors k? + M?
(one for every source). Thus we evidently do not obtain exactly the S-matrix that one has
in such cases. This discrepancy is related to the treatment of the over-all & function of
energy-momentum conservation, when passing from S-matrix elements to transition probabili-
ties. Anyway, to get the S-matrix we must also allow lines where particles go through
without any interaction, and associate a factor 1 with such lines. These particles must,

of course, have a mass as given by the pole of their propagator.

Matrix elements of the S-matrix, including possible lines going straight through,
will be denoted by graphs with external lines that have no terminating cross. The conven-
tion is: left are incoming particles, right outgoing.
Energy flows from left to right. The direction of the
arrows is of course not related to the direction of the

energy flow.

We emphasize again that the above S-matrix elements include diagrams containing inter-

action free lines. For instance, the diagram shown is
included in the 3-particle-in/3-particle-out S-matrix

element.

The definition of the S-matrix given above applies if there is no gauge symmetry.
For gauge theories some of the propagators correspond to "ghost' particles that are
assumed not to have physical relevance. In defining the S-matrix, the sources must be
restricted to emit or absorb only physical particles. Such sources will be called

physical sources and have to be defined in the precise context of the gauge symmetry. To

show in such cases that the S-matrix is unitary requires then special effort.

2.6 Definition of S

The matrix elements of the matrix S-r are defined as usual by
<u|s+Le> = <B}s{a)* , (2.22)

where the complex conjugation implies also the replacement ie - -ie in the propagators.

The matrix elements of S* can also be obtained in another way. In addition to the
Lagrangian £ defining S, consider the conjugated Lagrangian E+. The conjugated

Lagrangian T is obtained from £ by complex conjugation and reversal of the order
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of the fields. The latter is only relevant for fermions. This et may be used to define
another S-matrix; let S denote the matrix obtained in the usual way from ff, however with

the opposite sign for the ie in the propagators and also the replacement i + -i in the

notorious factors (21)*i. We claim that the matrix elements of § are equal to those of S+.

In formula we get
@ise, Hfls) = (lsce, -nla) .

The proof rests mainly on the observation that an incoming particle source is obtained

by considering :notation of Section 2.5, Eq. (2.13) :
K.. (K)J. (k
— 15 0095 ()
and the complex conjugate of an outgoing particle source by study of:
* |~
or, equivalently,
Sk
Kij[—k)Jj(k] ,

where Ri' = Kji' This is indeed what corresponds to complex conjugation of the propagator

defining part of et

r -
[ 4 * T _

Note the change of sign of the derivative: what worked to the right works now to the
left, which implies a minus sign. vl is obtained by transposition and complex conjugation
of V. C(learly complex conjugation and exchange of incoming and outgoing states corresponds

to the use of VJr instead of V.

EXAMPLE 2.5.1  Fermion coupled to complex scalar field
==y + my + 9" (3% - m?)o + gh(L + v )" .

The lowest order S-matrix element is:

p
\\\»__*ﬁ__ (lsip, K) = (20)*igdu(p + k = Q@) (L + v*Ju(p)/Faops

ko7 q
According to Eq. (2.22)
+ . - —
(p, K|S"la) = () *ig (o + K - QEEIA - vH)u(a)/TGeps -
There is a minus sign because yvy* = -y"*y®.

Consider now £+

T = Pve + my + 0702 - mD) + g - Y)W -
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There are minus signs because of ¥*, y® exchange and 5 + -3 changes except 8y > 3.
Including the sign change for (2m)"i, we obtain for S:

P
/ {p, kISlq) = -(2m)*ig™s* (p+ k- QUE) (1 - v*)u(a) v4podo

which equals the result for S+ found above.

To summarize, the matrix elements of S+ can be obtained either directly from their
definition (2.22), or by the use of different Feynman rules. These new rules can be
obtained from the old ones by reversing all arrows in vertices and propagators and re-
placing all vertex functions and propagators by their complex conjugate (for the propa-
gators this means using the Hermitian conjugate propagators). Also, the factors (2m)*i
and the ie terms in the propagators are to be complex conjugated. The in- and out-state
source functions are defined by the usual procedure, involving now the Hermitian conjugate
propagators.

Let us finally, for the sake of clarity, formulate the definition of ingoing and out-
going states in the diagram language for both the old and the new rules:

in out
»——— antiparticle ——~— antiparticle
——— particle —— particle
R —x
e aaatessnass B aaaaaannt

| o > <a |

2.7 Definition of transition probabilities;
cross-sections and Tifetimes

The S-matrix elements are the transition amplitudes of the theory. The probability
amplitudes are defined by the absolute value squared of these amplitudes. Conservation of
probability requires that the S-matrix be unitary

T sistal® = Y {als"ls) (alsle) = 1 (2.23)
B §
This property will be true only if the diagrams satisfy certain conditions, and we will

investigate this in Section 6.

In the usual way, lifetimes and cross-sections can be deduced from the transition

probabilities.



- 17 -

Consider the decay of particle o into particles 1, 2, 3, ..., n. The decay width T
(= inverse lifetime T) is

l=l-=f dapl Y e, dapl’l (Su(pﬁ_pl'pz “e 'pn) %
T 2p, ¢ (2m)° 2py, (2m)° 2y, (21)*
x (a1, 2, ..., n) (1, 2, o0, ntla) (2.24)

where the matrix elements of M (and M+) are those of S (and ST) without the energy-
momentum conservation § function

(/B|M|OL\\ = _\/_B_E]_Ot,l_ (2.25)
: £ 8, (py - 1p)
The Pyy» ++» Py, are the energies of particles o, 1, 2, ..., n. Dividing T by

h = 6.587 x 1022 MeV « sec gives I' in sec™!, provided all was computed in natural units
(h = ¢ = 1) with the MeV as the only unit left.

Next, consider the scattering of a particle o on a particle 8 at rest giving rise to
a final state with n particles. The cross-section ¢ for this process is

g =j' d.p, d;py Pog §,(Pg * Pg = Py = Py ++- =Pn) X
s e, :
2pyo (21)° 2o, (2m)° (B, 4pg,Da, (21)*
x {0, B|M+\l, 2, <., 0y (1, 2, ..., n[Mla, 8} . (2.26)

lere Ea is the three-momentum of the incoming particle o in the rest system of the B
particle (target particle). Multiplying by (hc)? = (1.9732 x 107'! MeV - cm)?, one obtains
g in am?.
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DIAGRAMS AND FUNCTIONAL INTEGRALS

In all proofs we will rely only on combinatorics of diagrams. However, the rules and
definitions may look somewhat ad hoc, and the purpose of this section is to show a formal
equivalence with certain integral expressions.

Imagine a world with only a finite number of space-time points xi, a=1, ..., N;
vw=1, ..., 4. For simplicity, we consider only the case of real boson fields. The action
S is now

5 =3 Zb ‘bi(xa)wﬁ?qu(xb) v ) Bl 0 G-
a, a

where W is taken to be symmetric. Derivatives occur as differences. The diagram rules

corresponding to this action are as given in Section 2.
Suppose now that S is real if ¢ is real. The following theorem holds.

The rules defined in Section 2 for comnected diagrams are precisely the same as the
mathematical rules to cbtain the function I' defined by

eil" -C f eiS [p ] H ﬂ d¢i(xa) , (3.2)
a i

where the right-hand side is understood as a series expansion in terms of the coefficients
in CI. Here C is an arbitrary constant not depending on the sources in EI. The set of

all diagrams including disconnected ones are obtained by expanding elF.

Instead of Eq. (3.2) we will use the condensed notation

Al - ¢ J' DpeiS®) (3.3)

The theorem is easy to prove. First calculate the integral for free particles, using for

the action the expression

Sp(8, D) =5 Y o N6 + ) I G (3.4)

with arbitrary source functions J. Define

eifo(J) = G Jf g)¢eiso(¢’J) . (3.5)

'y can be found by making a shift in the integration variables

ab g by (3.6)

4,67 = 0% - % W35

so that

S0, 9) =5 1 o' -5 Y e oD edy (3.7)
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The primed fields are not coupled to the J! We find

o) = -3 ) JWwl, (3.8)

because the integral over the ¢’ is now a source independent constant and can be absorbed
in the constant C in Eq. (3.3). Note the factor Y% because of identical sources.

We see that I'" is nothing but the free particle propagator. Even the ie prescription
can be introduced correctly if we introduce a smooth cut-off for the integral for large
values of the fields ¢

1/ = 1 = -
e/21¢w¢ . e/21¢W¢e Yo d? ) (3.9)

This makes the integral well defined even in directions where ¢W¢ = 0. The result is the
usual ie addition to W.

Let us now consider also interaction terms. The perturbation expansion is
it (M) y
- | i b
e =1+1 Z 0058+ 5 Z fl(xa, 9L, 8) (3.10)
a a,b

or
s 3 .
e'” = els°{} +1 2: £+ ..] , (3.11)

where the sources are included in Sy,. From the definition of S, we have

. .a. .b TiSe(¢,d) U T3 3 " 1S4(9,d)
_1¢i(x )1¢j(x ) e e LGS an(xb] . e . (3.12)

Consequently we can replace everywhere the fields ¢.(xa) by the derivative 6/6J.(xa
i i

-
fmeis(q’) —c'1 i Y [’I[xa, B‘JTBET] - f DpetSo (#:7) (3.13)

The remaining integral is precisely the one computed before and is equal to exp (iTy) with

I'y given in Eq. (3.8). Expanding this exponential
il 1. - 1.
el =1-51 Z I+ PE@IDE L (3.14)

we see that every term in Eq. (3.13) corresponds to a diagram with vertices and propagators
as defined in Section 2. Diagrams not coupled to sources are called vacuum renormaliza-
tions and must be absorbed in the constant C. Note the combinatorial factors due to the

occurrence of identical sources.

The functional integral notation (3.3) for the amplitude in the presence of sources
is elegant and compact, and it is very tempting to write the amplitudes of relativistic
field theories in this way. Many theorists can indeed not resist this temptation. Let us
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see what is involved. In our definition (3.3) we restricted ourselves to a finite mumber
of space-time points. In any realistic theory this nmumber is infinite and summations are
to be replaced by integrations. So a suitable limiting procedure must be defined, but
unfortunately these definitions cannot always be given in a manner free of ambiguities.
Generally speaking, difficulties set in about at the same point that difficulties appear

in the usual operator formalism, in particular we mention higher order derivatives or worse
non-localities in the Lagrangian. We shall, therefore, in this report not try to formulate
such a definition but attach to the result of manipulations with functional integrals a
heuristic value. Everything is to be verified explicitly by combinatorics of diagrams.

But having verified certain basic algebraic properties we can happily manipulate these
"path" integrals. One of the most interesting manipulations used with great advantage in
connection with gauge theories is the change of field variables. Both local and non-local
canonical transformations turn out to be correctly described by the path integral formulae,

as we shall see later.

We may finally mention that the various sign prescriptions, in the case of fermion
fields, cannot be obtained in a simple way. They can be corrected for by hand afterwards,
or in a more sophisticated way an algebra of anticommuting variables can be introduced.

Such work can be found in the literature and is quite straightforward.
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KALLEN-LEHMANN REPRESENTATION

The quantities -V™! and -W! "see Egs. (2.5)] that are defined as propagators in the
theory are more precisely called the bare propagators. This in contrast to the two-point
Green's function that when divided by -(2m) %8, (k + k') is called the dressed propagator.
Both the bare and dressed propagators are required to satisfy the Kallén-Lehmann repre-
sentation, but it will turn out that the dressed propagators satisfy this automatically if
the bare propagators do.

Consider any propagator and decompose it into invariant functions. For instance, for
vector mesons

[ - _ 2 2
(2m) g, () = 8 € () + K KE, (62 4.1)

The Kallén-Lehmann representation for the invariant functions is

st - s - i
a2o

£(-s) = J 110 (4.2)

The functions p(s’) must be real. For bare propagators we will insist that the p(s!) are
a sum of § functions

p(s’) = Z: aiS(s’ - mi) for bare propagators (4.3)
i
with real coefficients aj, and real positive mi.

Now introduce the Fourier transform of the propagators
_ ikx
bpy5 09 = J a ke g (0 - (4.4)

Corresponding to the decomposition of AF(k) in invariant functions we will have a decompo-

sition involving derivatives. For instance, for vector mesons

AFuv(x) = 4§ v Al(x) - auav Az(x) , (4.5)

u

where A; and A, are the Fourier transforms of f; and £, above. The statement that any

function f(x) satisfies the Kallén-Lehmann representation is equivalent to the statement
+ -
£(x) = 8(x,)E () *+ 6(-x,)f (x) , 4.6)
where f+(f_) is a positive (negative) energy function

1

£ = e

J’ ds'o(s") j’ a, ke ogk Y5k + ) (4.7

azo

The proof is very simple. Using the Fourier representation
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had 1TXq
6(Xo) =—1—J' dr &

2mL T - 1 ?

(4.8)

—00

one derives immediately the result. Of course this derivation is only correct if the
integral in Eq. (4.2) exists, and this is in general the case. If not one must introduce
regulators, to be discussed below. However, we need the representation (4.6) not only for
the invariant functions, but also for the complete propagator such as in Eq. (4.5).
Whether this is true depends on the convergence of the dispersion integrals. If the func-
tions £ and £ go for xo = 0 sufficiently smoothly over into one another, then the
expression (4.6) has no particular singularity at x, = 0 and one may ignore the action of
derivatives on the 0 functions. Now from the above equation (4.7) it is clear that

f+(xo) = f (-x¢), so in any case f+(0] = £ (0). This is enough to treat the case of one
derivative such as occurring in the case of fermion propagators. Consider now

L _r

%f = ezm?d )

ds’o(s") jd“keikx(—iko)e(tko)d(kz v 51y . (4.9)

For xy = 0 we can do the k, integral

>
+ 1 ikx r -
3of e fd31<el x J ds'o(s')[+ %) . (4.10)

Xo=0

Clearly 30f+ = 3of 1in x¢ = 0 only if the dispersion integral is superconvergent
fds'p[s') =0 . (4.11)

For bare propagators, see Eq. (4.3), this can only be true if some of the coefficients a;
are negative, some positive. This implies the existence of negative metric particles,
which in turn may lead to unphysical results, such as negative lifetimes or cross-sections,
or lack of unitarity depending on how one defines things.

Let us now assume that the superconvergence equation (4.11) holds. Then one obtains

indeed
- = _ + _ -
auav L 8xo)ET + 0(-xo)E7) = e(xo)auavf + 0( xo)aua\)f , (4.12)
using
§(x0)30f - 6(x0)f = 0,
as well as
§'xo)f - 8'(x)Ef =0 .
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INTERIM CUT-OFF METHOD: UNITARY REGULATORS

Because of divergencies, the definition of diagrams given in Section 2 may be meaning-
less. Moreover,the propagators may not satisfy the Kallén-Lehmann representation because
of lack of superconvergence (see Section 4). To avoid such difficulties we introduce what
we will call unitary regulators. This regulator method works for any theory in the sense

that it allows a proper definition of all diagrams and is moreover very suitable in
comnection with the proof of unitary, causality, etc. It fails in the case of Lagrangians
invariant under a gauge group, for which we will later introduce a more sophisticated
method.

The prescription is exceedingly simple: construct things so that any propagator is
replaced by a sum of propagators. The extra propagators correspond to heavy particles,
and coefficients [the a; in Eq. (4.3)] are chosen such that the high momentum behaviour
is very good. This is achieved as follows. Introduce in the original Lagrangian £,

Eq. (2.1), sets of regulator fields w? and ¢i in the following way:

T _ % e A A ; A A A
£* = wivijwj + 2: a,v; (V+M ]ijwj + ¢i“ij¢j + 2; bx¢i(w +m )ij¢j +
X

+ EIEL* ) AT T W', o T @AJ : Y

The coefficients a, and bl and the mass matrices MA and mx must be chosen so as to assure

the proper high momentum behaviour.

The propagators for the regulating fields wx are

RA

_ -1 Ay=1
A N ALbHE (5.2)

Because in the interaction Lagrangian ¢ is everywhere replaced by ¢ + 2 wk (similarly w*

and ¢), only the following combination of propagators will occur in the diagrams,
1 1 1
VI La W R
A

Choosing the appropriate coefficients and mass matrices all diagrams will become finite.
If every eigenvalue of the mass matrix is made very large, diagrams that were finite

before the introduction of regulators will converge to their unregulated value.

EXAMPLE 5.1 Charged scalar particles with ¢* interaction

N S 2 U A CHEE R O VAR S (R e MR R (5.4)
Y propagator: 1 _1_ . (5.5)

) 2mt k* +m?
y! propagator: 1 L . (5.6)

"Mt K v M



- 24 -

The combination occuring in the diagrams is

1 M?

(2m*i (k2 + m¥) (k2 + m? + M?) (5.7)

This behaves as k™" at high momenta. The diagrams shown in Example 2.2.1 are now finite

for large but finite M.
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CUTTING EQUATIONS

6.1 Preliminaries

In order to keep the work of this section transparent, we will suppress indices,
derivatives, etc. In particular, for vertices we retain only a factor (2m)“ig in momentum
space, that is ig in coordinate space. There is no difficulty whatsoever in reintroducing
the necessary details.

It is assumed that diagrams are sufficiently regulated, so that no divergencies occur.

The starting point is the decomposition of the propagator into positive and negative
energy parts

+ -
A3 x) = H(Xo)l\ij x) + 9(-Xn]Aij ) (6.1)
+ - 1 ikx " 2
5560 = G f d ke"Xe(tk Jo(k?) (6.2)
with x = X5 - Xj' Here we used the notation Aij(x) = AFij(Xi - xj).
In view of the reality of the spectral functions p we have Aij = (Aij)*. Also
+ o _ .3
Aij = Aji . (6.3)
Consequently
Bro o= B(X. - X.)AL. + 6 At 4
ij = (Xi XJ) ij (XJ Xi) ij 6.4)
As usual

eirx 1 if x>0

l [o o]
S(X):HJdTT-15=

0 if x4 <0 (6.5)

6(x) + 6(~x) =1 .

The representation (6.5) can be verified by choosing the integration contour with a large

semi-circle in the upper (lower) complex plane for x, positive (negative).

Consider now a diagram with n vertices. Such a diagram represents in coordinate
space an expression containing many propagators depending on arguments X,, ..., X,. We

will denote such an expression by

F(X;, X,y s0sy Xp) -+

For example, the triangle diagram represents the function:

X7

X X3

F (x1, X2, x3) = (ig)3As1823012 « (6.6)
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Every diagram, when multiplied by the appropriate source functions and integrated over all
x contributes to the S-matrix. The contribution to the T-matrix, defined by

S=1+iT (6.7)

is obtained by multiplying by a factor -i. Unitarity of the S-matrix implies an equation
for the imaginary part of the so defined T matrix

T-1h=irT. (6.8)
The T-matrix, or rather the diagrams, are also constrained by the requirement of causality.
As Yet nobody has found a definition of causality that corresponds directly to the intuitive
notions; instead formulations have been proposed involving the off-mass-shell Green's
functions. We will employ the causality requirement in the form proposed by Bogoliubov that
has at least some intuitive appeal and is most suitable in connection with a diagrammatic
analysis. Roughly speaking Bogoliubov's condition can be put as follows: if a space-time
point x; is in the future with respect to some other space-time point Xp, then the diagrams
involving x; and x» can be rewritten in terms of functions that involve positive energy

flow from x, to x, only.

