Reprinted in The Physical Review - the First Hundred Years, AIP Press (1995) 1076.

Abstracts
Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reason for doing this are recounted, including a review of renormalization-group techniques and their application to scaling phenomena. The renormalization-group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines
the ultraviolet behavior of the theory, vanishes for large spacelike momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color'' gauge group which commutes with SU(3) x SU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken and that the severe infrared singularities prevent the occurrence
of noncolor singlet physical states. The deep-inelastic structure functions, as well as electron-positron total annihilation cross section are analysed. Scaling obtains up to calculable logarithmic corrections, and the naive light-cone or parton-model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

Related references More (earlier) information appears in H. D. Politzer, Phys. Rev. Lett. 30 (1973) 1346;
D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343;
See also S. Weinberg, Phys. Rev. 118 (1960) 838;
S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264;
S. Weinberg, Phys. Rev. D5 (1972) 1962;
K. Johnson, M. Baker, and R. Willey, Phys. Rev. 136 (1964) B1111;
K. Johnson, R. Willey, and M. Baker, Phys. Rev. 163 (1967) 1699;
M. Baker and K. Johnson, Phys. Rev. 183 (1969) 1292;
M. Baker and K. Johnson, Phys. Rev. D3 (1971) 2516;
M. Baker and K. Johnson, Phys. Rev. D3 (1971) 2541;
S. L. Adler, Phys. Rev. D5 (1972) 3021;
J. D. Bjorken, Phys. Rev. 148 (1966) 1467;
J. D. Bjorken, Phys. Rev. 179 (1969) 1547;
K. Wilson, Phys. Rev. 179 (1969) 1499;
K. Wilson, Phys. Rev. D3 (1971) 1818;
R. P. Feynman, Photon-Hadron Interactions, Benjamin, New York (1972) 166;
C. G. Callan and D. J. Gross, Phys. Rev. Lett. 22 (1969) 156;
H. Georgi and S. L. Glashow, Phys. Rev. Lett. 28 (1972) 1494;
C. G. Callan, Phys. Rev. D5 (1972) 3202;
L. V. Osviannikov, Doklady Akad. Nauk SSSR 109 (1956) 1112;
N. Christ, B. Hasslacher, and A. Mueller, Phys. Rev. D6 (1972) 3543;
S. Ferrara et al., Phys. Lett. 38B (1972) 333;
A. Zee, Phys. Rev. D7 (1973) 3630;
S. Coleman and D. J. Gross, Phys. Rev. Lett. 31 (1973) 851;
R. P. Feynman, Acta Phys. Polon. 24 (1963) 697;
L. D. Faddeev and V. N. Popov, Phys. Lett. 25B (1967) 29;
G. 't Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189;
P. W. Higgs, Phys. Lett. 12 (1964) 132;
Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (1961) 345;
K. Symanzik, Comm. Math. Phys. 18 (1970) 227;
H. Pagels, Phys. Rev. D7 (1973) 3689;
R. Jackiw and K. Johnson, Phys. Rev. D8 (1973) 2386;
J. M. Cornwall and R. Norton, Phys. Rev. D8 (1973) 3338;
S. Coleman and S. Weinberg, Phys. Rev. D7 (1973) 1888;
T. W. B. Kibble, Phys. Rev. 155 (1967) 1554;
B. W. Lee, in Proc. of the XVI Intern. Conf. on High Energy Physics Chicago, (Ref. 14) V.4 (1972) 249;
N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience, New York (1959);
M. Gell-Mann and F. E. Low, Phys. Rev. 95 (1954) 1300;
C. G. Callan, Phys. Rev. D2 (1970) 1541;