Reprinted in The Physical Review - the First Hundred Years, AIP Press (1995) 1044.

Abstracts
We examine a simple relativistic theory of two scalar fields, first discussed by Goldstone, in which as a result of spontaneous breakdown of U(1) symmetry one of the scalar bosons is massless, in conformity with the Goldstone theorem. When the symmetry group of the Lagrangian is extended from global to local U(1) transformations by the introduction of coupling with a vector gauge field, the Goldstone boson becomes the longitudinal state of a massive vector boson whose transverse states are the quanta
of the transverse gauge field. A perturbative treatment of the model is developed in which the major features of these phenomena are present in zero order, transition amplitudes for decay and scattering processes are evaluated in lowest order, and it is shown that they may be obtained more directly from an equivalent Lagrangian in which the original symmetry is no longer manifest. When the system is coupled to other systems in a U(1) invariant Lagrangian, the other systems display an induced symmetry
breakdown, associated with a partially conserved current which interacts with itself via the massive vector boson.

Related references See also J. Schwinger, Phys. Rev. 104 (1956) 1164;
M. Gell-Mann and M. Levy, Nuovo Cim. 16 (1960) 705;
J. Schwinger, Phys. Rev. Lett. 3 (1959) 296;
J. Schwinger, Phys. Rev. 125 (1962) 397;
J. Schwinger, Phys. Rev. 128 (1962) 2425;
A. Salam and J. C. Ward, Nuovo Cim. 11 (1959) 568;
A. Salam and J. C. Ward, Phys. Rev. Lett. 5 (1960) 390;
A. Salam and J. C. Ward, Nuovo Cim. 19 (1961) 167;
A. Salam and J. C. Ward, Phys. Rev. 136 (1964) B763;
S. Coleman and S. L. Glashow, Phys. Rev. 134 (1964) B671;
Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (1961) 345;
Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124 (1961) 246;
Y. Nambu and P. Pascual, Nuovo Cim. 30 (1963) 354;
Y. Nambu, Phys. Rev. 117 (1960) 648;
Y. Nambu, Phys. Rev. Lett. 4 (1960) 380;
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106 (1957) 162;
M. Baker and S. L. Glashow, Phys. Rev. 128 (1962) 2462;
S. L. Glashow, Nucl. Phys. 10 (1959) 107;
S. L. Glashow, Nucl. Phys. 22 (1961) 579;
S. L. Glashow, Phys. Rev. 130 (1963) 2132;
M. Suzuki, Progr. of Theor. Phys. 30 (1963) 138;
M. Suzuki, Progr. of Theor. Phys. 30 (1963) 627;
N. Byrne, C. Iddings, and E. Shrauner, Phys. Rev. 139 (1965) B918;
N. Byrne, C. Iddings, and E. Shrauner, Phys. Rev. 139 (1965) B933;
P. G. O. Freund and Y. Nambu, Phys. Rev. Lett. 13 (1964) 221;
J. Goldstone, Nuovo Cim. 19 (1961) 154;
J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127 (1962) 965;
P. W. Anderson, Phys. Rev. 112 (1958) 1900;
A. Klein and B. W. Lee, Phys. Rev. Lett. 12 (1964) 266;
W. Gilbert, Phys. Rev. Lett. 12 (1964) 713;
P. W. Higgs, Phys. Lett. 12 (1964) 132;
G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13 (1964) 585;
R. V. Lange, Phys. Rev. Lett. 14 (1965) 3;
R. F. Streater, Proc. Roy. Soc. A287 (1965) 510;
R. F. Streater, Phys. Rev. Lett. 15 (1965) 475;
N. Fuchs, Phys. Rev. Lett. 15 (1965) 911;
S. A. Bludman, Phys. Rev. 100 (1955) 372;
S. A. Bludman and M. A. Ruderman, Nuovo Cim. 9 (1958) 433;
J. J. Sakurai, Ann.Phys. 11 (1960) 1;
C. N. Yang and R. L. Mills, Phys. Rev. 96 (1954) 191;
R. Utiyama, Phys. Rev. 101 (1956) 1597;
M. Gell-Mann and S. L. Glashow, Ann.Phys. 15 (1961) 437;
S. Weinberg, Phys. Rev. Lett. 13 (1964) 495;
F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321;
P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508;
D. Boulware and W. Gilbert, Phys. Rev. 126 (1962) 1563;
P. T. Matthews, Phys. Rev. 76 (1949) 684;
K. Nishijima, Progr. of Theor. Phys. 5 (1950) 405;
C. S. Lam, Nuovo Cim. 38 (1965) 1755;
K. Johnson, Nucl. Phys. 25 (1961) 431;
Y. Nambu and D. Lurie, Phys. Rev. 125 (1962) 1429;
Y. Nambu and E. Shrauner, Phys. Rev. 128 (1962) 862;
E. Shrauner, Phys. Rev. 131 (1963) 1847;
J. Schwinger, Ann.Phys. 2 (1957) 407;

Record comments
Higgs mechanism of mass generation for vector gauge fields.