The trouble with this definition is that space-time points cannot be accurately pin-
pointed with relativistic wave packets corresponding to particles on mass-shell. Therefore
this definition cannot be formulated as an S-matrix constraint. It can only be used for

the Green's functions.

Other definitions refer to the properties of the fields. In particular there is the
proposal of Lehmann, Symanzik and Zimmermann that the fields commute outside the light cone.
Defining fields in terms of diagrams, this definition can be shown to reduce to Bogoliubov's
definition. The formulation of Bogoliubov causality in terms of cutting rules for diagrams

will be given in Section 6.4.

6.2 The largest time equation

Let us now consider a function F(x;, X,, ..., Xp) corresponding to some diagram.
We define new functions F, where one or more of the variables x,, ..., X, are underlined.
Consider

F(X,5 X5 oves Xi, «oes Xj5 enes Xp) - (6.9)

This function is obtained from the original function F by the following:

i) A propagator Aki is unchanged if neither X} DOT X, are underlined.
ii) A propagator Aki is replaced by A;i if Xp but not x; is underlined.
iii) A propagator Aki is replaced by Aii if X5 but not Xy is underlined. , (6.10)
iv) A propagator &, ; is replaced by Aii if X and.xi are underlined.

v) For any underlined x replace one factor i by -i. Apart from that,

the rules for the vertices remain unchanged. /

Equations (6.1) and (6.4) lead trivially to an important equation, the largest time

equation. Suppose the time Xj, is larger than any other time component. Then any function
F in which X, is not underlined equals minus the same function but with X; now underlined
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F(Xy, vooy Xiy veey Xjs vees xp) = “F(Xy, «0es X, vovs Xjy eees Xy) - (6.11)

The minus sign is a consequence of point (v). In view of what follows it is useful to
invent a diagrammatic representation of the newly-defined functions:

Any function F is represented by a diagram
where any vertex corresponding to an under-

lined variable is provided with a circle.

EXAMPLE 6.2.1 1f F(x;, X2, X3) is given by Eq. (6.6) then
. 3 .+ * -
F(x1, X2, Xa) = (ig)’ 831823432 (6.12)

The corresponding diagram is:

X2

X, X3

If the time component of x3 is largest we have, for instance:

A A -

From such a diagram it is impossible to see if a given line connecting a circled to
an uncircled vertex corresponds to a 5" or &7 function. But due to Eq. (6.2) the result
is the same anyway. The important fact is that energy always flows from the uncircled to
the circled vertex, because of the & function in Eq. (6.2). Of course there is no restric-

tion on the sign of energy flow for lines connecting two circled or two uncircled vertices.

6.3 Absorbtive part

To obtain the contribution of a diagram to the S-matrix the corresponding function
F(xl, ..., X;) must be multiplied with the appropriate source functions for the ingoing
and outgoing lines and integrated over all X;- For instance, the function F(xi, ..., Xs)

corresponding to the diagram:

must be multiplied by
ip;x; ip,Xxg -ik;x,; -ikyx
P1Xy 1P2Xs 1X3 2Xy

and subsequently integrated over Xi, ..., Xs.
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The restriction that Eq. (6.11) only holds if X;0 is larger than the other time
components makes it impossible to write down the analogue of Eq. (6.11) in momentum space.

We will now write down an equation which follows directly from the largest time equa-
tion, but holds whatever the time ordering of the various X, Thus consider a function

F(xy, <.+, Xp) corresponding to some diagram. We have

Z F(X1s vees Xiy oens X{s ey X) = 0 . (6.13)
underlinings

The sumation goes over all possible ways that the variables may be underlined. For
instance, there is one term without underlined variables, n terms with one underlined
variable, etc. There is also one term, the last, where all variables are underlined.
Under certain conditions, to be discussed in Section 7, that tem is related to the first
term

F(xy, X5, +ovy Xg) = F(xg, X,, e xp T (6.14)

The proof of Eq. (6.13) is trivial. Let one of the x, say X;5 have the largest time
component. Then on the left-hand side of Eq. (6.13) any diagram with X; not underlined
cancels against the term where in addition X4 is underlined, by virtue of the largest
time equation.

Now we can multiply Eq. (6.13) by the appropriate source factors and integrate over
all x. We obtain a set of functions F depending on the various external momenta and
further internal momenta (loop momenta). Here, the bar on F denotes the Fourier trans-

- + .
form. The functions F are composed of A™, A and A* functions

t 21 R m 1(at 2 4 o
B0 = 57 0Ck) [ ds'o(s)80¢ + 5, (6.15)
azo
Sl astors? 1 _ .
Rl e (6:10)

azo

We now observe that in the resulting equation many terms will be zero, due to conflicting
*
energy 6 functions. Take, for example, a diagram ) with one underlined point which is not

comnected to an outgoing line:

*) In this and in the following diagrams, incoming particles are at the left, outgoing at
the right (energy flows in at the left, out at the right).
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Because of the 8 functions in the A” [see Eq. (6.15)], energy is forced to flow towards the
circled vertex. Since energy conservation holds in that vertex this is impossible and we
conclude that this diagram is zero. The same is true if vertex 5 is circled instead.
Further, if the momenta p; and p, represent incoming particles, which implies energy

flowing from the outside into vertices 1 and 6, then alsc the diagrams with vertex 1 and/or
vertex 6 circled are zero. Also the diagram with 2 and 5 circled is zero, even if now energy
may flow in either direction between 2 and 5, because all other lines ending in 2 or 5

force energy flow towards these vertices. We thus come to the following result.

A diagram containing circled vertices gives rise to a non-zero contribution if the
circled vertices formm connected regions that contain one or more outgoing lines. And also
the uncircled vertices must form connected regions involving incoming lines.

Thus, for example:

~J

T
6 5 4
is zero because in vertex 4 we have a conflicting situation. Examples of non-zero
diagrams are:

Note that an ingoing line may be attached to a circled region.

Since the circled vertices form connected regions we may drop the circles and indicate
the region with the help of a boundary line:

. al

Here is an example of another diagram:

b— = €l

Note that no special significance is attached to the cutting of an external line.
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Taking the above into account, Eq. (6.13) now reduces to

F(Kyy oovs k) + FCKyy veey ko) = - Y Bl e k) (6.17)

cuttings

Here F is the Fourier transform of the function F without underlinings, % the Fourier
transform of the function F with all variables underlined. The functions E. correspond to
all non-zero diagrams containing both circled and uncircled vertices. They correspond to
all possibie cuttings of fhe original diagram with the prescription that for a cut line the
propagator function A(k) must Be replaced by Ai(k) with the sign such that energy is forced
to flow towards the shaded region. Equation (6.17) is Cutkosky's cutting rule.

- Remembering that the T-matrix is obtained by multiplying by -i, we see that Eq. (6.17)
is of exactly the same structure as the unitarity equation (6.8). There is one notable
difference: Eq. (6.17) holds for a single diagram, while unitarity is a property true for
a transition amplitude, that is for the sum of diagrams contributing to a given process.

Equation (6.17) holds for any theory described by a Lagrangian, whether it is unitary
or not. The Feynman rules for % are, however, different from those for TT (Section 2.6).
Therefore, if Eq. (6.17) is truly to imply unitarity a number of properties must hold.
This will be discussed later.

6.4 Causality

Again consider ény diagram, that represents a function F(xl, +++, Xp). Take any two
variables, say X5 and Xj‘ Let us suppose that the time component of x. is larger than Xi,»
The following equation holds independently of the time ordering of the other time
components

z: F(Xy5 ovvy Xjs eves Xp) =0 if  Xip < Xj, - (6.18)
underlinings
except Xy

Again terms cancel in pairs. We do not need the diagrams where X3 is underlined, because
we know for sure that X5, is never the largest time.

Equation (6.18), when multiplied by the appropriate source functions and integrated
over all x except X3 and Xj’ is the single diagram version of Bogoliubov's causality condi-

tion. His notation is

825 a 88 §S .
S + =0 f x. <x; . 6.19
ety © Sy Sk x5, <%, (6.19)

Here the first temm describes cut diagrams (including the case of no cut at all -~ the
unit part of §) with X3 and x. not circled, and the second term denotes diagrams with x.
but not X5 circled. S is the S-matrix obtained from t?e conjugate Feynman rules (i.e.
all vertices underlined), and will often be equal to §'. Further g(x) is the coupling

constant, made into a function of space-time.
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Similarly we can consider the case where X502 on' Then we have an equation where
now xj is never to be underlined. Separating off the term with no variable underlined we

may combine equations, with the result

F(xy, X, «vey Xp) = -8(Xj, ~.Xi,) PF(Xy, evey Xk eees Xp) -
] =X
i

-68(Xio - Xjo) Z " F(Xyy erey Xks cees Xp) - (6.20)
j

The prime indicates absence of the term without underlined variables. The index i implies
absence of diagrams with X, underlined.

The summations in Eq. (6.20) still contain many identical terms, namely those where
neither X; mor xj are underlined. Also these may be taken together to give

F(x;, «e0y Xp) = - z:' F(X,, +e0s Xp) - B(on - Xi,) 2: F(X;, -vvy Xp) -
ij : . j underlined
1 not
- 8(xi, - Xj,) Y F(X,5 +vey Xp)» (6.21)
i underlined
j not

The first term on the right-hand side of Eq. (6.21) is a set of cut diagrams, with X
and Xj always in the unshaded region. They represent the product SS with the restriction
that X3 and x. are vertices of S. We can now apply the same equation, with the same points
X; and x., to the diagrams for S in this product. Doing this as many times as necessary,
the right-hand side of Eq. (6.21) can be reduced entirely to the sum of two terms, one
containing a function 6(xj, - xj,) multiplying a function whose Fourier transforms contains
6 functions forcing energy flow from i to j, the other containing the opposite combination.
This is precisely of the form indicated in Section 6.1.

Let us now return to Eq. (6.21). Introducing for 6 the Fourier representation
Eq. (6.5), we can see 8 as another kind of propagator conmecting the points Xy and xj.
Multiplying by the appropriate source functions and integrating over all x; we obtain the

following diagrammatic equation:

]
. 2 2 1
1 2
O--@ - - =

The blob stands for any diagram or collection of diagrams. The points 1 and 2 indicate
two arbitrarily selected vertices. The "self inductance" is the contribution due to the

8 function, and is obviously non-covariant:
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K~ 1 1

m ot o1 S M (6.23)

Of course, in the diagrams on the right-hand side summation over all cuts with the points
1 and 2 in the position shown is intended.

This is perhaps the right moment to sumarize the Feymman rules for the cut diagrams.
As an example we take the simple scalar theory:

N
o——o/ Propagator in unshadowed region: 1 L

M1 k% + m? - ie

— Propagator in shadowed region: S - 1 b (6.24)
(2m*i k® +m? + ie
. 1
Cut line: ——— 6(ko)S (k2 + m?) .
k (2m)? /
Vertex in unshadowed region:  (2m)"*ig .
Vertex in shadowed region: -(2r)%ig .

For a spin-Y, particle everything obtains by multiplying with the factor -iyk + m:

1 -iyk +m h
K 2m*i k* + m? - ie
_ 1 -ivk + m
k (2m)*i k? +m? + ie
L (6.25)
- # (-ivk + m)8(-ko)8(K? + m?)
- (21)3 (-iyk + m)8(ko)S(K> + m?) .
T

I

The most simple application concerns the case of only one propagator connecting two sources.
We will let these sources emit and absorb energy, but we will not put anything on mass-
shell. Indeed, nowhere have mass-shell conditions been used in the derivations.
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Thus consider:

J J
‘x—k——x2 N i3 0 s J: )

—

with J, and J, non-zero only if ko > 0. The unitarity equation (6.17) reads:

ey o -

The complex conjugation does apply to everything except the sources J. The second term on
the right-hand side is zero, because of the condition ko > 0. The equation becomes

wi .1 w1y gl 2en® 2 2]
J[(ZW) 1k2+m2- ie (27) 1kz+m2+i&:]J J[+ (zm? 6(ko)S(k* + m*) |J .

Note that the vertex in the shadowed region gives a factor -(2m)*i. With
1 _ofl .
T P(g] + ird(a) ,

we see the equation holds true.

Also Eq. (6.22) can be verified:

p AP
b;,\

—x = — -
k-p

We now obtain (note the minus sign for vertex in shadowed region)

. 1 _ (2mEi?
2my* =
(2mi k? +m? - ic (2w)321rix

X'J’ dpo{_—};(;—l_—ig 8(ko - po)o[(k - p)* + m*] + Do E = 00k + po)S[(k - p)? + mz]}

p=0.

The four-vector po has zero space components [see expression (6.23)]. The pp integration
is trivial and gives the desired result.

6.5 Dispersion relations

Equations (6.22) are nothing but dispersion relations, valid for any diagram. Let 7
be the fourth component of the momentum flowing through the self-inductance. Let f+(T) be
the function corresponding to the cut diagrams excluding the t-line in the second term on
the right-hand side of Eq. (6.22), with T directed from 1 to 2. Similarly for £ (1.
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If f and £’ represent the left-hand side and the first term on the right-hand side,
respectively, we have

[e<]

I j O f Ity . (6.26)

2r1 -T - 271 T - i€

—-0a -0

Of course, all the functions f depend on the various external momenta. The function f+(T)
will be zero for large positive T, namely as soon as T becomes larger than the total amount
of energy flowing into the diagram in the unshadowed region. Similarly f (1) is zero for

large negative Tt.

The dispersion relations Eq. (6.26) are very important in connection with renormaliza-
tion. If all subdivergencies of a diagram have been removed by suitable counter terms,
then all cut diagrams will be finite (involving products of subdiagrams with certain finite
phase-space integrals). According to Eq. (6.26) the infinities in the diagram must then
arise becausc of non-converging dispersion integrals. Suitable subtractions, i.e. counter

terms, will make the integrals finite.

It may finally be noted that our dispersion relations are very different from those
usually advertised. We do not disperse in some external Lorentz invariant, such as the

centre-of-mass energy or momentum transfer.
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UNITARITY

If the cutting eqdation (6.17), diagrammatically represented as:

O-fO--¢

corresponding to T - T+ = iTTT, is to imply unitarity, the following must hold:

1) The diagrams in the shadowed region must be those that occur in S+;
ii) The A" functions must be equal to what is obtained when summing over intermediate
states.

Referring to our discussion of the matrix S+, in Section 2.6, we note that point (i) will
be true if the Lagrangian generating the S-matrix is its own conjugate.

Point (ii) amounts to the following. The two-point Green's function, on which the
definition of the S-matrix sources was based, contained a matrix K. seo Eq. (2.12) and

ij
f0110w1ng In considering S+S one will encounter (particle-out of S, particle-in of S ):

t .
5 — > y K‘.;j (103 (@) I3 (K, (-K) (7.1)
k a

—

in the sum over intermediate states. The K are from the propagators attached to the
conjugate e have k ( k) = Klm(k] Also if J(k)K(-k) ~ J(k)
then K (- k)J nJY, showing that J and J* are the approprlate eigen currents of S and s,

sources Because of £ = (L)

If unitarity is to be true we require that this sum (7.1) occurring in S+S equals the
matrix Kim occurring when cutting a propagator.

The proof of this is trivial. Suppose K . is diagonal with diagonal elements X The

ij
current defining cquations (2.13) and (2.14) imply that the currents are of the form

0
J@ 1Vr,

There are no currents corresponding to zero eigenvalues. Obviously

) J@*5@) 1 (7.2)

a

and this remains true if one provides the currents with phase factors, etc.
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For spin-Y% particles things are slightly more complicated, because of v* manipulations.
For instance, one will have

+

K (-K)v" = v*K(K) . (7.3)
Also the normalization of the currents is different. One finds the correct expression when
summing up particle-out/particle-in states, but a minus sign extra for antiparticle-out/

antiparticle-in states. This factor is found back in the prescription -1 for every fermion
loop. A few examples are perhaps useful.

EXAMPLE 7.1
€= -0+ my + 3 6% - w26 + gl -

Propagators and vertices have been given before. The appropriate source functions and
related equations are given in Appendice A.

There are four two-point Green's functions:

- -ivk + 2k
)(—T—-——-)( ua(k) ki_Y,;m_Zm Ua(k) mg- N a = 1, 2 N

-a ivk +m _a 2kg _
)(—-——-T(-—)( -u (k] mu (k:) Em—g ) a=23,4.

Note the minus sign for the incoming antiparticle wave-function.

Scalar particle self-energy (we write also § functions):

P
_B: :‘S_ -g2§ (k - k') d 'iYR+ m _iY(P -k +tm
g7 0y J‘ 4Pp2+m2_i8 (p_k)2+m2_i€'

Note the minus sign for the closed fermion loop. Cut diagram ~remember -(2m)*i for vertex

in shadowed region J:

% -(20)%g?8u(k - K') [ dup(-ivp + mo(po)s(p? + m?) x
x [-iv(p - K) + m]o(ke - podsL (@ - K2 + m?_ .
Decay of scalar into two fermions:

P,
_‘-‘:C (2m*ig /pods G ()6 Ck - p - q) -
9
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The superscript o now indicates antiparticle spinor. The complex conjugate, but with k’
instead of k, is

-(2m) *ig/Tpoqo 0*Qup)Su(k’ - p - q) .

The product of the two summed over intermediate states is

d3P d3q 8w (1 W] 1 . -1 .
k - p - )8y (k" - p - — (-iyp + m) — (1yq + .
(2“) 32p0 (2,”) 32q0 b ( p q) 4 ( I q.) Zpo ( Y7 e ( Y4 m)

(2m) *g%4poqe

Note the minus sign for the g-spinor sum.

Since pg = /32 + m? we have
p P

d
SR = [ apeo)s® + m)

and similarly for q. The q integration can be performed
-(2n)2g78u (k - K') [ dupo(po)s(pF + m)8(ka - po) -iv( - K) + o [(p-K) P em (-ivp + )

which indeed equals the result for the cut diagram. The minus sign for the closed fermion
loop appears here as a minus sign in front of the antiparticle spinor summation. One may
wonder what happens in the case where an antiparticle line is cut, but when there is no
closed fermion loop. An example is provided by the antiparticle self-cnergy as compared

to particle sclf-energy:

Somchow there must also be an extra minus sign for the first diagram. Indeed it is there,
because the first diagram contains an incoming antiparticle whosc wave-function has a

minus sign.

All this demonstrates a tight interplay between statistics (minus sign for fermion
loops) and the transformation properties under Lorentz transformations of the spinors.
The latter requires the normalization to energy divided by mass as given before, and also

relates to the minus sign for antiparticle source summation.

If an integer spin ficld is assigned Fermi statistics in the form of minus signs for

line interchanges then unitarity will be violated.



INDEFINITE METRIC

If the numerator K of a propagator has a negative eigenvalue at the pole then unitarity
cannot hold because Eq. (7.2) cannot hold. Unitarity can be restored if we introduce the
convention that a minus sign is to be attached whenever such a state appears. It is said
that the state has negative norm, and transition probabilities as well as cross-sections and
lifetimes can now take negative values. This is, of course, physically unacceptable, and
particles corresponding to these states are called ghosts. In theories with ghosts special
mechanisms must be present to assure absence of unphysical effects. In gauge theories
negative metric ghosts occur simultaneously with certain other particles with positive
metric, in such a way that the transition probabilities cancel. Also the second type of

particle, although completely decent, is called a ghost and has no physical significance.
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DRESSED PROPAGATORS

The perturbation series as formulated up to now will in general be divergent in a
certain region. Consider the case of a scalar particle interacting with itself and
possibly other particles. Let &,(k - k’)I'(k*) denote the contribution of all self-energy
diagrams that cannot be scparated into two pieces by cutting one line. These diagrams arc
called irreducible self-cnergy diagrams. The two-point Green's function for this scalar
particle is of the form

—(2m) 88, (k - k')AF(k) . (9.1)

The function BF is called the dresscd propagator. This in contrast to the propagator of
the scalar particle, called the bare propagator. If we denote this bare propagator by AF
we find

AF = AF + AFFAF + AFFAFFAF + ... (9.2)

Summing this series
F-T=TA ©.3)

corresponding to the diagrams:

v ) + D)+

wherc the hatched blobs stand for the irreducible self-cnergy diagrams.

The function I is proportional to the coupling constant of the theory. It is clear
that the perturbation series converges only if Ap < 1. But if bg has a pole for a certain
value of the four-momentum then this serics will certainly not converge near this pole,
unless I happens to be zero there. And if we remember that the definition of the S-matrix
involves precisely the behaviour of the propagators at the poles we sce that this problem

necds discussion.

There are two possible solutions to this difficulty. The simplest solution 1is to
arrange things in such a way that indeed T' is zero at the pole. This can be done by
introducing a suitable vertex in the Lagrangian. This vertex contains two scalar fields

and equals minus the value of T at the pole. Tor instance, suppose

1 1

A, = . 9.4
Fooem*i k¥ +m? - ie (9-4)

The function TI'(k?) can be expanded at the point k* + m*> = 0
Pk) = o + (K2 + m2)Ty * Tp(k) - (9.5)

[y and T; are constants, I'» is of order (k* + m?)?. Introduce in the Lagrangian a tcrm
that leads to the vertex:
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— =g + (2 + m®)Iy] . (9°6)

Instead of T we will now have a function I'!:

I" will be of order (k* + m?)? and the series (9.2) converges at the pole. Actually this
reasoning is correct only in lowest order because the new vertex can also appear inside the
hatched blob. Through the introduction of further higher order vertices of the type (9.6)

the required result can be made accurate to arbitrary order.

This procedure, involving mass and wave-function renormalization corresponding to T'g
and I'y type terms, respectively, embodies certain inconveniences. FPirst of all, it may be
that Ty and I'y contain imaginary parts. This occurs if the particle becomes unstable
because of the interaction. Such truly physical effects are part of the content of the
theory and the above neutralizing procedure cannot be carried through. Furthermore, in
the case of gauge theories, the freedom in the choice of temms in the Lagrangian is
limited by gauge invariance, and it is not sure that the procedure can be carried through

without gauge invariance violation.

An alternative solution is to usc directly the summed expression (9.3) for the
propagators in the diagrams. These diagrams must then, of course, contain no further
internal self-cnergy parts, that is they must be skelcton diagrams. The function T
occurring in the propagator must then be calculated with a certain accuracy in the
coupling constant. For instance, in lowest order for any Green's function the recipe is
to compute tree diagrams using bare propagators. In the next order there are diagrams
with one closed loop (no self-energy loops) and bare propagators, and tree diagrams with
dressed propagators where T is computed by considering one-closed-loop self-energy

diagrams.

It is clear that this recipe leads to all kinds of complications, which however do not
appear to be very profound. Mainly, kinematics and the perturbation expansion have to be
considered together. With respect to renormalization the complications arc trivial,
because then only thec behaviour of the propagator for very large k* is of importance.

But then the series expansion Eq. (9.2) is permitted.

For the rest of this section we will consider the implications of the use of dressed

propagators for cutting rules.

As a first step we note that the dressed propagator satisfies the Kallén-lLehmann
representation. This follows from the causality relation Eq. (6.21), or in picture Eq. (6.22)
for the two-point Green's function, where x; and X, are taken to be the in-source and out-
source vertices, respectively. The first tem on the right-hand side of these equations is
then zero. Indeed, this gives precisely Eq. (6.1), the decomposition of the (dressed) pro-
pagator into positive and negative frequency parts. The derivation of the cutting relations,

which is based on this decomposition goes through unchanged.
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However, with respect to unitarity there is a further subtlety. Using dressed
propagators the prescription is to use only diagrams without self-energy insertions, that
is skeleton diagrams. Now the A" function corresponding to a dressed propagator is
evidently obtained by cutting a dressed propagator. The dressed propagator is a series,
and cutting gives the result (we use again the example of a scalar particle)

Re ZF = ZF(—Re F]Z; + pole part 9.7
or
- _ 2 2
Re L, = Re L - Re T LA M) g
F Y. 2 2 . 4 8.2 2 . ) 202m iz °
(2m)ik" +m" +ir/(2m)"]  (@m)7lk" +m® o+ ir/(2m 7| (2m)

where we used

k2 + m? + iT/(2m" ~ Z(K* + M® - i) + 07 (k% + M¥)2_ (9.9)

near the pole. Now Re ' is obtained when cutting the irreducible self-energy diagrams.
In diagrammatic form we have:

It
+

(9.10)

4

pole part

-Rel

Note the occurrence of dressed propagators in the second term on the right.

The subtlety hinted at above is the following. The matrix S contains skeleton
diagrams with dressed propagators. Cutting these diagrams apparently results in expressions
obtained when cutting self-energy diagrams. Indeed, these arise automatically in STS. If

S contains skeleton diagrams of the type:

then STS contains the type:

Even if S and S+ contain no reducible diagrams, the product s'S nevertheless has self-
energy structures. They correspond to what is obtained by cutting a dressed propagator.
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CANONICAL TRANSFORMATIONS

10.1 Introduction

In this section we study the behaviour of the theory under field transformations.
Fields by themselves are not very relevant quantities, from the physical point of view.
The S-matrix is supposed to describe the physical content of the theory, and there is no
direct relation between S-matrix and fields. Given the Green's functions fields may be
defined; the Green's functions, however, can be considered as a rather arbitrary exten-
sion of the S-matrix to off-mass-shell values of the external momenta. Within the frame-
work of perturbation theory it is possible, up to a point, to define the fields by
considering those Green's functions that behave as smoothly as possible when going off mass-
shell. For gauge theories this is still insufficient to fix the theory, there being many
choices of fields (and Green's functions) that give the same physics (S-matrix) with
equally smooth behaviour. For gravitation the situation is even more bewildering, up to
the point of frustration.

In the study of field transformations path integrals have been of great heuristic
value. The essential characteristics will be shown in the next section.

10.2 Path integrals

A few simple equations form the basis of all path integral manipulations, and will be
listed here.

Let o be a complex mumber with a positive non-zero imaginary part. Furthermore,
Z =x + iy is a complex variable. We have

. * >3 o] . 2+ 2
H dze 2 % 2 f dx J dye ) (10.1)
Introducing polar coordinates
X L2 .
= 27 j elOtr rdr = %; . (10.2)
0

Incidentally, realizing that the expression (10.1) is a pure square

< iox? T
erxe - /3. (10.3)

-0

Let now z be a complex n-component vector, and A a complex n x n matrix. The
generalization of Egs. (10.1), (10.2) is

i(z*,Az) P40

J‘dZI e dZne = m ) [10-4)
where
- ©
i dz. = . . .= X, iy. . 10.5
J 925 fdefdyJ’ T T (10-5)
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Equation (10.4) follows trivially from Eqs. (10.1), (10.2) in the case where A is diagonal.
Next note that the integration measure is invariant for unitary transformations U. To see
this write

U=A+iB,

where A and B are real matrices. The fact that UUT =1 implies
M+B=1, Bi-AB=0, (10.6)

where the wiggle denotes reflection. If now z’ = Uz then x’ = Ax - By and y' = Ay + Bx.
That is, the 2n dimensional vector x, y transforms as

x! A -BY(x
y' B ANy
The determinant of this 2n x 2n transformation matrix is 1. In fact, the matrix is

orthogonal, because multiplication with its transpose gives 1, on account of the iden-
tities (10.6).

Because of the invariance of both the integration measure as well as the complex
scalar product under unitary transformations, we conclude that Eq. (10.5) holds for any
complex matrix A that can be diagonalized by means of a unitary transformation and where

all diagonal matrix elements have a positive non-zero imaginary part.

Consider now a path integral involving a Lagrangian depending on a set of real fields
Ai (see Section 3)

iS(A
fﬁ)Aiel W (10.7)
where the action S is given by

S(A) = f duxC(A) . (10.8)

Suppose we want to use other fields Bi that are related to the fields Ai as follows
Ai(x) = Bi(x) + fi(x, B) . (10.9)

The fi are arbitrary functions [apart from the fact that Eq. (10.9) nust be invertible].
They may depend on the fields B at any space-time point including the space-time point x.

According to well-known rules

dA,
_ 1

or

afi(B)‘
DA, = det 655+ _GTf iDBJ. . (10.11)
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The determinant is simply the Jacobian of this transformation. It is very clumsy to work
with this determinant, especially if we realize that it involves the fields at every space-
time point separately. Fortunately there exists a nice method that makes things easy.

Let ¢ be a complex field. According to Eq. (10.4) we have

= (x cj Do , (10.12)

where C is an irrelevant numerical factor, and

S(6) = jdqxcp (10.13)

i'1j%

However, Eq. (10.11) involves a determinant, while Eq. (10.12) is for the inverse of a
determinant. We must invert Eq. (10.12).

The expression on the right-hand side of Eq. (10.12) is a path integral of the type
considered in Section 3. It involves a complex field ¢ as well as fields B that appear
simply as sources. The "action" is [see Eq. (10. ll)]

S(¢) = J dqubI(XNi(X) + J'dux duX'¢;(X)Y-lj (=, x', B)¢j (x") (10.14)

with

Yi500 X7, B) = Sf; (x, B)/8B; (x') . (10.15)

The diagrams corresponding to Eq. (10.12) involve a ¢-propagator that is simply 1. There
are only vertices involving two ¢-lines:

—.

P S
(2m*i i

(2m)*iY(k', k, B) .

:

The blob contains B-fields, but we have not indicated them explicitly. The only diagrams
that can occur are closed ¢-loops involving one, two or more Y-vertices. We will write
down the first few:

Zeroth order in Y:

First order

Second order : —_
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The explicitly written factor ¥, is a combinatorial factor. It follows also by treating
the path integral along the lines indicated in Section 3. In fact, it is easily
established that in nth order there will be a contribution of n times the first-order loop
with a factor 1/n! Similarly for the two-Y loop. In this way, it is seen that the whole
series adds up to an exponential, with in the exponent only single closed loops

is
_[5D¢e = Cexp (I) (10.16)

This can be easily inverted simply by replacing T by -T, that is by the prescription that
every closed ¢-loop must be given a minus sign. We so arrive at the equation

) iS(A) . ~ iS(¢)+is' (B
fﬁJ)Aie - J' DB, Jf Doy e (8) (10.17)

with the additional rule that every closed ¢-loop must be given a minus sign. S(¢) is
given in Eq. (10.14). Finally S'(B) follows by substituting the transformation Eq. (10.9)
into the action for the A-field, Eq. (10.8)

s'(B) =sfB + £(B)] . (10.18)

Summarizing, the theory remains unchanged if a field transformation is performed, provided
closed loops of ghost particles (with a minus sign/loop) are also introduced. The vertices

in the ghost loop are determined by the transformation law.

In the following sections we will derive this same result, however without the use of
path integrals.

10.3 Diagrams and field transformations

In this section we will consider field transformations of the very simplest type.

This we do in order to make the mechanism transparent.

Consider the Lagrangian

(o, o, A) = 3 0;Vy505 * %Ai(a2 - )AL+ £ (8) + Jy0y + A, (10.19)

We assume V to be symmetric. CI is any interaction Lagranglan not involving the A-fields;
the latter are evidently free fields. The diagrams corresponding to this Lagrangian are
well defined; if necessary use can be made of the previously-given regularization
procedure. The ¢- and A-propagators are:
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— o -——lq;— ( )i
(2m)*1 ij
(10.20)
) 1 833 .
(2m*i K2 +m? - ie
The vertices stemming from EI involve ¢-lines only.
We want to study another Lagrangian £/ obtained from [ by the replacement
by > ¢y ¥ aijAj s (10.21)

where o is any matrix. The A remain unchanged.

THEOREM  The Green's functions of the new Lagrangian ' are equal to those of the original
Lagrangian. In particular, A remains a free field, that is all Green's functions involving
an A as external leg are zero, except for A-propagators comnecting directly two A-sources.

The proof of this theorem is very simple, and consists mainly of expanding the quad-
ratic part of £'. We have (dropping all indices)

£ = % Vo + oVoA + %-A&VOLA + LA - nDA+ L (6 + ah) + J(o + ) + HA . (10.22)

Here the wiggle denotes reflection.

Rather then trying to invert the complete matrix in the quadratic part we will treat
as the propagator part only the terms ¢V¢ and A(3% - m?)A. The remaining terms are treated
as interaction terms. We obtain the following A-¢ vertices:

L e ] CORTIN
(10.23)

e — e — — ] (Zn)“i(&va)ij .

They will be called '"special vertices". In addition to these there will be many vertices
involving A-lines, because of the replacement (10.21) performed in the interaction
Lagrangian.

Consider now any vertex containing an A-field (excluding the A-sources H). Because
the A-line arises due to the substitution (10.21) there always exists a similar vertex with
the A-line replaced by a ¢-line. But the A-line can be connected to that vertex also after
transformation to a ¢-line via one of the special vertices. The sum of the two possibilities
is zero.

EXAMPLE 10.3.1 In the transformed Lagrangian £’, Eq. (10.22) we have a new vertex

Je (2m)*iJa
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connecting an A-line with the source of the ¢-field. In addition, we have the original
vertex:

Jo— (2my*iJ

and then also the diagram involving one special vertex. The factor V in the vertex cancels:

o — — — —
—y-

against the propagator, leaving a minus sign. The diagram cancels against the previous one.

EXAMPLE 10.3.2  For the two-point Green's function at the zero loop level we have:

ava
*~— — — — —9 <+ *~— — — o — — —o
av vVa
+ & — — —e— o _ _ _eo 4 temms with o*, etc.
-y

Only the first term survives; all others cancel in pairs.

Diagrams with loops involving A-lines also cancel since they involve vertices already
discussed.

The above theorem can easily be generalized to the case of more complicated transfor-
mations, such as

6> ¢+ £(A)
with f any function of the A fields.

EXAMPLE 10.3.3 Consider the transformation
95 7 05 * oy
The following special vertices are generated [we leave the factors (2m)*i as understood_:

~ ~ -

~ -
_.(_____.__ —_—— e — — —
e ~

ava

Again, by the same trivial mechanism as before we have, for example:

- ~
Ja .~ J Va .~
“<--— 4+ el _=p
~ ] ~
~ -V ~
~ ~ o
\\aV Va 7 ~ o -
~ 7 ~
-—— - - + —— - —— =
e VA ~ o 7 ~
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The situation becomes more complicated if we allow the function f also to depend on the ¢-
fields, even in a non-local way.

10.4 Local and non-local transformations

Starting again from the Lagrangian (10.19) we consider now the general substitution
o>+ £(A, ¢) .

We will now have special vertices involving the unspecified function f. The function f
will be represented as a blob with a certain mmber of A- and ¢-lines of which we will

indicate only three explicitly. The propagator matrix V is always there as a factor and
is indicated by a dot. The ¢-line attached at that point will be called the original

$-line of the special vertex.

Now this original ¢-line may be connected to any of the old vertices of the theory

or to another original $-line. Again the cancellation mechanism works.

FXAMPLE 10.4.1

1
@]

f +
- —y- ~~ - - -

No new feature arises in these cases. However, if an original ¢-line is connected to any
of the other ¢-lines of a special vertex (except the fVI vertex that is cancelled out
already as shown above) no cancellation occurs. For example, there is nothing that cancels

the following construction:

Thus we get a non-zero extra contribution only if the original ¢-line is connected to
another ¢-line of the special vertex. All this means that the new Lagrangian contains all

the contributions of the original Lagrangian plus a new kind of diagram where all the
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original ¢-lines are comnected to one of the other ¢-lines of the special vertex. Such

diagrams contain at least one closed loop of special vertices with "wings" of old vertices
as well as special vertices.
EXAMPLE 10.4.2  Some new diagrams:

e
e

/

Considering these diagrams one immediately notices that the factors V in the special
vertices are always multiplied with the propagators -V '. This then gives as net result
the simple propagator factor -1 for the "ghost" connecting the f vertices. See Eq. (10.14).
There is no momentum dependence in that propagator. If now the special vertices are local,
i.e. only polynomial dependence on the momenta and no factors such as 1/k?, then these
vertices can be represented by a point and the closed loop momentum integration becomes the
integral over a polynomial. Within the regularization scheme to be introduced later such
integrals are zero, and nothing survives.

If, however, the field transformation is non-local these new diagrams survive and give

an additional contribution with respect to what we had from the original Lagrangian.

How can we get back to the original Green's functions? At first sight it seems that
we must simply subtract these diagrams, i.e. introduce new vertices in the transformed
Lagrangian that produce precisely such diagrams, but with the opposite sign. This however
ignores the possibility that the original ¢-line of a special vertex connects to any of
these new vertices. The correct solution is quite simple: introduce vertices that repro-
duce the closed loops only, without the "wings", and give each of those closed loops a minus
sign. Thus at the Lagrangian level the extra terms are as depicted below:

Now there is also the possibility that the original ¢-line of a special vertex connects
to these counter loops. In this way counter "winged' diagrams arise automatically and need
not to be introduced by hand.
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EXAMPLE 10.4.5 The following cancellation occurs in case of a Lagragian including counter
closed loops:

ELgE

The crosses denote counter closed loops.

The solution may thus be summarized as follows. Start from a Lagrangian ($). Perform
the transformation ¢i(x) > ¢i(x) + fi(x, $). Add a ghost Lagrangian Eghost' This ghost
Lagrangian must be such that it gives rise to "wingless" closed loops of functions f, with
one of the external lines removed, at which point another (or the same) function f is
attached. The connection is by means of a propagator -1/(27)"*i. Of course, every function

also carries a factor (2m)*i. Further there is a minus sign for every such closed loop.

As indicated, the vertices in such loops are the f with one line taken off.

Symbolically
5fi(X, )
6¢i(x')
Pictorially
£(x, 6) X .C}Z
xl

6f(x, 9)
Ellcon XQ—: o X!

This agrees indeed precisely with the result found with the help of path integrals.

~

It may be that the reader is somewhat worried about combinatorial factors in these
cancellations. A well-known theorem states that combinatorial factors are impossible to
explain; everyone must convince himself that the above ghost loop prescription leads
exactly to the required cancellations. There is really nothing difficult here; we do not
want to suggest that there is. A good guideline is always given by the path integral for-
mulation. Another way is to convince oneself that, for every possibility of special lines
and vertices connecting up, there is a similar possibility arising from the ghost Lagrangian.
That is, the precise factor in front of any possibility is not relevant, as long as it is
known that it is the same as found in the counterpart.
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10.5 Concerning the rigour of the derivations

There is nothing mysterious about the previous derivations -- provided we remember
that we are working within the context of perturbation theory. Thus the transformations
must be such that the new Lagrangian is of the type as described at the begimning. In
particular the quadratic part of the new Lagrangian must be such that propagators exist.
For instance, a substitution of the form ¢ + ¢ - ¢ is clearly illegal. In short, the
canonical transformation must be invertible.

There is a further problem comnected with the ie prescription. The propagators are
not strictly ~V=!, in the notation of the previous section, but have been modified through
the ic addition. The factors V appearing in the special vertices must therefore be modified
also such that the key-relation (-V"!)V = -1 remains strictly true. In connection with
gauge field theory the functions f themselves contain often factors V'!; careless handling
of such factors may lead to errors. As we will see the correct ic prescription for
Faddeev-Popov ghosts can be established by precise consideration of these circumstances.
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THE ELECTROMAGNETIC FIELD

11.1 Lorentz gauge; Bell-Treiman transformations and
Ward identities

The theorem about transformations of fields proved in the foregoing section applies to
any Lagrangian £ and is quite general. We will now exploit its consequences in the case of
the electromagnetic field Lagrangian, in order to derive in particular the so-called
"generalized Ward identities" for the Green's functions of the theory.

We start considering the free electromagnetic field case, since it contains all the
main features of the problems we want to study. This includes the case of interactions
with other particles (e.g. electrons) provided these interactions are introduced in a
gauge-invariant way.

The Lagrangian giving rise to the Maxwell equations is
1 2
P:—._ -
£ 7 (auAv avAn) + AuJu . (11.1)

As is well known, in trying to apply the canonical formalism to the quantization of this
Lagrangian, many difficulties are encountered. Such difficulties are essentially due to
some redundancy of the electromagnetic field variables, meaning that some combination of
them is actually decoupled from the other ones and themselves.

Within the scheme defined in Section 2, to get rules for diagrams and then a theory
from a given Lagrangian, such difficulties manifest themselves in the fact that the matrix

Vij that defines the propagator has no inverse in the case of the Lagrangian (11.1).

To avoid such problems conventionally one adds to the Lagrangian (11.1), with some
motivations, a term —Hg(auAp)z. Then one obtains

v-c-1 (3 A = - o BANE AT, (11.2)

Now the propagator is well defined:

u k \Y 1 Guv
Frmme 1 k2 - 1ie
and we have the vertex:
k 4.3
soareZrennn (@) id ()

This certainly defines a theory, but in fact we have no idea if the physical content is as
that described by the Maxwell equations. This is mainly the subject we want to study now.
In doing that we will encounter many other somewhat related problems which must be solved
vhen constructing a theory for the electromagnetic field. The key to all these problems
is provided by the generalized Ward identities.

In order to derive these identities we add to the Lagrangian (11.2) a free real
scalar field B, coupled to a source JB. We get
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1 1 x
£"(A, B) = - 5 (suA\))2 + JUAU + 5 B(3% - u?)B + JgB . (11.3)

We will now perform a Bell-Treiman transformation. This is a canonical transformation
that is in form also a gauge transformation. Here

A - .
A A -ed B (11.4)

depending on a parameter €. The replacement (11.4) in [, Eq. (11.3), gives up to first
order in this parameter

] _ — ol _
C'(A, - €3 B, B) = ("(A, B) + (3 A)3 5 B - €d BT . (11.5)

As stated, the transformation (11.4) is in form just a gauge transformation

A A+, (11.6)

with A any function of x. Note that the first Lagrangian, Eq. (11.1), apart from the

source term is invariant under such a transformation. On the contrary, the second
Lagrangian (11.2)}, and a fortfori Eq. (11.3), is not gauge invariant because the added term
—V&(BUAM)Z is not. Precisely the source term and this -EQ(BUAU)Z term are responsible for
the difference, in Eq. (11.5), between the original Lagrangian EH(AM’ B) and the transformed
one.

Let us come back to our local canonical transformation {11.4). The difference between

the original and the new Lagrangian gives rise to the following extra vertices:

k

R S T] -E(ZW)“kaU )

(11.7)

= e(Zw)“kqu .

Here the dotted lines denote the B-field, and the short double line at the sources denotes

the gauge factor du appearing in the gauge transformation (11.6) in front of A.

[Hote: A derivative au, acting on a field in an interaction term of the Lagrangian, gives
i times the momentum of the field flowing towards the vertex.

Of course the vertex term e(Zﬂ)“kuJu would give no contribution if the source of the
electromagnetic field Ju were a ''gauge-invariant source", namely if auJu = 0. In the
discussion which follows we want, however, to allow in general also 'non-gauge-invariant
sources", whose four-divergence is different from zero.

As a consequence of the general theorem proved in the foregoing section, the B-field
remains a free field, just as in the theory described by the Lagrangian £". To first

order in €, considering the n-point Green's function with one B source we have:
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In the first diagram the B—Au vertex is followed by a photon propagator. One has:

k

—

= T eey —e(2m) "K%k

1 1. iek
Mo(2m)* k2 pe

Apart from a sign this is precisely the same factor as occurring in the BUBJU vertex
[eiku(ZW)“iJu] and we may use the same notation for it:

— - e— gALIAAAASS = —_— - =

The resulting Ward identities are then:

\_.L \‘* #

This result looks perhaps a little strange, since usually one tends to forget the lines
that go straight through without interaction. As a matter of fact, this is allowed only

in the case of gauge-invariant sources, for which, since then kUJu = 0, we have:

A

Equation (11.8) is an equation for Green's functions. Of course in defining Creen's func-
tions one should not employ particular properties of sources, such as BHJU = 0. As we

will see, the S-matrix will be defined using gauge-invariant sources for the electromagnetic
field, and for such cases the right-hand side of Eq. (11.8) is zero.
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case of no interaction that we are considering.

We remark that the Ward identity, Eq. (11.8), is trivially true as it stands in the
here, for example for the four-point Green's function, we have:
X

Y
N
v

It is in fact sufficient to realize that
X “
- e X
e . o A ’J’
“w - T
LI )
}x = R SN
. f_f ;-\x .') ‘\X
“\‘ ‘ T
(% 1\ ‘\“ \\
‘\s\,)( ““9(
X
) X
- -

way.

The Lagrangian to start from is

It is worth while to note that the above derivation goes through also if electrons, or any
other particles, are present, provided the photon is coupled to them in a gauge-invariant

Let us consider in some details the introduction of the electrens into the theory.

LA, 0, 0, B) = LA, B) - D0 + m)b + dely'ua + T+ W,

boe

where t"(AU, B) is given in Eq. (11.3). The new pileces of this Lagrangian involving the
(11.4) if also the electron field is transformed
—ieeBw

electron ficld, the source terms jcw + &Je excepted, arc invariant under the transformation

= (1 - iecB)y + O(e?) ,
LL N \1’0+i€eB
Then, up to first order in e, we have

= (1 + ieeB) + O(e?) .

t[AU - €3B, (1 - ieeB)y, 4(1 + ieeB), B] = LA, b, ¥, B) +
sources:

k

+ E(BUAv)SpavB - EEUBJU - 1ecBJew + 1leeBW
The extra vertices of the transformed Lagrangian are then the same as those of the free

field case, given in (11.7), together with the following ones involving the electron

—(2n)“ije(q + K)ige ,
/k

+(2n)“iJc(q + K)iee
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Therefore, for Green's functions involving no external electron lines, the Ward identities
are exactly the same as in Eq. (11.8), even if in this case the bubbles contain any number
of closed electron loops. When external electron lines are present, the Ward identities
receive additional contributions of the form:

- ~
-~ ~ -

JB)(// == Je

11.2 Lorentz gauge: S-matrix and unitarity

Let us now investigate the S-matrix, keeping in mind for simplicity the free electro-

magnetic field Lagrangian €, Eq. (11.2). The matrix K (see Sections 2 and 7) is here

Kuv Buv .
From the cutting equation, Section 7, we derive the fact that unitarity would hold if the
sources were normalized according to Eq. (7.2). However, the complex conjugate of a
four-vector is defined to have an additional minus sign in its fourth component (see the
Introduction), so we are forced to attribute to the fourth component of the vector par-

ticle a negative metric (Section 8). The sources Jia), a=1, ..., 4 are chosen such that
@ . @;@
Gquv = f JU

*(a) (a) _ (11.9)
Ju a 6quva = n(a)

1 for a-=1
=-1 if a=4.

On the other hand, it is well known that due to gauge invariance we do have a positive
metric theory, but with only two photon polarizations. In the system where kU =
= (0, 0, k, ike), we label the sources as follows

3 -, 00,00,
32 - 0,1, 0,0,
J£3) - @©,0,1,0 ,
JS“) -, 0,0, 1) .

We now postulate that only the first two of these sources emit physical photons. In terms
of a non-covariant object Z, = 0, 0, -x, iko) obtained from kU by space-reflection, we
have

Z J(aJJ(a)* =8 v nw
u v

a=1,2
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whereas

Ky ™ S
Considering certain sets of cut diagrams we can apply the Ward identities to the left- and
the right-hand side, to see that the terms proportional to ku and kv’ respectively cancel
among themselves. For instance, at the left-hand side of a cut diagram one can apply the
Ward identity:

//XJB /XJB

As before the double line indicates a factor 1k Note that all polarizations can occur
at the intermediate states, i,e. the out-states for S and the in-states for S but the
other lines are physical.

In our case the right-hand side of this Ward identity is zero because the sources
on the right-hand side absorb energy only, and therefore:

—

,»xJB

So, due to the Ward identities, one may replace the factor X! in the intermediate states,
found from the cutting equation, by J(l) (1) + J(Z) (2), which implies unitarity in a
Hilbert space with cnly transverse photons.

We must make a slight distinction between physical sources and gauge-invariant sources.
The combination

3, = kI ™ =0, 0, K, i6)

is gauge invariant because auJu = 0, but on mass shell this source is proportional to k
and it gives no contribution due to the Ward identites, so despite its gauge invariance,
it is unphysical, in the sense that it emits nothing at all, not even ghosts.
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11.3 Other gauges: the Faddeev-Popov _ghost

Before going on, let us come back for a moment and try to interpret the Ward identity
we have proved. Starting from a gauge-invariant Lagrangian, Eq. (11.1}, we added the term

-1 2
7 BA)

in order to define a propagator. The Ward identities follow by performing a Bell-Treiman
transformation, i.e. a canonical transformation that is also a gauge transformation. As
we already noted, only the above term (and the source term) gives rise to a contribution,
namely E(BUAU)(SzB). This is the only coupling of the B-field formally appearing in the
transformed Lagrangian. Now the fact that B remains a free field, i.e. gives zero when
part of a Green's function, implies that BUAU is also free. This is actually the content
of the Ward identity. Therefore we conclude that the addition of the term —V&(BUAU)Z does
not change the physics of the theory.

This defines our starting point. If, due to a gauge invariance, a Lagrangian is
singular, i.e. the propagators do not exist, then a "good" Lagrangian can be obtained by
adding a term -'%C2, where C behaves under gauge transformations as C~ C + tA. Here
is any field-independent quantity that may contain derivatives. The argument given
above, showing that the addition of the term -?&(BuAu)z does not modify the physical
content of the theory, can equally well be applied here. C will appear to be a free field,
as can be seen by performing a Bell-Treiman transformation. However, for this simple
recipe to be correct, as in the case explicitly considered C = SUAU, one needs'f, defined

by the gauge transformation C » C + tA, not to depend on any fields.

The difficulty with Yang-Mills fields is that the gauge transformations are more
complicated, so much so that no simple C with the required properties exists. [Actually
there exists a choice of C for Yang-Mills fields that is acceptable from this point of
view, namely C = oAz, o > =.  See R.L. Arnowitt and S.I. Fickler, Phys. Rev. 127, 1821
(1962).] For this reason we will now study quantum electrodynamics using a gauge function

C that has more complicated properties under gauge transformations.

We take for understood the theory corresponding to the Lagrangian

- _ Ll .
LAY = LAY - 7€, C=04, . (11.10)

The sources will be taken to be gauge invariant and are included in Einv' Later we will
consider also non-gauge-invariant sources.
Let us now suppose that we would like to have 2 A.u + AAﬁ instead of 3 A for the func-

o
tion C. We can go from the above Lagrangian with C = BUAu to the case of C = SUAU + XAi

by means of a non-local Bell-Treiman transformation
A A +2A37%3 (A)?
M H eV ’
or, more explicitly,

- 3 1 - [ 2 ]
AL A - Ny J’d“x Mx - xRN, (11.11)
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with

Ax - x!) = —1L ‘!'duk e

1
201 ¢ K

Here we have a situation as described in Subsection 10.5. TFor the subsequent manipulations
to be true we must in fact supply a -ie to the denominator. Note that

A - x') = is, (x - x') .

ﬁinv is unchanged under this somewhat strange gauge transformation, and

A = 3 A + A%,
J H U )

In view of the structure of our canonical transformation we may expect that a ghost
Lagrangian must be added.

Performing the transformation (11.11) one gets to first order in e the following
special vertex (see Section 10):

) v
L ——— < S (1) (20K, g 8o -
p

Here, as usual, the dot indicates the factor Vij which is minus the inverse photon pro-
pagator, and the short double line a factor iku' The dotted line represents the function
A(x - x'), which is just like a scalar massless particle propagator. The theorem proved
in Section 10 shows that the theory described by the transformed Lagrangian remains un-
changed if we also provide for ghost loops, constructed by comnecting the original photon
lines to one of the other photon lines of the special vertex. For example, we have:

bl TN
h! _ r Y

b [ = \ /
:}‘“J ~ = 7

Here we have cancelled the photon propagators against the dots, so that the new vertex:

/

M \</ (2m)*i2xik
Nk
~

appears which can be formed by introducing a massless complex field ¢ interacting with the
photon via the interaction Lagrangian EI = 2A¢*AU8U¢. All the closed loops constructed
this way must have a minus sign in front.
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We come to the conclusion that the Lagrangian
o 1 * *
{=¢£. -= (9 + M2)? 2 .
@) -3 QA+ AN+ ¢7% + 20TA3 S, (11.12)

with the prescription that every closed ¢ loop gets a minus sign, reproduces the same
Green's functions as before, when we had C = aUAU and no ghost particles. The ¢ particle
is called the Faddeev-Popov ghost. The ie prescription for its propagator is the usual one.
Tt is perhaps noteworthy that the Faddeev-Popov ghost is not the ghost with propagator -1
of Section 10. The F-P ghost is the internal structure of the transformation function,

see transformation (11.11).

EXAMPLE 11.3.1 The Feynman rules from the Lagrangian (11.12) are:

TP by

emti K2 - ie

— ——= — -9 —_— (-1 for every closed loop) ,
2Zm*i ¥* - ic

"
s ' 22m A8 ,60y * P * Sgyke)
;;,.f"\\‘:io

O, Y
biy2
>< T N (8,08. 5 * Oy Bas * Ssg)

//{“ -(2m) 22K, -

Let us consider photon-photon scattering in the zero loop approximation. The sum of the

following diagrams:
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. , , X
# Y - ¥ *
a) b) c) d)

must give zero. This is indeed the case

1
(2m)*i

¥

, 1 - :
(a) (2m) 228 5 (-k,) 5 (M 2xk 8, 5 = 4(2m)*iA%e

86Y6 ’

4(2mY*ir%s

—

o

~
¥

BﬁaaY ’

—
3]

~—
¥

biy2
4(2m)" %8 gdg

+

(d) -4 (2m)*iA3 (5 )

asvs ¥ SayOas ¥ Suslay) -

Note that in the contributions from diagrams (a), (b}, (c), many terms vanish, because
our external sources are taken to be gauge invariant.

0f course, to get a contribution from the Faddeev-Popov ghost, one has to consider

examples of diagrams containing loops. Indeed, one notes for instance:

—
AN

. ) . -
R e ) e =0

Actually to prove this cancellation we need a gauge-invariant regularization method, which
will be provided in the following.

N —

We want to understand now whether a general prescription can be given which, in a
general gauge defined by the fumction C, allows us to write down immediately the Lagrangian
for the ghost particle o.

In the case considered of C = BUAU + XA&, it is easy to see that the ghost Lagrangian
in (11.12) comes out by the following prescription.

Take the function C. Under a gauge transformation one has to first order in A

C~C+ A
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with AL some operator, which in the actual case depends on the fields AU' Then the ghost
Lagrangian is simply
¢ Ao .
Here
Au - Au + BUA ,

= +MA% > 3% + 9 A IS .
C=3A *+W ~C+ 29 0+ 005, (11.13)

from which (11.12) follows.

The generality of this prescription can be understood by looking at our manipulations.
The non-local transformation (11.11) was taken such that BUA.+ BUAU + kAs. If we consider

a gauge transformation

auAU ” suAu vt

then we must solve the equation

32h = gAZ .
u

The fact that the propagator 1/k?® appeared in our loops is thus simply related to the
behaviour BUAU > BUAU + 327, Secondly, the special vertices are

AV 3.4,
puv’y

where Vuv is in the usual way related to the photon propagator. Then the vertices appearing
in the ghost loops arise from the prescription: remove one factor AU from the expression
XA; and replace it by BHA. Diagrammatically:

A factor of 2 provides for the two possible ways of removing an Au-field from kAi. This is
indeed precisely what one obtains to first order in A by submitting AA& to a gauge trans-
formation, see Eq. (11.13).

The beauty of this recipe to find the ghost Lagrangian is that there is no reference
to the function C that we started from. To construct the ghost Lagrangian one needs only
the C actually required. Also we need only infinitesimal gauge transformations.

EXAMPLE 11.%2.% The above prescription works also in the case of C = BUAu that we started

from. In fact we have
3aA + 3 A + 3%,
o o
meaning that the ghost Lagrangian should be

v ka2
ch $73%
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with no coupling however of the ¢-field to the electromagnetic field. Therefore, as we
already know, no ghost loop is to be added in this case.

Even if the above manipulations are quite solid one may have some doubts concerning
the final prescription for the ghost Lagrangian. To establish correctness of the theory,
as we did in the case of C = BUAU’ Ward identities are needed. In the general case such
identities are more complicated than those given before and we will call them Slavnov-Taylor
identities.

11.4 The Slavnov-Taylor identities

In this section we will derive the Slavnov-Taylor identities, using only local canon-
ical transformations. One can always keep in mind the explicit case of C = BUAU + XAS, but

we now start adapting a general notation anticipating the general case.

Let there be given a function C, that behaves under a general gauge transformation
A > A + 3 A as follows
H M 8]

C>C+ (m+ DA+ 0(A%) . (11.14)

Here we split up the earlier factor M = (fi + ) with the part ¥ depending on the field
A. For C=3 A +MZ*, wehave i = 3% and £ = 2XA 3 .
H W M oy

Our starting point will be the Lagrangian
ol — ‘ - _1_ 2 * L3
[(Au) = Linv(Au) 5 C"+o'mo + ¢"2p + JUAU (11.15)

with the -1/loop prescription for ghost loops. As before, we add to this Lagrangian a

piece describing a free field B

ol

B(3% - u*)B + JB

and perform the local Bell-Treiman transformation

with t = 9 .
u H

Working to first order in the field B
E(AU +38) = (A - Cm+ DB+ ¢+ OB + J 3B . (11.16)
Here we used the transformation

208+ (6+ B+ 0(BY .

Again we distinguish the field-independent part & and the field-dependent part d. 1In the

actual case of £ = AAUBu we have

eB =2). B , d=0.
v
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The vertices involving the B-field in the transformed Lagrangian (11.16) are [the over-all
factor (2m)*i is always left understood:

— ———— -fi from -CAB ,

~ -~

-1 from -CiB ,

//

e -’ é from ¢*&B¢ ,
\\\

——— — =X tuJu from 'auBJu .

The vertex corresponding to ¢*dB¢ is not drawn since in the actual case (C = auAu + M\;) d
is zero. The vertices CnB and CRB appear with a minus sign in the Lagrangian: this sign
is not included in the vertex definition and thus must be provided separately. The state-

ment that B remains a free field becomes then to first order in the B-vertices:

X X

Jg J J
K = — = - )(.B..._ X - )(Q—:\/ X

(11.17)

In the second term at the right-hand side we exhibited explicitly the whole loop to which
the B-line is attached, together with the associated minus sign.- The blobs are built up
from diagrams containing propagators and vertices as given in the previous section. The
¢ particles go around in loops only, and such loops are included in the blobs.

In the above equation there is one crucial point. Consider the very simplest case, no

interaction and only one photon source. Since C = BUAU + AAi, one has to zeroth order in A:

~

m
X————c_——:)((: —x———w:(): X — — = =X

The first diagram (similarly to the second one) contains the B propagator pole, a photon

propagator pole, the vertex factor (2m)*ifi and the factor ‘Eu. The last diagram has only
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the B pole and a factor t =93 . The equation can be true only if m is zero precisely on
the photon pole. We had m = 3% > -k?, and we must therefore always take

(2m)*im = (2m)*i(3? + ie) » -(2m)*i(k* - ic). As will be seen, this m is minus the inverse
of the ghost propagator. In the general case, considering lowest order identities, one
must check on the ie in the propagators in the manner described here.

We will perform some manipulations on Eq. (11.17). Consider the first diagram on the
right-hand side. Using:

with a new vertex:

/
\
—>

Treating this first vertex as a photon source we see that we can iterate, getting:

X J X
J
Py o x = = X e x  +
* X
(11.18)
X
JB T
+ - = X
~

1 J Means sum over all the photon sources. The last diagram arises because the first
vertex is treated as a source. Some new vertices enter, whose meaning is unambigously

defined. For example, we have:

Vs
--=
A



- 66 -

which correspond precisely to a vertex (2m)*ié or to an interaction term ¢*8uBBU¢. In

particular, since this term is invariant under the interchange B » ¢, we have:

V% e
TN TN

This equality, trivial in the case of quantum electrodynamics, becomes much more tricky in

the case of non-Abelian gauge symmetries. Then a similar identity follows from the group
structure, and is closely related to the Jacobi identity for the structure constants of the
group.

The right-hand side of Eq. (11.18) can now be inserted in place of the first diagram
on the right-hand side of the original Eq. (11.17). We note that some cancellations occur.
The second diagram on the right-hand side of Eq. (11.17) contains also the configuration
where the ghost has no further interaction:

//.‘\ *
- X=—-= ) X

\ v/

Ne— ““‘X

This cancels precisely the last diagram of the iterated equation, after insertion in
Eq. (11.17).

This process can be repeated indefinitely and one finally arrives at the equation:

s ~
X —~ =X g \\
JB )( ~=x
Mo — wx =y % w +Y X (11.19)
H“‘X J ey J +

The ghost line going through the diagram may have zero, one, two, etc., vertices of the
type:

—)

If one notes now that the mass of the B-field is an absolutely free parameter in our
discussion, we can also give now the B-field the propagator -(2m*im~'. In this way we
can simply reduce the first diagram on the right-hand side of Eq. (11.19) to:



and also include in it the last diagram of Eq. (11.19). Observing that:

=2 --P"X ~_.~X
= POTS 4
= X K
0 + * %
Te ==
(11.20)

Vote: In the case of C = BUAU this equation coincides with the Ward identity (11.8). Ome

has indeed:

k N Kk
k P 1 L _ X
——m = (2m) JJB m ( lkli) x TL.

so that the first diagram of Eq. (11.20) can also be drawn as:
~X

— —_—— X

X

Furthermore, in this case of C = BUAu the ghost does not interact and then:

- X
K~ - ~+X =

a ",
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Equation (11.20) can be generalized as follows. Suppose that a source is coupled to several
electromagnetic fields, for instance

JA2 or JA!
U 0
or even more general to a local but otherwise arbitrary function R(A) of the Au. Example:

J(B. A + M2 + A, L)) .
Uu U U

The only way this comes into the above derivation is through the behaviour of this whole
term under gauge transformations. Suppose one has in the Lagrangian (11.15) also the
coupling
JRA) .
*)
Furthermore, under a gauge transformation
A >A +3 4,
U M H
one has
R>R+Th+ph.
T is the part independent of the AU and § contains the Au dependent parts. Both T and p
may contain derivatives.

Now, performing the Bell-Treiman transformation with the B-field one obtains the

vertices:
______ = from JIB ,
F
—_—— -/X from JBB s

where the double line denotes a collection of possibilities, including at least one photon
line. The whole derivation can be carried through unchanged, and given many sources J?
coupled to many field functions Ra we get:

R R R
TS S /’ff( % 7 =0 (11.21)
c ! sources pO
a
Rn Rn Rn

where f*a and Ba are defined by the behaviour of the functions R under gauge transformations

if Au > Au + ou/\ , Ra > Ra + raA + pa(Au]A .
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The above identities are the Slavnov-Taylor identities.

11.5 Equivalence of gauges

From the preceding sections we obtair the following prescription for handling a
theory with gauge invariance. First choose a non-gauge-invariant function € and add -%C*
to the Lagrangian. Next consider the properties of C under infinitesimal gauge transforma-
tions, for instance

C »C+ (m+ YA .

A ghost part must also be added to the Lagrangian

1 -~ A
L=t ,-5C+e@m+Dy,

with the prescription of providing a factor -1 for every closed ¢ loop. Clearly the choice
of C is limited by the fact that the operator m, defining the ghost propagator, must have
an inverse. Moreover C must together with Einv define non-singular A propagators, but this

is automatic if C breaks the gauge invariance.
Suppose we had taken a slightly different C

C'=C+¢eR.
Now under a gauge transformation

C'>C+ m+ DA+ (T + )0,

where T and p are, respectively, the field-independent and field-dependent parts resulting
from a gauge transformation of R. For example, if R = Aﬁ then R > R + ZAUBUA and we have
T=0and p =20 .

B

The ghost Lagrangian must be changed accordingly, and we get

1 s, -~ ~
tr=g, -5 (CH eR)? + ¢*(Mm + X + T + )0 . (11.22)

We now prove that to first order in € the S-matrix generated by L' equals the S-matrix
generated by £. This is clearly sufficient to have equivalence of any two gauges that can

be connected by a series of infinitesimal steps.

Let us compare the Green's functions of L' with those of £. The difference is given

by Green's functions containing one e-vertex. From Eq. (11.22) these vertices are:

C R

_ —— = —e— — - e —
s
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The difference between an [’ and f Green's function with the same external legs is then:

@) £ /flﬁ\
ol " 2 ST

We exhibited explicitly the minus sign associated with the ghost loops. Opening up the top

vertex this difference is:

~

c ) =
+ %= -y %

a4

¥

If now all the original sources are gauge invariant, namely BUJU = 0, we sec that this

difference is zero as a consequence of the Slavnov-Taylor identities, Eq. (11.21). The
diagrams in Eq. (11.21), where the ghost line is attached to such currents, give no contri-
bution, since for these currents we have ?u = au (and %UJU = 0) and 6 = (0. As the S-matrix
is defined on the basis of gauge-invariant sources, we see that the S-matrix is invariant

under a change of gauge as given above.

11.6 Inclusion of electrons; wave-function renormalization

The preceding discussion has been carried out in such a way that the inclusion of
electrons changes practically nothing. The main difference is that we now must introduce
sources that emit or absorb electrons and such sources are not gauge invariant. This

complicates somewhat the discussion of the equivalence of gauges.

Thus consider electron source terms
+ .
Jew LP‘]e
Under gauge transformations (AU - Au + BUA)

Y > ele“w =y + lely ,

b - 1eph .

Let us consider the difference of the Green's functions of two different gauges in the
presence of an electron source. For simplicity we will only draw one of them explicitly.

The Slavnov-Taylor identity is:
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R I’/d_ )
C ’ *@4_ )
Je

The first three terms are precisely those found in considering the difference of the

o
+

Green's functions, or more precisely of objects obtained when unfolding a vertex in the
difference of the Green's function (see preceding section).

Folding back the C and R source to obtain again the true difference of the Green's
function and using the Slavnov-Taylor identity we get:

7 \R

In general, such a type of diagram will have no pole as one goes to the electron mass-shell.
Thus passing to the S-matrix the contribution of most diagrams will disappear. But included
in the above set are also diagrams of the type:

which do have a pole. However, we must not forget that the S-matrix definition is based
on the two-point function. The sources must be such that the residue of the two-point func-
tion including the sources is one.

Consider the two-point function for the electron:

Also this function will change, and for any of the two sources we will have precisely the
same change as above:
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In accordance with our definition of the S-matrix we must redefine our sources such that

the residue of the two-point function remains one; that is

J=J-56,

where

§ = value at the pole of

It is seen that including the redefinition of the sources the S-matrix is unchanged under

a change of gauge.

In conventional language, the above shows that the electron wave-function renormaliza-

tion is gauge dependent, but that is of no consequence for the S-matrix.



12.

COMBINATORIAL METHODS

There are essentially three levels of sophistication with which one can do combi-
natorics. On the first level one simply uses identities of vertices that are a consequence
of gauge invariance. Example: electrons interacting with photons. The part of the
Lagrangian containing electrons is

Brd + mp + deA 'y
Now write

p>y+ ieBy , ¢ U - ieBp , A > A +3B .

Of course this Lagrangian remains invariant under these transformations, but we want to
understand this in terms of diagrams. One has, not cancelling anything, as extra terms

-ie@(ya + mBy + 1eUB(Yd + m)y + ieauB@Yuw .

These are simply vertices:

ki
//J\\ sie(2m)*i(-ivp + m) ,
= g
'k
//\\ ie(2m*i(iyq + m) ,
P q
'k
/,an”JL\\~k\\ ie(2m)*i(ivk) .
P q

How does the cancellation manifest itself? In the Lagrangian one must write
au(Bw) = aqu + Bauw
to see it. Here we take the first vertex and wrife
p=-q9-k.
Then one sees explicitly how the three vertices together give zero
-ie(@2m*i{iyq + ivk +m - iyq - m - ivk} = 0 ,

and this remains true if we replace m everywhere by m - ie. Only then can one say that the
vertices contain factors which are inverse propagators; now we know for sure that the

following Green's function identity holds (in lowest order):



X
> — = *—<<:T+ x—4<i:+ x—1<:: =0
N

where the short double line indicates the inverted propagator including ie. Exploiting

this fact we obtain:

X - - = + + X =0

which is a Ward identity given before.

The above makes clear how the very first level combinatorics is the building block for
the sccond-level combinatorics. This second-level combinatorics uses the fact that all
terms cancel when onc has gauge invariance. But this fact must be verified explicitly by
means of first-level combinatorics to ascertain that the 1e prescription is consistent with
the gauge invariance. It is just by such a type of reasoning that the ie in the ghost

propagator is fixed, as shown before.

The third level of combinatorics is that when one uscs non-local canonical transforma-
tions. These can be used to derive the Slavnov-Taylor identities directly, as was done by
Slavnov. One must be very carcful about the ie prescription; our procedurc whereby this
identity was derived by means of first- and second-level combinatorics shows that the usual

-ie prescription for the ghost propagator is the correct one.
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REGULARIZATION AND RENORMALIZATION

13.1 General remarks

As noted before, the regulation scheme introduced in the beginning is not gauge
invariant. We need a better scheme that can also be used in case of gauge theories,
Abelian or non-Abelian. An elegant method is the dimension regularization scheme which

we will discuss now.

A good regularization scheme must be such that for certain values of some parameters
(the masses A in the unitary cut-off method) the theory is finite and well defined. The
physical theory obtains in a certain limit (masses becoming very big), and one requires
that quantities that were already finite before regularization was introduced remain un-
changed in this limit,

In order to obtain a finite physical theory it will be necessary to introduce counter-
terms in the Lagrangian. A theory is said to be renormalizable if by addition of a finite
nunber of kinds of counterterms a finite physical theory results. This physical theory
must of course not only be finite, but also unitary, causal, etc. With regard to a
regularization and a renormalization procedure for a gauge theory, some problems arise
which are peculiar to this kind of theory. As demonstrated before, the Ward identities
(or more generally the Slavnov-Taylor identities) must hold, because they play a crucial
role in proving unitarity. Since regularization implies the introduction of new rules for
diagrams, and because new vertices, corresponding to the renormalization counterterms are
added, it becomes problematic as to whether our final renormalized theory satisfies Ward
identities. As far as the regularization procedure is concerned, a first step is to pro-
vide a scheme in which the Ward identities are satisfied for any value of the regulariza-

tion parameters.

This goal is obtained in the dimensional regularization scheme. It must be stressed,
however, that this does not guarantee that the counterterms satisfy Ward identities and
indeed, in general, one has considerable difficulty in proving Ward identitics for the
renormalized theory. The point is this: in the unrenormalized theory there exist Ward
identities, and an invariant cut-off procedure guarantecs that the counterterms satisfy
certain relations. From these relations onc can derive new Ward identities satisfied by
the renommalized theory. However, these Ward identities turn out to be different: one
may speak of renormalized Ward identities. That is, one can prove that the renormalized
theory has a certain symmetry structure (giving rise to certain Ward identities), but one
has to show also that this symmetry is the same as that of the unrenormalized theory. Let
us remark once more that Ward identities are needed for the renormalized theory because
they are needed in proving unitarity. Indeed, Ward identities have nothing to do with

renormalizability but everything to do with unitarity.

Another problem to be considered is the following one. If one admits the possibility
that the renormalized symmetry is different from the unrenormalized one, then formally
the following can happen. If one carries through a renormalization program, one must first
make a choice of gauge in the unrenormalized theory. Perhaps then the symmetry of the
renormalized Lagrangien depends on the initial choice of gauge. Given a gauge theory one

must show explicitly that this is not the case, and that the various renormalized
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Lagrangians belonging to different gauge choices in the unrenormalized theory are related
by a change of gauge with respect to the renormalized symmetry. In quantum electrodynamics

this problem is stated as the gauge independence of the renormalized theory.

13.2 Dimensional regularization method: one-loop diagrams

In the dimensional regularization scheme a parameter n is introduced that in some sense
can be visualized as the dimension of space time. For n # 4 a finite theory results; the

physical theory obtains in the limit n = 4.

As a first step, we define the procedure for one-loop diagrams. The example we will
treat makes clear explicitly that the dimensional method in no way depends on the use of
Feynman parameters. Actually, since for two or more closed loops ultra-violet divergencies
may also be transferred from the momentum integrations to the Feynman parameter integra-
tions the use of Feynman parameters in connection with the dimensional regularization
scheme must be avoided, or at least be done very judiciously. The procedure for multiloop

diagrams will be defined in subsequent subsections.

Consider a self-energy diagram with two scalar intermediate particles in n dimensions:

Rtk
k . ! (13.1)
_<:::%_ L[ e T e T W ]

P

In the integrand the loop momentum p is an n component vector. This expression makes sense
in one-, two-, and three-dimensional space; in four dimensions the integral is logarith-
mically divergent. To evaluate this integral we can go to the k rest-frame

(k = 0, 0, 0, iu). Next we can introduce polar coordinates in the remaining space dimen-

sions
0 ) 2m T T T
n-2 . . .. N-3
In = J‘ dpo f w dw J‘ de, j d6, sin 6, J d6; sin® 85 ... j den_2 sin en_2 X
- ¢ 0 0 0 0
x L (13.2)

(-pf + 0t +m - ie)[-(po + )+ u? + M - ic]

Here w is the length of the vector p in the n - 1 dimensional subspace. The integrand has

no dependence on the angles 5 <ovs B 0s and one can integrate using
3
1 I_Il_+l
..M - F[Z ZJ
sin” 8 d§ = VT —="t (13.3)
m
s +1
0 2
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These and other useful formulae will be given in Appendix B. The result is

2 A (n-1)/2
= [ e [T a Sy - L. a3
- ¢ F[ 2 ] (-p§ + w® +m?)[-(po + W)?* + W+ M? ]

This integral makes sense also for non-integer, in fact also for complex n. We can use this
equation to define In in the region where the integral exists. And outside that region we

define In as the analytic continuation in n of this expression.

Apparently this expression becomes meaningless for n < 1, for then the w integral
diverges near w = 0, or for n 2 4 due to the ultraviolet behaviour. The lower limit
divergence is not very serious and mainly a consequence of our procedure. Actually for
n + 1 not only does the integral diverge, but also the I' function in the denominator, so
that I, from Eq. (13.4) is an undetermined form «/~, Let us first fix n to be in the
region where the above expression exists, for instance 1.5 < n < 1.75. Next we perform a

partial integration with respect to w®

do 2= 3 du? (u2) /2 . Lo 2 (% () /2

For n in the given domain the surface terms are zero. Using zI'(z) = I'(z + 1) and repeating

this operation A times we obtain

3 (171)/2

1= r(n T ] deo I dwu§1—2+2)\[— aizy {} . (13.5)

We have derived this equation for 1 < n < 4. However it is meaningful also for
1 - 2» <n < 4. The ultraviolet behaviour is unchanged, but the divergence near w = 0 is
seen to cancel against the pole of the I' function. Note that

I(z) = ELz_t_ll :

thus for z + 0 this behaves as 1/z.

The last equation is analytic in n for 1 - 2\ < n < 4. Since it coincides with the
original In for 1 < n <4 it must be equal to the analytic continuation of In outside
1 <n < 4. C(Clearly, we now have an explicit expression for In for arbitrarily small values
of n (taking A sufficiently large). It is equally obvious that if the original expression
which we started from had been convergent, then its value would have been equal to In for
n ~ 4. Moreover, cutting equations can be derived using only time and energy components,
and as long as the last given expression for In exists, and p, and w integrations can be

exchanged (i.e. for n < 4) these cutting equations can be established.

Let us now see what happens for n 2 4. Again we will use the method of partial
integrations to perform the analytic continuation. For simplicity we set A = 0. First fix
n in the region 1 < n < 4. Next we insert

- % {?lpg %J



- 78 -

Next we perform partial integration with respect to pp and w. Again in the given domain
the surface terms are zero. Further

1y, d _  d)p2 -
7 Po dpo wdm {...}

o

-n+ 2+ -2p + 2w + _2po(po * W+ 2w? w2
(ph+w+m?)  [-(po+)?+u®+ ] { }

|
o) —

En +6 4+ ~2m? + _Zpou + 207 - A wn_z{...}.
(pi+wiem®)  [-(po+w)*+ 0+ M)
Inserting this in the right-hand side of Eq. (13.4) gives

-n + 6

=== -1 (13.6)
or
2
I =-—fo 1
n n-4« i
with
(n-1)/2 = o
' 4 ,n-2 .
16 ————F[n - lJ Jf dpo [ 0" du x
P IR
« n? . “2poy - 2% + 2
(ph + o+ m)2 [0 + W%+ w? + 1] (pf ¢ wt ¢ ) (S ¥ WP+ ]

(13.7)

The integral lé is convergent lor 1 <n < 5. Now the In given before and this expression
arc cqual for 1 < n < 4; since the last cxpression is analytic for n < 5 with a simple pole
at n = 4, it must be equal to the analytic continuation of In.

The above procedurc may be repeated indefinitely. Onc finds that In is of the form

I - r[“%]f(n, w,om, M), (13.8)

where the function f is well-bchaved for arbitrarily large n. The T function shows simple

poles at n =4, 6, §, ...

We sce now why the limit n + 4 cannot be taken: there is a pole for n = 4. It is
very tempting to say that one must introduce a countertemm cqual to minus the pole and its
residue. But if unitarity is to be maintained this counterterm may not have an imaginary
part, i.e. it must be a polynomial in u, m and M. Thus we must find the form of the
residuc of the pole. It will turn out to be of the required form. To show that it is of
the polynomial form in the genmeral case of many loops necessitates usc of the cutting
cquations. Tor the onc-loop case at hand we will simply compute In using Feynman para-

meters. One has

1
1 =[a [dp 1
i . ™ [p? + 2pkx + K2x + Mx + m?(l - x) J?
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Shifting integration variables (p’ = p + kx), making the Wick rotation, and introducing

n-dimensional polar coordinates, one computes

llTn/z r (2

n r'(2)

- 2] 1
2 j dx 1
0

[x + m?(1 - x) + K2x(1 - ]2

In this way we have explicitly In in the form of Lq. (13.8). Forn =4, 6, 8, ..., the
integrand is a simple polynomial, for n = 4 the integral gives simply 1. Thus the pole
term is

PP(L ) = %_ 4_% , (13.9)

where PP stands for '"pole part'. Using the equation

a® = Elna._ 1+clna+0(?),

one may compute

lim [ - PP(I ﬂ = ~in? j dx 1n [A x+m(l - x) + k2x(1 - ()]
n=y

llere C is a constant related to the n dependence other than in the exponent of the denomi-

n/2

nator, containing for instancc 1n v, from 7 In general C 1s a polynomial just as the

pole part of In. Since we could have taken as our starting point an In multiplied by
bn_q, where b is any constant, we sce that C is undetermined. This is the arbitrariness
that always occurs in connection with renormalization.

We now must do some work that will facilitate the treatment of the multiloop case.

Let us consider the cutting equation. One has:
+
= £ ) = -2m)? fdnpe(—poya(pz s m2)6(p, + k)S[(p + KE + ] .

In the rest frame

f(m=—vnzf(wnhjf IPHM[ fﬂkx
0

w0

x _{ dpo8(-pe)8(-pf + w® + m?)8(po + W)S(~2pou + M* - w® - 1.7) . (13.10)

-

The function { (k?) can be obtained by changing the signs of the arguments of the
6 functions.

In coordinate space one has

£(x) = 8(xo)f (x) *+ 8(-x)E (x) -
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The Fourier transform of this statement is

1 1+ 1 1 -
£(K) = 5 j dt ===z £k + 1) + 5= J dt e f k-1 (13.11)

-0

T can be considered as an n vector with all components zero except the energy component.
As long as the w integral is sufficiently convergent (i.e. n < 4) one may exchange freely
the w and T integration. Doing the pp and T integrations one obtains of course the old
result for In, which is not very interesting. Let us therefore leave the T integration in
front of the w integral and compute the p, integral. One finds for the p, integral in £

(dps ... = 1| 8 - M- mé? - «?) ,
4 2|u

where

.- \/(uz - m? - M2)2 - 4P
4u? '

The 6 function expresses the fact that u must be positive and furthermore that k? must be
positive in order for the w integration to give a non-zerc result. For f  one obtains the
same, except for the change 6(u - M-m) » 8(-u - M -m).

Also the w integration can be done, and is of course independent of XA (this follows
as usual by considering the integral for 1 < n < 4 and doing the necessary partial integra-
tions). For A = 0 one finds
. P ZW(n—l)/z N3
T =-02m ET;TTTTE—' T
2

8. -M-m) .

The complete function £(k) = In obtains as given above. We must study

@ -3
+ +
[or 2 fuen — [ —I— < g,
T = 1l T - U - 1¢ 4|T\F[ 7]
M+m -
where
ZJ(TZ—UZ - M)? - Am?M?
< 412 )
Since

k2(t, m, M) = (1 - m - Myo(t, m, M) , (13.12)

where ¢ is positive and finite at threshold v + m + M, this integral is not well defined

for n £ 1. This is how the divergence at w = 0, previously found in Eq. (13.4), manifests
itself here. But this is again no problem, and really due to the fact that our derivation
is correct only for n > 1. We will come back to that below. And there is no trouble in
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constructing the analytic continuation to smaller values of n. This can be done by

performing partial integrations with respect to the factor (tr - M - m) in Eq. (13.12).

For n 2 4, however, the integral diverges for large values of |t|. This can be

handled as follows. The expression (13.12) for g+(u) is nothing but a dispersion relation,

and we may perform a subtraction

+ ¥ dt P
HORFIURS : T
(T - u - ig) 4[T|F[ J
M+m 2
¢ dr K3
0= [ L _x
g(0) ) e F[n - 1}
MM Z

As before, by inserting dr/dr it may be shown that g(0) has a pole at n = 4. The remainder
of g+, however, is perfectly well-behaved for n < 5. Again we see that the pole terms

(in n = 4) have the proper polynomial behaviour; they are like subtractions in a disper-
sion relation.

We must now clear up a final point, namely the question of the behaviour of the T
integral near threshold. Consider as an example the function

o
£(10) =LT;,—1) .

In the complex T plane we have a pole at T = 0 and for non-integer o a cut along the real
axis from 7 = 1 to T = =. Multiply this function with (v - u - ie)™' and integrate over a
small circle around the point T = u. One obtains

2rif(u) .

On the other hand the contour may be enlarged; we get

o
£(0) = 5oy dt (-1, contribution of the origin ,
T - | - 1¢ P

where C is as in the the following diagram:

L+i€
\\\\‘

The circle at infinity may be ignored provided a¢ < 4. Since now the integrand has a quite

singular behaviour at t = 1, this point must be treated carefully. The contour may be

divided into a contribution of a small circle with radius € around this point, and the rest.
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In considering the integral over the circle, T may be set to one except in the factor

(t - 1)a_ Moreover, we may introduce the change of variable T = 1 - 1. Writing 1 = ee1¢:

l : +1 ; e : .
o .o a*tl iet1)¢ % -ifa+1)m i(o+)w
J drt =1 dee e =TT { - e
£ m

On the other hand, the contribution of the two contour lines from the circle to some point
b above and below the cut contains a part

b
j d[ -imo iﬂa]
drtT |e -e .
£
The integrand is the jump across the cut. This can be integrated to give

. 1 - (ba+1 _ Eu+1)[e-1ﬂa _ elﬂu] )

Together with the contribution from the circle

1 lu+1[ -imo _ iﬂa]
3T P e e .

This is independent of e, and the limit £ -+ 0 can be taken. Note that the result is -2wi
in the limit o + -1, as should be for a clockwisec contour.

In the expression for f+(u) Eand f_(u]j we have not bothered about the precisc
behaviour at the start of the cut. This is in principle accounted for by the 8 function.
This 8 function gives only the contribution along the cut; the small circle has been
ignored. This is allowed only if n > 1 (corresponding to o > -1). Otherwise one must care-

fully sﬁecify what happens at threshold in f+, f, and in the subsequent integrals over T.

To see in detail how this goes consider a function of t? having a cut from 1 = a? to
1® = @, but otherwise analytic (and going sufficiently fast to zero at infinity). In the
1 plane the function has cuts from -a to -« and +a to +». The dispersion relation leads in

the 1 plane to the following contour:
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Consider the right-hand side contour. The cut starts at the point T = a. We may write

1 2 [ 1 =
J T e f) ¢ ) ree e EOY

<:l a-6

where < stands for the circle at a with radius 6, and F(r?) is the jump over the cut, i.e.

£(1?) = lim {f(r2 + 18"y - £(z? - 16’)} )
§'-0

This is the precise equivalent of our £'. It is essential to first take the limit §' = 0

before the limit § = 0.

Let us now return to the question of subtractions. It is now possible to turn the
reasoning around. We know that for L and its Fourier transforms the following properties
hold:

i) In(k] has poles for n =4, 6, ..., and the f;(x) have no pole for n = 4.
ii) 1.9 = e(xo)f;(x) + 8(=x,)E (x) for n < 4.
iii) In(x), fi(x) are Lorentz-invariant.

The functions f; and f; are non-singular for n = 4; they are the cut diagrams and these
are not divergent for n = 4. Concerning point (ii), the derivation of the cutting equation
requires n < 4. Of course it is possible to define things by analytic continuation, but
our dispersion-like relations as exhibited above will hold only for n < 4. From (ii) and
(iii) it follows immediately that the pole inn = 4 of In(x) can at most be a § function.
The precise reasoning is as follows. Applying a Lorentz transformation to (ii) and

insisting on Lorentz invariance we find

() = f;(x) =f () for x,=0, X#0.

Consider now the analytic continuation of (ii) to larger n values. If £ and £ have no
pole for n = 4, then the only way that In(x] can have a pole for n = 4 is in the point
X = 0, X = 0. Remember now that we have shown that the Fourier transform of In is of the

form

} 7 x finite function for n < 5 ,

i.e. the Fourier transform of In exists for n < 5. Since the Fourier transform of the pole
part is a function which is non-zero only for Xx¢ = X = 0, the only possibility is that this
pole part is a polynomial in the external momenta (and the various masses in the problem),

i.e. in coordinate space a ¢ function and derivatives of & functions.

Thus we know now that the residue of In at the pole is a polynomial. Differentiating
In with respect to the external momentum k, in the region n < 4 where we can use a well-
defined representation, see Eqs. (13.4) and (13.5), we see that this derivative is finite
for n = 4. It follows that the pole part is independent of k, which is indeed what is
found before, Eq. (13.9). Also, this is all we need to know for renormalization purposes.
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13.3 Multiloop diagrams

We must now extend the method to diagrams containing arbitrarily many loops. This is
quite straightforward. First note that external momenta (and scurces) span at most a four-
dimensional space. We split n-dimensional space into this four-dimensional space and the

rest

.
jdnp1 42, -+ dpy = [ dpdp, - dpy j’d LB APy (13.13)

The p; are the components of the p; in four-dimensional space. The integrand will depend
on the scalar products of the p; with themselves and the external vectors, and furthermore
on the scalar products of the Py with themselves. Again, the integration over those angles
that do not appear in the integrand may be performed. This is done as follows. Consider

the integral

J dn"qpi .
The argument of this integral is already integrated over Pi+1 cee P therefore the
integral depends only on the scalar product of Pi with P1 ves Pi-l' These vectors span an
i-1 dimensional space, and we may write
J’d A Jdi-lpi f d P (13.14)

Now the integrand will no longer depend on the direction of 5, and introducing pelar co-
ordinates in P space

_ 2 (n-3- 1)/2
dn-3-1F1 = [

~

]fd‘ vig (13.15)
0

The w, Tepresent the lengths of the vectors ﬁi' Introduce in k-dimensional space the

vectors
’j ’ T r_ ~
W) )1 (P,
0 W2
0 .
C{= y Q2 = ] ee sy G D
. K (P,
0 . .
0 n
~ / N 7/ N 7’
Obviously
(qq)—(PP)

Also, for i # k,
py(ki41)/2

- 1 = _f4 T iy
Jr qui B j di-lqi Idk-iﬂqi J di-1P1 [k - 1 n 1} jwl > (13.16)
Z 0
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but note

J’d'qu - J’ 4y Py f duy s (13.17)

with wy running from -= to +w=. We have therefore comparing Eqs. (13.14) and (13.15) with
(13.16) and (13.17)

k-i+1
(4 p. = O ku)/z F[ Z ) n-u -k

J %=t =) [ 43 for 17k,

L

)

= o (mk-u)/ -5k
f dn—upk = an T [n -3 - EJ j qukwi ! <8(U'\k) ?

A

where we used T(%) = vT.

Finally note

Wy eee Wy = Eil"'ik(ql)il e (qk)ik = det q .

Since w;, w;, etc., are positive we can write

e(wk] = g(det q) .

We arrive thus at the equation

k T[k - i+ 1)
k- -k

j APy A Py = 2 l l arken/e Ef?fff_%_:“fj X J Gy e di gy (det Q" et o) .

i= 2

(13.18)
Next we have
o _ 1 3 o+l
@t Q% = Ty et o) Get ™

This equation can be arrived at by tedious work. Just write out the determinants with the
help of the € symbol with k indices. Note that for a = 0 the equation follows trivially
because of
iy gy o
1 k 1 k

Also for k = 1 the equation is trivial.

Now the integrand is a function of the scalar products aij = (qi, qj). Let us

consider the operation on such a function of the operator

det 2

3q *
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One has

5
s T (a; [_o 3
235 ; A [aasi i aais]

] 3 3 k 1 3 1 3
det[——]=(detq) det (——+—]=2(detq] det (———+— )
9q Baij Saji 2 aaij 2 .

With these equations one can construct the analytic continuation of the above equation to
small values of n

-

n-4-k _ r 1 3 n-3-k
j dq, ... dg (det q) =] dq, ... dgy eI GRS [det 55} (det @)

= 1 n-3-k d
TTm-d) . m-3-K qul .+ dgy (det q) [det 'ﬁ]

Zk

) n-2-k 13 1 3
-4 ... -39 qu1 ++» dqy (det q) (det 7 2. 7 a ]

Performing this operation A times gives

k - i

i+1
d P d P, =2 7(n-k-4]/2 F[ 2 ] X
JENLISE N , e
2

e A
« [ aq, o qaoider g et R [det "I li*l-] :

(13.19)

Rather than worrying whether this derivation is correct or not we simply take this
equation as the definition of the k-loop diagrams for non-integer n. It is not very
difficult to verify that for finite diagrams the result coincides with the above equation
for n = 4 (see below). 1In doing such work it is often advantageous to go back to the
special coordinate system with which we started; the expression in terms of the a; is
mainly useful for invariance considerations. For instance shifts of integration variables
such as

qu—= qy + 42

leave both qu1 and qu2 as well as det q unchanged as long as the integrals converge
(which they do for sufficiently small n).

Equation (13.19) is much too complicated for practical work, and we will instead use
the notation

”

] dnp1 cee j dhpn .

A1l the above work is to show how things can be defined for non-integer n.
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The final step consists of showing that the algebraic properties necessary for diagram-
matic analysis hold for this in the same way as they do for integer n. We have seen already
that this is so for shifts of integration variables. Furthermore, clearly

[, [ar, = [ap, [ap,

(always assuming that n is chosen such that the integrals converge).

Next there is the following problem. It seems that the definition depends on the
number of loops. Then in considering cutting equations one has relations involving all
kinds of possibilities on both sides of the cut, and it may seem hard to understand what
happens. The answer to this is that the definition involves for k loops a k-dimensional
g-space, but nothing prevents us from using a larger space. Thus in any equation one can
use for k simply the largest number of closed loops that occur in any one term. And there
is no difficulty in decreasing the k used if the muber of loops is smaller than this k:

simply perform the integrations over those directions that do not appear in the integrand.

Let us now consider the limit n -~ 4 in the case where the original integral exists.
This means that there are no difficulties with the ultraviolet behaviour. Using Eq. (13.19)
with X sufficiently large we may first do the q; integration. Using coordinates as
described in the beginning one arrives at an integral of the type as encountered in the one-
loop case

o A
1 —-5+2h ¢
- 'fdmlw? [— BZZJ f(m%) .
Fl:—z‘ n-4)+ )\] 0

Keeping n in the neighbourhood of four it is possible to perform partial integration with
respect to w; only

1 F.oon-3f 3
. ) dw, W) (_ W]ﬂ“’i) :
r& (n-4) + 1] " !

Next we write w?_3 =w - w? = wl[l telnw + 0(e?)], with e = n - 4. Since

w1y 'du)l = 1/2 dwz, we find

1 {% £(0) +n£4fdw% In wl[— 3‘2‘2‘) £(u?) + o[(n - 4)2]}.
F[- n-4)+1

0

We see that the integral reduces to what one would have with q; = 0, plus a finite amount
proportional to n - 4. Since g, was the "unphysical" part of the momentum p, we see that
we recover in this way the expression that we started from. Moreover, if the original
expression was finite, then the result for values of n close to four differs by finite

terms proportional to n - 4.



- 88 -

If the integral does not exists for n = 4, then we are interested in constructing an
analytic continuation to larger n values. This can be done as follows. Select a mumber of
closed loops in the diagram. Call the loop-momenta associated with these loops p, ... Py
(s loops selected). Next insert

1 & & dlpy);
i
=w L L 3oy
=l =

which is symbolic for
l L k dgl 1 k k q..
4k 2: 2: dp1J i z: }: da;

j=1 = T j=1 i=1

and perform partial integrations. The result is the original integral I plus an integral
I' that is better convergent with respect to the loops selected. Solving the equation

with respect to I we get

.1 '
I=5—% I

in analogy with Eq. (13.6), obtained in the one-loop case. Here (-2) 1is the number
obtained by counting the powers of the momenta p; -+ Pg in the integrand. That is the
very nice thing about this method: there is a direct relation between power counting and

the location of the poles in the complex n plane.

Here we find a pole for n = \/s. If 4s - A =2, 1, 0, we have quadratic, llnear,

or logarithmic divergencies with respect to the D -e P integrations.

It is clear that we now can have poles for n = A/s, with X and s integers. Diagrams
with many closed loops give many poles in the complex n plane. The first pole would be at
=4 - %, 4 - Y%, 4 for quadratic, etc., divergent integrals, the next is one (generally

however two) units 1/s further in the direction of increasing n, etc.

13.4 The algebra of n-dimensional integrals

It is now very important to know how the previously discussed combinatorics survives
all the definitions. In doing vector algebra one manipulates vectors and Kronecker &

symbols according to the rules

SPy =Py
PP, =P,
6uv6vu = Suu ?
éuu =n .

The only place where the dimension comes in is in the trace of the § symbol. This &
symbol also appears naturally when performing integrals; for instance (see Appendix B)

PPy iﬂn/z 1 { n n 2 2
dp e = — Mo -35lkk +Tla-1- -}5 m* - k%) p.
j n (pz + 2pk + m2)a (mz _ kZ)Q 1'1/2 F(G) [ 2] H v [ 2 uv
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The indices u, v are supposedly contracted with indices u, v of external quantities (such
quantities are zero if the value of the index is larger than four) or other internal

quantities. In doing combinatorics one will certainly meet identities of the form
- 2
6uvpupv p* .
Now note

. n/2
r " - dr L _n S0 -DYD e -
= @2+ 2k +n2) @2 - K%Y 1w F[“ z]k2 ' F("‘ ! z] 5 - k)

All these integrals are computed according to the previously given recipes. The indices
W, v simply specify two extra dimensions, the two-dimensional space spanned by the objects
with which y and v specify contractiomns.

Clearly the two equations are consistent only if we use the rule Suvauv = 1.

All this can also be rephrased as follows. If we take the rule éuu = n, then the
algebra of the integrals is the same as that of the integrands.

The situation is somewhat more complicated if there are fermions and y matrices.
Now v matrices never occur in final answers; only traces occur. The only relevant rules
are

{YU, yv} = zauvm (I = unit matrix) ,

44 .
e

v
er (v

The numbers 2 and 4 are not directly related to the dimensionality of space-time, and they

play no role in combinatorial relations. The auv must of course be treated as indicated

above,

Some considerations are in order now to establish that our regularized diagrams
satisfy Ward identities for any value of the parameter n. The combinatorial proof of Ward
identities involves (i) vector algebra and (ii) shifting of integration variables. We
have already shown in Subsection 13.3 that shifting of integration variables is actually
allowed because of the invariance of det q in Eq. (13.19). It is also easy to see now

that, in the sense defined above, the vector algebra goes through unchanged for any n.

Difficulties arise as soon as in the Ward identities there appear quantities that have
the desired properties only in four-dimensional space, like y® or the completely anti-

symmetric tensor € Then the scheme breaks down, and there are violations of the Ward

wpo”
identities proportional to n - 4. If there are infinities (i.e. poles for n = 4) there may
be finite violations of the Ward identities in the limit n = 4. This is what happens in

the case of the famous Bell-Jackiw-Adler anomalies.

13.5 Renormalization

Ever since the invention of relativistic quantum electrodynamics, work has been
devoted to the problem of renormalization. Mainly, there is the line of Bogoliubov-

Parasiutik-Hepp-Zimmerman and the line of Stueckelberg-Petermann-Bogoliubov-Epstein-Glaser.
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0f course, both treatments have a lot in common; the BPHZ method however seems at a dis-
advantage in the sense that there seem to be unnecessary complications. Unfortunately

these complications are such as to inhibit greatly the treatment of gauge theories.

The SPBEG method, on the other hand, can be taken over unchanged, and also accomodates
nicely with the dimensional regularization scheme. The fundamental ingredients are unitar-
ity and causality precisely in the form of the cutting equations. The only complication
that remains in the case of gauge theories is the problem of dressed/bare propagators

discussed in Section 9. It seems unlikely that this is a fundamental difficulty.

We will sketch in a rough way how renormalization proceeds in the SPBEG method. For

more details we refer to the works of these authors.

In the foregoing a definition for diagrams also for non-integer n (= number of dimen-

sions) has been given. This definition is such that:

i) cutting equations hold for all n;
ii) Ward identities hold for all n, provided the e tensor and v° do not play a role in the
combinatorics of these Ward identities;

iii) divergencies manifest themselves as poles for n = 4 in the complex n plane.

The problem is now to add counterterms to the Lagrangian such that the poles cancel out.
The essential point is that this has to be done order by order in perturbation theory, and
since this is precisely the origin of a lot of trouble in connection with gauge theories
we will focus attention on that point.

Consider one-loop self-energy diagrams in quantum electromagnetics. They are:

P+k
k :
P
I :
The Feynman rules are:
1 -iyp +m 1 Sy
(2m*i p? +m? - 1ie N k¥ -1’
22 v
Prrrrvvaeng
KL

(214 -+ iey" .

They follow from the Lagrangian

__1 - 2 _ 7 ‘ : ToHe 1 2
==L oA, -0 A7 - B0+ my ¢ deA T - T A
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The first diagram gives

tr {Y“ [—mp + k) + m:,Y\)('iYP’f m)}

V= -e? J dp :
n P+ - ie)[(p + K2+ m® - ie]

We must work out the trace using only {yMyV} = Zsuvj and tr (YMyV) = 45uv' The technique
is to reduce a trace of X matrices to traces of A - 2 matrices. For four matrices

\Y o v -
tr o) = e YY) s s = s e YR

+ S(SUOLGVB - 6uv6a8 + 6u86uv)

or

a v B

tr (YY) = as 46 8 . + 48 8

uaavB BERASTN N} e v

This gives

6, - @R p,-p K+ S O+ PK)
P> +n? - ie)[(p + K)? + m? - ic]

Y 2 n
In = -de j dnp

Using Feyrman parameters and the equations of Appendix B this integral can be computed
giving

., Df2 [4 - n] _ 2
die?r r 3 2x(1 X)[kukv k Guv]

h=- T(2) J [m2 + k?x (1 - X)]z—n/z

The quadratic divergence (pole at n = 2) has cancelled out through (1 - n/2)I(1 - n/2) =
=T(2 - n/2).

The second diagram gives

Mo u
Ie=_62jdnp Y (=ivp + m)y .
@* +m* - ie)[p + K)? - ic]
From the anticommutation rules, and the rule aup =n
Yy = n1
Further

Yy = ¥y ¢ 2vp = 2 - mvp

(if n = 4 this reduces to the well-known Chisholm rule. Such rules are not valid in

n-dimensional space). The integral may now be worked out
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© - je2 /2 F(4 - n] f x Tom + (2 - n)ivkx
2

n TR [ - x + Kx@d - P2

Both Il and Iﬁ have a pole at n = 4. The residues are easily computed

PP[Ig)

8 .22 1 _ L2
7 ir%e® = (kukv k éuv) ,

1
n-4

PP(Iﬁ) = 2in2e? (4ml - ivk) .
If we introduce in the Lagrangian [remember that vertices and terms in the Lagrangian
differ by a factor (2m)*i] the counterterms

e2 eZ -
T = 4 GA - 9\)1\11)2 YR m oy Yy - dm)y ,

then the two-point functions up to order e? will be free of poles for n = 4, and one can
take the limit n = 4. To have all one-loop diagrams finite a counterterm to cancel vertex

divergencies must be introduced.

Performing a similar calculation (simplified very much from the begimning if only the

pole part is needed, see Appendix B) for the vertex diagram leads to the counterterm

_ ie? 2 VoA
T - Y

The remarkable fact is that the counterterms are gauge invariant by themselves. This would
not have been so if the coefficients of Uysy and —iAvﬁva had been different. It will
become clear that this is special to this gauge; in the case of a gauge where the ghost
loops are non-zero the result is different, and the counterterms are in general not gauge
invariant by themselves.

There are now two separate questions to be discussed. Including the counterterms, all
results up to a certain order are finite. This order is such that one has one closed loop
but no "countervertex'', or a tree diagram including at most one countervertex. An example
is electron-electron scattering to order e in amplitude. Some examples of contributing

diagrams are:

NN G {

The crosses denote counterterms. The first and third diagrams (and the second and fourth)

together are finite.
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The question is now whether it is possible to make the theory finite up to the next
order in e? by introducing further counterterms of the type shown above. Next one may ask
how to understand in more detail the gauge structure of the renormalized theory, i.e. the

Lagrangian including the countertemms. Both questions will be investigated now.

13.6 Overlapping divergencies

The problem is the following. Can the renormalization procedure be carried through
order by order. First we must state more precisely what we mean, because in the Lagrangian
we have counterterms of order e? and e®. To this purpose we introduce a parameter n; and
all counterterms found from the analysis of one-loop diagrams get this parameter as coef-
ficient. Thus we have now

_ 1 g? e? - .
Counter = "= 7 {W (B A, = QADT + gz D0Ye - 4my - gor Ay w}

If now in a diagram the mumber of closed loops is i than we may associate with each diagram
a factor L'. The S matrix is finite up to first order in (L + n), in the limit n =1,
L = 1. Thus at most one closed loop no n vertex, or no closed loop one n vertex.

It may perhaps be noted that if the number of ingoing and outgoing lines is given,
then specifying L +n 1is equivalent to specifying a certain order in e.

Let us now consider diagrams of order (L + n)?, for instance photon self-energy

diagrams. There are diagrams of order L?, i.e. two closed loops, of order Ln and of order
2.

n<:
In: ( TD {: ) :i ) :i::
nZ.
: B e
i
It is now necessary to introduce a classification. We divide all diagrams into two
sets:

i) the set of all diagrams of order L?, Ln or n® that can be disconnected by removing
one propagator; here (a, e, £, and 1);

ii) the rest, called the overlapping diagrams.
Set (i) are the non-overlapping diagrams. No new divergences occur, as can be

verified readily. In fact, on both sides of the propagator in question one finds precisely

what has been made finite previously:
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P [”Q“+W}'INO~+W}

The overlapping diagrams may contain new divergencies, and we must try to prove that these
new divergencies behave as local counterterms. In principle, the proof is very simple and
based on the use of cutting equations. The first observation is that all cut diagrams
[always taking together diagrams of a given order in (L + n) on each side of the cut] are
finite, that is there is no pole for n = 4. The proof of this is easy; these cut diagrams
are of the structure of a product of diagrams of lower order in (L + n), which are
supposedly finite, and an integration over intermediate states. Since for given energy

the available phase space is finite the result follows. This assumes that the diagrams
have no non-integrable singularities in phase space; the latter would correspond to

infinite transition probabilities in lower order, which we take not to exist.

Now let us number the vertices to which the external lines are connected. Here there
are only two such vertices, and we call them 1 and 2. According to our cutting relations

we have, integrating over all x except over Xx; and X
+ -
fx) = 6(xc)d + 8(-X0)A

with x = X - X;. Here N contains all cut diagrams with x; in the unshadowed region, and
A" all cut diagrams with x, in the unshadowed region. This is of precisely the same
structure as discussed before; we know that if S are free of poles for n = 4, then f£(x)
can only have a pole part that is a ¢ function or derivative of a § function. In other
words, the pole part in n = 4 must be a polynomial in the external momentum. For arbitrary
diagrams this must be true for any combination of "external' vertices (= vertices that have
at least one external line), and thus for any of the external momenta. Due to the fact
that power counting and the existence of poles for n = 4 are in a one-one relationship it
can easily be established that the polynomia are at most of a certain degree; here, photon
self energies, at most of degree 2. To do all this properly it is necessary to distinguish
between over-all divergencies and subdivergencies (the former disappear if any of the
propagators is opened), and show that there are no subdivergencies if all the lower order
counterterms are included. Next it must be shown that after a certain number of differ-
entiations with respect to the external momenta the over-all divergence disappears. All
this is trivial: opening up a propagator in a self-energy diagram is equivalent to
considering diagrams with four external lines of lower order in (L + n), thus already
finite. Over-all divergencies correspond to over-all power counting (partial differentia-
tion with respect to all loop momenta), and differentiation with respect to any external
momentum lowers this power by one.

13.7 The order of the poles

Renormalization may now be performed order by order in (L + n). One starts with
diagrams with L' (one closed loop) and finds the necessary counterterms. They get a
factor n in the Lagrangian. Next one considers diagrams of order L* (two closed loops)

or (Ln)! (one closed loop, one counter vertex) or n? (tree diagrams, two counter vertices).
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The total can be made finite by adding further counterterms. Such temms get a factor n?
in the Lagrangian. In this way one can go on and obtain a counter Lagrangian in the form
of a power series in n. For n = 1 the complete theory is finite (there are no poles for
n =4).

We have already seen that the terms of order n contain simple poles only. We now
want to indicate that the terms of order n? contain poles of the form (n - 4)72, and

furthermore, the coefficient of such a pole is determined by the order n terms.

First of all, it is trivial to see that there are no quadratic poles at order n? if
there are no poles at order n. If there are no poles at order n then there are no sub-
divergencies in two-loop diagrams. But over-all divergencies of diagrams of order L2

are simple poles (this follows from partial integration), i.e. there are no quadratic poles.

To see that there are in general quadratic poles consider the sum of photon self-
energy diagrams (c) and (d). The sub-integral in (c) may be done and gives rise to an
expression of the form

-3,

where p is the momentum going into the sub-loop. This equation is symbolic in so far as
that we have indicated only the momentum dependence with respect to power counting. The
above expression can then be obtained from dimensicnal arguments. The sum of diagrams (c)
and (d) is of the form

i dnp(p)'a{r -2 - 2 (p)l} :

1
(p* + m?) %, Next

it

Simplification can go too far; we write p

A n/2+)

j d.np(p2 + m?) F[-k - %]Onz)

and the integral becomes

P(-n + S)F[z - %‘](#)“‘3 - r[l - %} 5 A

Since

[ -m) = o TG - 1), r[1-5]=22 r[z-E],

we find for the double pole

1 1 2 2 _ 2 2 22*[1)22
T-n f-n f-n" Z-n i-n d-n" m” .

If we write
(mz)n- 3

=m®* +n?(n - 4) In n?,

D - -
2)n/L Vom? o+ p? E—;—i In m® ,

&

(m
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we discover that the In m? term has no pole

m* lnm® | 2 -4y --8_ n-4l. minm | 2 _ 4
(@ -nZ)3-n 2-n 2 4-n 3-n 2-n

The residue of the pole for n = 4 is zero. This is as should be because a term In m? is
non-local, and not admissible as counterterm. Remember that m? stands for invariants made
up from external momenta, masses, etc.

The above argument is very general and in fact based only on loop and power counting.
It can be extended to arbitrary order, and a precise relation between the coefficients of

the various higher order poles can be found. (G.'t Hooft, CERN preprint, May 1973.)

13.8 Order-by-order renormalization

Consider the following two-loop diagram:

~O0—O-

Suppose the self-energy bubble is a function of n and the momentum k of the form:

O (k) = —E £10E) + £(2) + (0 - DE0E)

We have omitted a factor kzéuv - kpkv' The two-loop diagram gives

2
[£(2)]? = [ﬁ}—J g2 g vong s om- ) .

If we simply throw away the pole parts the result is for n = 4
£+ 2f1f,

However, this result is wrong because it violates unitarity. Suppose now we do order-by-

order subtraction. Then one has after the treatment of one closed loop:

-Q«+-%w =f, + (n- Dfy .

The physical result is the limit n = 4 and is equal to £, (k?). Cutting two-loop diagrams
should therefore not involve f;. Next include the proper counterterms and consider:

*~*(:::}~*<::)*~‘ + *~96*<i::>*” + ””(:::f***“‘ + e
= f3 +0(n - 4) .

Indeed one obtains the correct result consistent with unitarity. This demonstrates that
order-by-order renormalization is not equivalent to throwing away poles and their residues
of the unrenormalized S-matrix. In a way that is a pity, because the last method is so
much easier. But there is no escape, one must do things step by step, that is order by

order in the parameter n.
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13.9 Renormalization and Slavnov-Taylor identities

It has been shown that the one-loop counterterms are gauge invariant by themselves,
in the case of Lorentz gauge quantum electrodynamics. The question is whether we can

understand this, and to what extent this is a general phenomenon.

As a first step we note that combinatorial proofs can be read backwards, at least if
they are of the local variety. In other words, Ward identities can be translated backwards
into a symmetry of the Lagrangian. Therefore, if the Ward identities of the Lagrangian
including counterterms are identical to those without counterterms, then both Lagrangians
satisfy the same gauge invariance. Let us consider the S-T identities of the unrenormalized

theory including electron sources:

+ + A =0

We have drawn one photon and one electron source explicitly, leaving other sources

understood.

Since these identities are true for any value of the dimensional parameter n, they

are in particular true for the pole parts.
Consider now one-loop diagrams. The pole parts in the above identity are:

i) the pole parts found in the Green's functions themselves;
ii) the pole part arising from a closed loop, involving the electron-ghost vertex shown in

the last diagram.

Now this last vertex is defined by the behaviour of the Lagrangian under gauge trans-
formations, but it is not present in the Lagrangian itself. 1In C one only finds Jy; if
we introduce counterterms in the Lagrangian that make the Green's functions finite
(including Green's functions with ingoing and outgoing ghost lines) then the above S-T
identity can remain true only if we throw away the pole part of the type (ii). That is,
for the renormalized Lagrangian, the S-T identities take the form:

_x
+ *—@\ + *@i: + =0
y § A A

Here the double cross stands for minus the pole part of any diagram such as:

——

—

Clearly we can understand this identity as an S-T identity if we redefine the behaviour of

the term Jy under gauge transformations. If we say that under a renormalized gauge
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transformation ¢ transforms as

Z
n-4

YU+ deAy + i o,

where Z is minus the residue of the pole part of the type (ii), then the above identity is
again precisely an S-T identity. We conclude that the Lagrangian including counterterms is

invariant for renormalized gauge transformations.

To make the statement more precise we must add on a factor n to the pole term in the
renormalized gauge transformation. Since we allow as a first step only one closed loop the
statement is only true up to first order in n. It is unfortunately somewhat complicated to
extend this work to arbitrary order in n, but we will do it in the next section.

In quantum electrodynamics things are never really complicated, because in the usual
gauges (Lorentz, Landau, etc.) there is no ghost vertex, ergo there are no pole parts of
the type (ii). Then the renormalized Lagrangian is invariant with respect to gauge trans-

formations that transform an electron source coupling as before, i.e.
>y o+ dedd
with the same e as in the unrenormalized Lagrangian. The result is

[ is invariant under the transformation (A),
unren

£

+ is invariant under the transformation (A),
unren counter

therefore

£ alone is invariant.
counter

In the general case this is not true.

13.10 Higher order counterterms

Doing things order by order we suspect (and have shown this to be true up to first

order in n) that € is of the form
ren

+
Eren(n) £unren Ecounter ’

= + %L, o+ ..
Ecounter nEI n EZ v

vhere £,, [,, etc., contain factors 1/(n - 4). For n =1 the theory is finite. The re-
normalized Lagrangian €(n) is invariant under gauge transformations of the form
Ay > A+ (ty + tyn + tn? + L 00,

Vo> oy o+t rtin g+ L M,

where the t and t' contain factors 1/(n - 4).
Let us suppose this latter statement to be true up to order k in n. Consider now:

i) diagrams containing only vertices of the unrenormalized Lagrangian with k + 1 closed
loops; such diagrams exhibit poles up to degree k + 1 and satisfy the unrenormalized

S-T identities;
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i) diagrams containing counterterms (corresponding to vertices of L ... L, Ty oeee ty,
ty e tllc) but with at least oné closed loop;

Te+1

iii) diagrams of order n (containing thus no closed loop).

Example for two closed loop photon self-energy diagrams:
Set (i) diagrams (a), (b), (c).
Set (ii) diagrams (d) to (h).

Set (iii) = diagram (i) plus a new diagram of the form ...~~~ that is needed to
remove the divergencies of the overlapping diagrams. Now (i) + (ii) + (iii) give a finite

)

theory as n ~ 4 and n + 1. That is simply how they were defined. Next (i) + (ii) satisfy
Ward identities (the theory was assumed to be invariant up to order n). Therefore the
residues of the pole of set (iii) satisfy the S-T identities. Because the diagrams (iii)
are tree diagrams the dimension n appears nowhere except in the pole factors 1/(n - 4).
Therefore the diagrams (iii) satisfy the S-T identities, which means invariance of the
renormalized Lagrangian under the renormalized gauge transformation considering terms of

k-1

order n only. This completes the proof by induction.
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APPENDIX A

FEYNMAN RULES

The most frequently encountered Feynman rules will be sumarized here. Also combi-
natorial factors will be discussed. The external sources to be employed for S-matrix
definition must be nommalized such that they emit or absorb one particle. The normalization
formilae follow from the propagators; the "ingoing and outgoing line wave-functions"
indicated below are the product of those sources, the associated propagator and the asso-
ciated mass-shell factor k? + m’.

Spin-0 particles

Propagator:
1 1 — o (A1)
(Zm*1 k2 +m? - 1e ’ '
In shadowed region:
— L A2
@Zm*L k2+m2+1e ’ —* (A.2)
Cut propagator:
1 2, 2
(Z.n-ji e(kO)GCk’ + m) . (A.:’))
k
Wave-function: 1. (A.4)
Spin-Y, particles
Propagator:
1 -iyk +m
(zﬂ)hi X2 + m® - ie . b ‘k . (A'S)
In shadowed region:
_ 1 -ivk +m .
% k2 +m? + ie ° K (A.6)
Cut propagator:
ﬁ}r—)—a (-ivk + m)8(-ko)S(k* + m?) . >—£T (A.7)
TZ%T’ (-ivk + m)8(ko)6 (K2 + m?) . (A.8)
K



- 101 -

Incoming particle wave-function: ua(k) 2k 3 a=1,2

Incoming antiparticle wave-function: -uo(k)/2K, ; a =3, 4

- . P . (A.9)
Outgoing particle wave-function: ua(k)/ﬁko y a=1,2

Outgoing antiparticle wave-function: ua(k)/Zko ; a=3,4)

Note the minus sign for the incoming antiparticle. The momentum k is directed inwards for

incoming particles and outwards for outgoing particles. As usual u = u‘y".

The spinors are solutions of the Dirac equation (note that ko = +/Kk? + m2 )

(v, + mu®k) =0, a=1,2,
a (A.10)
(-iy¥ky + mu®(k) =0 , a=3,4
In the 4 x 4 representation, with y® = ylyZy3y*
0 -io. 1 0 0 -1
Y = R , Y =[ ,
io. 0 0 - -1 0
J
(A.11)
0 1 0 -i 1 0 1 0
gy = ) 02 = ’ g3 = » 1= s
1 0 i 0 0 -1 0 1
these solutions are given in the following table:
pul )] urm) v ui (k) 4 ut (k)
r | |
_ ks Dok - ik,
‘ 1 0 m + ko , m + kg
Ktk ks
0 1 m + ko m + I(g
\/;Il * ko x :
N T K - ik a 0
: " om+ K¢ m + Ko
| i
ik + ik, -Ks
1 {om+ ko m + kg 0 1
i L i
The arrows denote spin up/down assignments in the k rest frame. Normalization:
L .
Z uy (k)ui(k) =655 - (A.12)

a=1
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Spin summations:
2 . .
) U ()

i=1

1 .
iy (-ivk + m)Ba )

(A.13)

" - .
Z uls (k)ﬁ; X)

i=3

1 g
- 7}(—0' (lYl\‘*‘m)Ba .

In connection with parity P, charge conjugation C, and time-reversal T, the following
matrices and transformation properties are of relevance.

The matrice v* is the transformation matrix connected with space reflection

ua(-i, ko) —Y“ua(K, ko) particle a=1, 2,

WK, ko) ~ &, k), antiparticle o =3, 4 .

{-w p=1,2,3

Y= (A.14)
Y u=4.
The matrix C transforms an incoming particle into an incoming antiparticle, etc.
a=4,8=1
W) = -G (1)
@a=3,8=2
a=1, 8=4
%) = oo ’ (A.15)
a=2,B8=3
CyoC = % (~ = transpose)
C-IYSC = ,75 R
where C = y2vy*, € = ¢! = -C.
In comection with time-reversal we have the matrix D
W%, ko) = -DV'EB(K, ko) a=2,8=1
= V"6 (K, ko) a=1,68=2
(A.16)
(K, ko) = WPE k)Y a=3,8=4

i

Wbk, ko)¥*D

o
i
s

-
™
n
(93]

This changes spin, direction of three-momentum and furthermore exchanges in- and out-states;

D=-yC, DMW=¥4, wu=1,2,34,5.
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Explicitly
0 0 0 1 0 1 0
0 0 -1 0 -1 0 0
1o 1 o of P |0 o o 1] (A.17)
-1 0 0 0 0 -1 0
Spin-1 particles
Propagator:
1 Sy * K ky/m® -
@M Kem? - ie

In shadowed region:

1 Sy * Kk, /m? . z;/.______.

TTEMTE IR v ml+ e

Cut propagator:

—'—7(2710 O kuk\)/mz)e(ku)esa(2 +m?) .

=4

Particle wave-functions:

. * _ -
eu(k) with eu(k)eu(k) =1 and kueu 0.

There are only three wave-functions, because the propagator matrix has one eigenvalue zero.

In the k rest system the various assignments are

Incoming Outgoing
n-uD: =4 - =L 1o
Spin-up: e Q(Ll,mo) e, /zﬂ,l,mﬂ)
Spin-down: e =+(,-i,0,0 e =-+q,i,o0,0
p M u /2— 3 2 3 u /? b H b
Spin-z component zero: e, = 0, 0,1, 0 e, = (0, 0, 1, 0) .

For outgoing particles we must take these expressions to have correct phases. Indeed, the
residue of the two-point spin-up/spin-up amplitude is equal to one.

Combinatorial factors

These are best explained by considering a few examples. Let the interaction
Lagrangian for a scalar field ¢ be

[N

L= & 4348
=T tgrd
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The vertices are: ///J\\\\
(2m*ia :>X<: (2m)*iB .

The lowest order self-energy diagram is:
1 ::::: 2
Draw two points X; and x, and draw in each of these points the o vertex:

NUANY

Now count in how many ways the lines can be comnected with the same topological result.
External line 1 can be attached in six, after that line 2 in three ways. After that there
are two ways to connect the remaining lines such that the desired diagram results. Thus
there are altogether 6 x 3 x 2 combinations. Now divide by the permutational factors of
the vertices (here 3! for each o vertex). Finally divide by the mumber of permutations of
the points x that have identical vertices. Here 2! The total result is

6 x 3 x2

_1
3T 3T 2t 2

As another example consider the diagram:

-
W W\

Line 1: six ways. Line 2: four ways. Then we have for instance:

B

There are 6 x 3 x 2 ways to connect the rest such as to get the desired topology. We must
divide by vertex factors (3! 3! 4!) and by 2! (permutation of the identical vertex
points x; and xz). The result is

There are three x points:

6x4x6x3x2 1

30 30 40 20 2
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Final example: two identical sources connected by a scalar line:
, 1
J () Factor: v .
For two non-identical sources the factor is 1:

J——xJ, Factor: 1 .

Topology of quantum electrodynamics

We now show that the vertices of any diagram of quantum electrodynamics can be numbered
in a unique way. Let the external momenta be k, ... kj.

Step 1

Start at the electron line with the lowest momentum index. Follow the arrow of the
line. Number the vertices consecutively.

Step 2

Go back to the first vertex (or lowest numbered vertex of which the photon line was
not exploited). Follow the photon line. We arrive then either at a vertex that is already
numbered, at an external photon line, or at another electron line. In the first two cases,
take the next vertex along the electron line of step 1 and restart at step 1. When
arriving at a new vertex, number again consecutively following the electron line along
the arrow. When hitting the end, or an already numbered vertex, go back against the arrow
and number all the vertices on the electron line before the vertex that was the entrance
point of that line. After that restart 2.

Example:
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APPENDIX B

SOME USEFUL FORMULAE

_ n-1 . n-2 . n-3
J'dnxf(x) = J’ £o0r™ dr sin™? o de | sin" g de ... ds (B.1)

with 0 < ei $m, except 0 < 6, < 2m. If f(x) depends only on r = vx3 + ... xﬁ one may

perform the integration over angles using

+1
fsinm 6 do = /ﬁig—zz% (B.2)
0
leading to
J'dnxf(r) - i-%i Jf(r)rn_l d&r | (B.3)
=) B F(El_l_ Tla - B + 1
ojdx (x* sz)u % r(i) (342)°E-(B+1);z ] ' (B.4)

Keeping the prescriptions and definitions of Section 13 in mind, the following equations
hold for arbitrary n

L : ) e F[u-%) (8.5)
J P (p? + 2kp + mz)@ (2 - kz]a—n]Q I'(a) ’ .
-I'l/2 n
P, ) i T[a - 7]
f dnp (p? + 2kp + m?)® ) m? - kZ)“'n/Z () (-ku) s (B.6)
I p? _ 1/ 2 1 F( _ n]kz . F[ o1 nJ n
d (p? + 2kp + m?)* ) m? - kz)a-n/z T{o) *72 o 7] 7 (m } ,
(B.7)
PP iﬂn/Z 1
o ) -5 + - -1 l 2 _ 2
[ dp (P2 + 2kp + m2)*  (@m? - kz)a-n/z T(a) {F[a 2}kukv FLu 1 ZJ 5 Suv(m k )},

(B.8)



[y BPP _ i/ 2 )
N R e O

L n n) 1
" T {P[O‘ B R R ECR T R Rl kz)} ,
(B.9)

p?p in™?
f dp IS = x
o2+ 2kp +m)Y m? - kz)a-n/é

< r‘(l‘oﬁ (k) {l‘[a -Iz—l]kz s r[u -2 1J n-2 [mz—kzj}.

(B.10)

The above equations contain indices u, v, A. These indices are understood to be contracted
with arbitrary n-vectors qi, qz2, etc. In computing the integrals one first integrates over
the part of n-space orthogonal to the vectors k, qi, 4z, etc., using Eqs. (B.1) to (B.4).
After that the expressions are meaningful also for non-integer n. Note that formally

Eqs. (B.6) to (B.10) may be obtained from Eq. (B.5) by differentiation with respect to X,
or by using p? = (p® + 2pk + m?) - 2pk - m®.

To show that integrals over polynomials give zero within the dimensional regulariza-

tion scheme is very simple. Consider, for example,
1@ = [d4peh*,

where a is some integer greater than or equal to zero. According to Eq. (13.19) in the

case of only one loop, we have

o . 5. Df2-2
I(x) = J' d*p J‘dwwnS *—Z?n — (EZ + )%,
6 r 2 ]

By partial integrations (see Subsection 13.2) we get now

I(0) = ———5— J d*p T(ﬂnwn_5+zx [- —é—})\(P2 + o)
r[n-4+>\] J dw? ) & ’

o

which gives zero for A > a.

A nice example, suggested by B. Lautrup is the following. Consider the following

integral
k

= kk U
N Jd (k* +m?)?*’
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which gives zero, because of symmetric integration, if one regularizes, for example, as
follows

R r1 1
L fdukkul_(k"- rmB)E T ¢+ Az)z} '

It is also zero in the dimensional cut-off scheme according to Eq. (B.6).

Let us now shift the integration variable, forgetting about regulators

*p
fd" H . (B.11)
[(k + p)z +m? )
Expanding the denominators, we get
o= (4% | . p, - 4 _u_( D) |, o) (B.12)
u (k2 + m2)2 it kZ 4

which by symmetric integration (ku + 0, kukv > 1/n,(SU \)kzj gives
I, =m’p Ko@) fo .
u U (K24 m?)?

Using dimensional regularization, which means ku - 0 but kuk\) > (6uv/n]k2, we get from

Eq. (B.12)
A K31 - =
I, = p, jd + 0(p?) .

(K +

From Egs. (B.5) and (B.7)

_n
'/‘dnk 1 - n/Z( Z)H/Z 3 { -Z_J
(k% + m?)? I3
n
n k? W, ,n/2m2 g F[Z ) 7]
fdk——————(k2+m)3—1ﬂ m2) OEE

Then

In the limit n + 4, remembering that

Z>-n n
-1 1
M@ = (n!] z+n’
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the coefficient of the pu term turns out to be exactly zero. Of course, from Egs. (B.5) to
(B.7), Iu in Eq. (B.11) gives zerc to any order in p.

In computing pole parts it is very advantageous to develop denominators. Take
Eq. (B.S5). For o = 2 we find the pole part

PP[(B.5), a = 2] = ;12% =7y . (B.13)

This Z, is a basic factor. Every logarithmically divergent integral has this factor, and
further vectors, § functions, etc.

p.p
_oB  _, 1
P [ dp RS R (B.14)
P_D.P P 1
o BTuY el
PP [ dp gy Zy 33 (8ugd * S0y * Sula) - (B.15)

The four on the right-hand side follows from symmetry considerations; the coefficient
follows because multiplication with duB gives the previous integral. We leave it to the
reader to find the general equation.

For other than logarithmically divergent integrals the denominator must be developed.
For instance

ij P o 2pk par e N (B.16)

where we used Eq. (B.14) together with

1 1 k -
(f+ZW+mﬁ2:?{1—4%+O®2%'

Linearly, quadratically, etc., divergent integrals that have no dependence on masses or
external momenta can be put equal to zero.

The result Eq. (B.16) coincides with what can be deduced from Eq. (B.6).
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APPENDIX C

DEFINITION OF THE FIELDS FOR DRESSED PARTICLES

Also the matrix elements of fields and products of fields (such as encountered in
currents) can be defined in terms of diagrams. It is then possible to derive, or rather
verify, the equations of motion for the fields. This provides for the link between dia-

grams and the canonical operator formalism.

Since things tend to be technically complicated we will limit ourselves to a simple
case, namely three real scalar fields interacting in the most simple way. The Lagrangian
is taken to be

=1 2 gl 1 2 2 1 2 .2 -
£ 7 A3 mA)A + 5 B(s mB)B + 5 C(s C)C + gABC + JAA + JBB + JCC . (C.1)

The bare propagators will be dencted by the symbols A%A’ A?B and Agc, the dressed propaga-

tors by AFA’ AFB and AFC' For example

LI 1 — 1 . (C.2)

’

FA om)i k2 o+ m - ic FA omvi Z3(K? + M2) - Tya (k%) - de

The pole part of the dressed propagator plays an important role and will be denoted by Ap

f o1 1
FA  om*i ACEE VR '

(C.3)

The result (C.2) has been obtained as follows [ see Section 9, in particular Eq. (9.3)].
The function FA(kz) is the sum of all irreducible self-energy diagrams for the A-field.
The dressed propagator is of the form (k* + nj - FA)'I. This expression will have a pole
for some value of k?, say for K= -M{. Then we can expand I, around the point K2 = -Mi

FA(kz) = Smf\ + (k% + Mj\)FA + F1A(k23 R 2 =1-F

A émz =m? - M2

2 - M2, (C.4)

2
A

where T', is of order (k% + Mi]z. Insertion of this expression leads to Eq. (C.2).

Next to the propagators we define external line factors Nj(k?), etc. They are the

ratio of the dressed propagators and their pole parts

A

FA
N, (k2) = R (C.5)
A ZpBpa

In the limit k% = -M; this is precisely the factor occurring in external lines when passing

. . N + - .
from Green's function to S-matrix. Finally we have the important A and A functions

+ 1 1 2 2
A—W z}i—e(iko)ﬁ(k +\/1A) .
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Consider now any Green's function involving at least one A-field source. For all
except this one source we follow the procedure as used in obtaining the S-matrix, that is
all dressed propagators and associated sources are replaced by factors N and the mass-shell
limit is taken. For the singled out A-field source we replace the dressed propagator and
source by NA(kZ), but do not take the limit k* = -M*. The Fourier transform with respect
to k of the function so obtained is defined to be the matrix element (for a given order in
the coupling constant with the appropriate in- and out-states) of an operator denoted by

&% . (C.6)
(The notation used here should not be confused with notations of the type used in Section 9.)
It is, roughly speaking, obtained from the S-matrix by taking off one external A-line and
replacing that line by the factor NA(kZ). Diagrammatically:

6S - : .
<B"SA(T)I°‘ i a\ B i T = NG €7

with the notation:
L —— I ~— -~ s L atassasaes | =A‘, B-, C-1line .

It is to be noted that the propagators used are completely dressed operators, and therefore
self-energy insertions are not to be contained in Eq. (C.7). In particular there are no

X N
I N (C.8)

However, the factor NA(kz) implies really the insertion of irreducible self-energy parts.

contributions of the type:

Working out Eq. (C.5) we see [compare Eq. (C.4)]

Ny (k) = 21; [1 + {FA(kz) - iEmtmd - M) - 12t - Mj_\)FA}EFA(kZ)} .

Diagrammatically:
&
1 |
. o = — X X — XX (C.9)
| + -
o Bg A

§ = (Zn)‘*i(mf\ - Mf\) + (2m)*ik2+ 1\1‘3\)}:A .
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Remember that PA_starts with a B- and a C-line, and that NA is attached to a B-C vertex
[see Eq. (C.7)]. We see that the right-hand side of Eq. (C.7) consists of all skeleton
diagrams starting with an amputated B-C vertex, apart from the §-correction.

We now define the product of this object and the matrix S+. 1t is obtained by

comnecting diagrams of 8S/8A to diagrams of S-r by means of A" functions:

X
] st g =l gyl W
a\

This is a collection of cut diagrams, with S+ corresponding to the part in the
shadowed region. This definition of the product is the same as that encountered in the

expression S*S.

It turns out that the differentiation symbol §/8 in 8S/SA has more than formal meaning.
With the help of the cutting equations it is easy to show that

.l.

+ ¢S 8S _
Sm‘*ms—o. (C-ll)

The second term has the point x to the right of the cutting line. This can be expressed
formally by writing 6(S+S)/6A(x) = 0, which is what is expected if unitarity holds,
STS = 1. One may speak of generalized unitarity, because the A-line is off mass-shell.

The A-field current jA[x) is defined by

. _ .ot &S
JA(X) =1iS§ AT (C.12)
By virtue of Eq. (C.11) it follows that jA(x) is Hermitian.
To define the matrix elements of the field A consider the equation of motion
2 M2 = 5 .
(3 MA)A(X) jA(x) . (C.13)

This is not directly the equation of motion that one would write down given the
Lagrangian (C.1), because we have the mass Mi (defined by the location of the pole of the
dressed propagator) instead of m;.

The equation of motion (C.13) can be rewritten as an integral equation

1 .
i AR = 77 Ajn ) - 1zAf d,x'apalx - x")IaG") (C.14)
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The retarded A function is

L 1[4k 1

A (X) = ——— e _—, C.15
R T 2 )W R - ik (€15
This function is zero unless xgo > 0. In fact
+ —
Ap(x) = e(xo){A ) - A (x)} . (C.16)
In passing, we note the identities
+ *
hp = B = -Ap,
- (C.17)
AR +tA = AF .

Equation (C.14) defines the A-field in terms of diagrams. It satisfies the weak or
asymptotic definition

lim (a|AG)[8) = lim (a|A; ()[B) .

Xo> - Xo*+—

The field Ain[X) is a free field satisfying the equation of motion (C.13) with j =

We will write Eq. (C.14) in temms of diagrams, and to that purpose we must introduce
the "ordered product'. We write

1

== 1, Ul ey oot 88’
7o M T A [x]S S =g A 00878 + 7y thx =X gppay S - (C18)

The double dots imply that A is not to be connected by a A" -line to S+. Below this will
be shown dlagrmmlatlcally The function A has been defined before. Due to the presence
of this A only the mass-shell value of the factor N is required in 8S / 8A, and this is

l/ZA. Using Eq. (C.18) we can rewrite the integral equation of motion (C.14) in the form

-T-

1 - ' 1 + ! - 8S

_XA(X) = { A A (x)S - IZAJ dux {ARA(X -x") - AA(x - X )}(—1) W:ls .
(C.19)

Keeping in mind Eq. (C.17) as well as Eq. {(C.5) we see that A(x)/ZA can be pictured
as follows:

— &
X AF: X
1 -7 €.20)
Za + (
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This then is the diagrammatic expression for the matrix elements of the field A. Similar
expressions can be derived for the fields B and C. All kinds of relations from canonical

field theory can be derived using these expressions. For instance

&mf\ FA(32 - Mf\)
J,) = - —E BEIC(X) - = AX) - B A (C.21)
A ZpLelc i z

with FA and ém from Eq. (C.4).



	p1.pdf
	Chapter01.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

	Chapter02.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28

	Chapter03.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23

	Chapter04.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

	Chapter05.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15


